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Abstract. In the paper we study the asymptotic of the tail of 
distribution function P ( A ( X ,  c) > x) for x + m, where A ( X ,  c) is the 
supremum of X(t)-ct over [0, co). In particular, X(t )  is the fractional 
Brownian motion, a nonlinearly scaled Brownian motion or some 
integrated stationary Gaussian processes. For the fractional Brownian 
motion we give a stronger result than a recent one of DuffieId and 
O'Connell [ 5 ] .  

Introduction. In this paper we study the asymptotic behaviour of the tail of 
distribution function of 

where X ( t )  is a mean zero Gaussian process. Thus X is: 
FBM: a fractional Brownian motion with parameter H (0 < H < I), which 

will be denoted by BH(t); 
SBM: a scaled Brownian motion S H ( t )  = B(t2H)  with parameter H > 0; 
FiBM: a filtered Brownian motion 

t 

Bo ( t )  = J?li 1 ( t  - s ) B - l i 2  dB (s) 
0 

with parameter H > 0; 
DG: a degenerated Gaussian 

N H  ( t )  = t H N  

with parameter H > 0, where JV is the standard normal random variable and 
H > 0; 

GI: the integral Jb Z (s) ds, where Z is a stationary short range dependent 
stationary process. 
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The common feature of d I  considered above processes, except for the GI 
case, is that the variance D2X(t )  = t2". For the GI case the variance is an 
asymptotically linear function of t .  

For H = 1/2 the FBM is the Brownian motion B,,, (t) = 3 (t) and it is well 
known that 

P(A(B,,,, c) > u) = exp(-2cu). 

Dqbicki and Rolski M studied some GI processes of the form X (t) = so Z (s) ds, 
where Z (t)  is a short range dependent stationary Gaussian process with mean 
0, for which they proved that 

The short range dependence means that 0 < j: R (t) d t  < oo, and then y = 
c,iJ: R (t) dt, however for their result Dgbicki and Rolski needed more assump- 
tions. In Section 5, under the condition that R( t )  2 0, we show some improve- 
ments of bounds and their proofs from [4]. However, recently, models with 
X(t) having higher irregularity than Brownian motion and also dependent 
increments have been more often required. In the class of Gaussian processes 
there is a lot of interest in studying the FBM. Note that if H 2 1/2, then the 
process has positively correlated increments. We would like to point out that 
FiBM and DG are not processes with stationary increments. 

The tool to study t,b (u) = P(A(B, ,  c) > u) is the inequality 

P(A(B,, c) > u) < P(A(SEI ,  c) > U), 

which follows from Slepian's theorem (recalled in Section 4). The FiBM ap- 
peared in Mandelbrot and Van Ness [17], where the authors referred for this 
process to Levy [16]. 

Since 
P (sup ( B  (t2") - ct) > u) = P (sup (B (t) - ~ t l l ( ~ ~ )  > u), 

t > O  1 2 0  

the problem for the SBM can be reduced to studying a Brownian motion with 
the nonlinear drift B (t) - ct1/('"). The supremum of the Brownian motion with 
nonlinear drift B (t) - t1I2 was studied by Kliippelberg and Mikosch [l 11. Other 
papers with nonlinear drift are Ferebee [7], [8] and Jennen [lo]. 

There is a vast literature dealing with the distribution of the supremum of 
centered Gaussian processes on a compact interval, with the most celebrated 
BorelI inequality (see e.g. Adler El]). Berrnan [2] obtained bounds for the 
supremum of Gaussian processes with stationary increments over finite inter- 
vals by the use of Slepian's inequality. Michna [I81 has recently studied 
bounds for the supremum of the PBM with drift over a finite interval. In 
contrast to such results, the tail of the distribution function of the supremum 
over unbounded sets (in our case R,) of a Gaussian process with negative drift 
has usually a different asymptotic. For X ( t )  being the PBM the first result 
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in this direction seems to be of Norros [I91 who showed a lower bound for 
Y (b) and we found his bounds out while considering DG case. Duffield and 
O'Connell [5] studied the asymptotic 

(1.1) log (P ( A  (B,, c) > u)) - au2-'" for u + a. 

It turns out that their result is typical for a larger class of Gaussian processes 
and that the variance function is responsible for the asymptotics of (1.1). In the 
papers [ 5 ]  and [19], the buffer content in a stationary fluid model was studied, 
where for the net-input process X (t) = B, (t)- ct, the buffer content process was 
given by Y (t) = sup,<, (X ( t )  -X (s)). This study is motivated by problems of 
queue theory, risk theory and other applications. For example, recent measure- 
ments and statistical analyses of traffic data are best explained by traffic models 
having long-range dependence, in particular by the FBM; see for instance 
Leland et al. [15] and Willinger et al. [23]. 

The study of the case SBM is pithier. In Section 4 we use Slepian's theo- 
rem to compare different models. 

2. An applicatiw of local times for scaled Brownian motion. An important 
role plays the function 

(ct + u ) ~  

where 0 < H < 1. In the special case we get ll,,,,(u) = c-I exp(-2xu); see the 
table of Laplace transforms in 1141. The following result will be useful: 

P r o  of. For the proof, Theorem 2.3 and Corollary 2.1 from Fedoryuk [6] 
should be used. The details how to check assumptions of this theorem are given 
in the Appendix. m 

The following considerations are valid for a stochastic process X (t), where 
X (t) = BH (t) -ct or X (t) = SH(t)- ct. Let 

l. 
1 "  

L(U; X) = L(U)  = lim- I I [x(~)E(u-E, U+E)jdt 
E+O 2€ 0 

be the local time of the process X ( t )  at level u, where the limit exists almost 
surely. However, for this paper we take another approach to define the local 
time following Geman and Horowitz [9], and Berman [3]. Let X (t) be a sto- 
chastic process fulfilling: 

X ( t )  has continuous trajectories; 



- for all t 2 0 the distribution of X(t) is absolutely continuous with respect 
to the Lebesgue measure rn with density g,(,,; 

g,,,, (x) dt i m for all x E R. 
Define a random measure M ,  by  

m 

M ,  (A) = m ( { t  3 0: ~ ( t )  E A))  = j 1 (x, (t) E A) dt, A E 9 (W +). 
0 

We have 
m 

.. . - -  EM,(A)= S(.(gx,(x)dt)dx. 
A 0 

Since the measure EM is absolutely continuous with respect to m, for 
almost all w the measure M ,  is absolutely continuous with respect to m. 
Therefore there exists L,(u) such that 

Thus 
w 

EL (u) du = EM (A) = j ( j g ~ { ~ ,  (u) dt) du 
A A 0 

for all A E  W (It,), and hence 
Q) 

EL (u) = I,,, (u) = j gxct,  (u) dt , m-a.e. 
0 

LEMMA 2.2. If we choose a continuous version of EL(u), then 

EL (I;; {BE (s) - CS)) = EL (U ; { S H  (s) - CS)) = IH, ,  (u) . 
Let 

z (u) = inf ( S ,  It) - ct .> u: t 2 0) 

be the crossing time of the level u by SH (t) - ct, and L,(.) its distribution. Note 
that p, is defective for H < 1 (use the law of iterated logarithm). By pg(-) we 
denote the conditional distribution of z(u) under the condition that z(u) < a. 
Consider jointly (L(u), z(u)) under the condition that z(u) < co. Let 
E (L (u) I z (u) = t) denote a version of the conditional probability E (L (u) I z (u)). 
The idea is to consider 
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Now using the property that the process SH (t) - c t  has independent in- 
crements (but not stationary), we obtain 

(2.2) E (L (u) I r (u) = f )  = E (L (0; ( B  (( t  + s ) ' ~  - tzR) - cs))) 

LEMMA 2.3. (i) The function y(z) = z / , , / m  is strictly incrspsing 
fiom 0 to o ~ ,  and similarly its inuerse z(t). 

(ii). F o r ,  0 < H < 1/2 the function 

is decreasing. 
(iii) For 1/2 < H < 1 the function 

is increasing. 
(iv) For 0 < H < 1, 

lirn f *(z) = lim f (y) = 2 ,  
z-0 Y -0 

(2.6) 
1 

lirn f * (z) = lim f (y) = - 
2- m y+m 1 -H'  

Pro of. The proof goes by standard calculations. We only show that f * (2) 
is increasing. Since for all z > 0 

the proof is completed. 
The key idea is given in the following lemma: 

LEMMA 2.4. If 1/2 < H < I ,  then for all u 0 



88 K. Debicki  et al. 

Proof.  Putting z = x/t  in (2.2) we receive 

We now make the next substitution y = z / J m .  Note that, by 
Lemma 2.3, y (2) = z / J m  is strictly increasing from 0 to m, and there- 
fore \ye infer that the inverse z ( y )  exists. Thus 

where f * (z) was defined in (2.3). Note that by Lemma 2.3 the function f ( y )  = 
f * (z (y)) is increasing. Since f ( y )  is increasing and (2.5) holds, we obtain 

Analogously, from (2.6) we get 

The proof is completed. 

Remark  2.1. Note that if 0 < H < 1/2, then after analogous calculations 
we can obtain 
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The only difference is that for 0 < H < 1/2 from Lemma 2.3 the function f * (x) 
given by (2.3) is decreasing. 

3. Suprema from scaled Brownian motion with drift. In this section we 
study the asymptotic for P(A(SH, c) > u). We put 

THEOREM 3.1. Let 1/2 d H  < 1. 
(i) For all I( 2 0, 

(3.2) - - 2 (1 -H) C~II ,~(U) < P (A (Sa, C) > a) 6 e l H , e ( ~ ) .  

(ii) For all u 3 0, 

(3.3) P(A(S, ,  c) > u) 2 e x p ( - a ~ ' - ~ ~ ) .  

(iii) For td + my 

(3.4) 2-J- exp (- au2-2H) + o (exp (-cxu2 - 2R)) < P (A (Sn, c) > u) 

" J& exp (- uu2-2H) + o (exp ( -  mu2- 2H)). 

Proof.  We get (3.2) inserting the inequality (2.7) into (2.1). Now (3.4) 
follows from the result of Lemma 2.1. 

The proof of (3.3) is based on the observation that 

is the tangent function to the function m(t) = at the point x (x > 0) and 

P (A (SHY c) > u) = P (sup (3 (t) - > u) 
t 30 

(3.5) 2 P (sup ( B  (0- k x  (0) > u) 
t B O  

= exp (- uu2- 2H) 
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for all x > 0. Inequality (3.5) is a consequence of the concavity of m(t). In- 
equality (3.6) follows from the fact that the function 

takes its maximum at the point x = ( ( u r n  (1 
The following result gives the asymptotic of P(A(SH, c) > u). 
THEOREM 3.2. For 0 < H < 1 and pr + rn 

P ( A [ S , , C ) > U ) -  exp ( - au2 - 2H). 

Proof,  From the proof of Lemma 2.4 we have 

where f *(z)  was defined in (2.3) and the function z ( y )  is the inverse to 

Now (3.7) can be written as Ef (z(Nt))/(2c), where N ,  has the distribution as the 
conditional c- l  t H - I  N under the condition that N 2 0 and N is the standard 
normal random variable. By simple calculations we see that, for all x 2 0, 
P (N,  2 x) -t 0 as t + oo, which means that Nt + 0 in distribution. Since 
f * (z ( y)) is bounded and continuous, we have 

Now the result follows from (2.1) and Lemma 2.1. 

Remark  3.1. Note that, by the law of iterated logarithm, for H 2 1 and 
u 2 0 we have 

P (A (s*, C) > U) = P (SUP {B (t) - ~ t l I ( ~ ~ ) )  > U) = I. 
t B O  

Remark  3.2. The right-hand side of (3.4) can be derived by using a result 
for the first passage density for the Brownian motion to a barrier. Thus, since 
sB( l / s )  is a Brownian motion, we get 

P ( A  (SAY C )  > U) = P ( inf (u + cs1flZH)- B (s)) < 0) 
s > o  

- inf (us + csl - - m)) < 0). 
- p(s> 0 
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To calculate the last probability we need the first passage density for the 
Brownian motion to the barrier f (s) = us+cs1-1i~2H). From the integral equa- 
tion for the first passage density for Brownian motion to the barrier f (see e.g. 
Ferebee [7]) it follows that 

P { inf (us + cs l -  ' 1 ( 2 H )  - B (s)) i 0) 
s>O 

Putting - 

we obtain 

~ ( i n f ( u s + c s ~ - ~ ~ ( ~ ~ ~ - ~ ( s ) )  < 0) 
s>O 

We have to treat the above integral for large u. In order to conclude the upper 
bound in (3.4) it is enough to make an appropriate use of Theorem 2.3 and 
Corollary 2.1 from Fedoryuk [6], which shows the behavior of such integrals. 
The details how to check the assumptions of this theorem are given in the 
Appendix. 

4. Application of Slepian's theorem. We use the following result of Slepian 
1221 in the form presented in Piterbarg [20], p. 6. 

THEOREM 4.1. Let Gaussian processes (XI ( t);  t 2 0 )  and { X z  (t); t 2 0) 
with covariance functions rx, (s ,  t)  and rx,(s, t), respectively, be separable (in 
particular, continuous). If for all s, t 2 0 

then for all u 2 0 

P (sup {XI ( t ) )  2 u) < P (sup { X ,  ( t))  2 u). 
rz, 0 $3 0 

We use Theorem 4.1 to compare P ( A ( X ,  c) > x) for daerent Gaussiap 
processes X. Recall that the covariance function of the FBM with parameter 
H is r~~ (s, t) = (112) ( tZH + sZH- It - sIZH) and in the SBM SH (t)  the covariance 
function is r,, (s ,  t) = min (sZR, tZA). Michna [I81 showed that rs,(s, t )  < 
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TBH ( s ,  t) for 112 6 H < 1 and in the following lemma we find a further relation- 
ship between useful covariance functions. 

LEMMA 4.1. The covariance firnetion of the FiBM Bfi is 

and of the process DG N H  i s  rNH(s ,  t) = For all t 2 0 

rsH tt, t )  = rBg(t ,  t )  = r~~  It, t )  = ( t ,  t )  = taA,  t  2 0. 

Merioyer, for 1/2 < H < 1 

and for 0 < H < 1/2 

Proof. In the proof we assume that s  < t .  We have 

and 
r~~ (s ,  t )  = Ep&tHM = 

If 112 < H < 1, then 

S 

< ~ H S ( S - X ) ~ - ~ ~ ~ ( ~ - X ) ~ - ~ ~ ~ ~ X  = rBg(s9 t ) .  
0 

We now obtain 
S t 

1 2 8  r h ( s , t ) = % ( t  + ~ ~ ~ - ( t - s ) ~ ~ ) = ~ j v ~ ~ - ~ d v + ~  J v a H - l d v  
0 f - s  

S 

= H 1 ( ( xH-  + ((t  - s + X ) ~ - ~ I ' ) ~ )  dx  
0 
S 

> 2 ~ j x ~ - ~ / ~ ( t - s + x ) ~ - ~ / * d x  = r ~ g ( s ,  t ) .  
0 
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Since 
tH G ( t - ~ ) ~ + s ~ ,  

we have 
( ~ H - S = ) ~  6 ( t - ~ ) ~ ~ ~  

and hence 
(HI2 +(sy2 -((t- s)?' G zsH PI 

which proves r ~ ,  ( s ,  t) < r,, (8,  t). If 0 < H 6 1/2, then the inequality in (4.6) is 
reversed. H 

From Lemma 4.1 and Slepian's theorem we get the following chain of 
inequalities : 

provided that 1/2 < H < 1; otherwise, 

The following result was given by Norros [19] but his proof is different. 

LEMMA 4.2. We have 

Pro of. The function h (x, t) = sup (xtH -ct)  achieves its maximum with 
respect to t for 

t, = ( x ~ / c ) l l ( l - ~ ) ,  
and then 

Thus 

1 2 o l ~ = - ~ ~ - l  
2- f i  (2u)3/2 u3 - 38 

exp (au2 -2H)  
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In the following corollary the first equation is due to Duffield and 
O'Connell 151. 

COROLLARY 4.1. For 1/2 < H < 1 

1 
lim 7 log P ( A  (BR, C) > U) = - 01 
t+m 

and 

1 
lim log P (A (B;, C) > u) = - a. 

- . t + m  

5. Expnential bomds. Using Slepian's inequality we can obtain improve- 
ments of results from Dcbicki and Rolski 141. Consider a stationary, centered 
Gaussian process (2 (t); t 3 0) with covariance function R (t) = EZ (0) Z (t) 
such that 

(i) R is continuous; 
(ii) 0 < R (t) < ao for all t 2 0; 
(iii) j," R (s)ds  < oo. 
Define 

t 

x (t) = j Z (s) as. 
0 

Let 
C 

= j: ~ ( s ) d s .  
We have 

THEOREM 5.1. Under the assumptions (i)-(iii) and c > 0, for each u >, 0 

Proof. Let s < t. We have 
5 t -w  

(5.1) Cov (X (t), X (s)) = D2 (X (s)) + j dw 1 R (v) dv 
0 s - w  

and 
t S 2c 

(5.2) l12(x(t)) = 2jdsiR(v)dv <- t .  
0 0 Y 

From Theorem 4.1 and (5.1) we obtain 

P ( A  (X , c) > u) < P (sup (B (D' x (t)) - c t )  > u) . 
t > D  
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Now using (5.2) we get 

= P sup B(t)--t > u = e-?'. rn it,,( ) ) 
Remark  5.1. Note that if the increments of the process (X(t); t 2 0) are 

positively correlated and the covariance function Rit)  is continuous, then 
R(t) > 0 for all . t  3 0. 

~ e k a r k  5.2. Kulkarni and Rolski [I31 studied the process 
Z (t) = z:=, pi  2, (t), where Z ,  (t) are independent stationary Ornstein-Uhlen- 
beck processes with covariance function Ri (t) = e-ait (i = 1, . . . , n) md 
Q~ ( i  = 1, . . . , n) are positive constants. I t  is easy to check that the assumptions 
(iHiii) hold for Z(t). From Theorem 5.1 we have 

CU 
P ( A ( X ,  c )  > u) d exp 

for all u 3 0. Note that Kulkarni and Rolski [I41 have obtained 

P ( A ( x ,  c) > ec) < exp ( -- ) e-Yu , u.0, 

for the special case of Z(t) being the pure Ornstein-Uhlenbeck process with 
R(t) = e2e-"'. If we additionally assume that 

(iv) jr tZ R (t) dt < m, 
then we can prove the following 

THEOREM 5.2. Under the assumptions (i)-(iv) and c > 0, for u -t a~ 

P ( A ( X ,  c)  > u) < e ~ p ( - y ~ ~ ) e - ~ ~ + o ( e - ~ ~ ) ,  

where f l =  j: tR (t) dt . . 

Proof.  The proof of Theorem 5.2 is analogous to the proof of Theo- 
rem 5.1. It  is based on the observation that if (iHiv) hold, then 

2c 
(5.3) D2 (X (t)) = - t - 28 + r (t), 

Y 

where r (t) = 2j," (s - t) R (s) ds = o (t - ') (see [4]) 

The following theory gives a lower bound for the supremum of 
P ( A ( X ,  c) > u). The idea of the proof is analogous to the proof of the lower 
bound for X ( t )  = BR(t) given by Norros 1191. However, we think that, as in 
the Norros paper, the prefactor is redundant. 



THEOREM 5.3. Under the ussumptions (iHiv), for u -, c~ 

Proof.  Let JV be a standard Gaussian random variable. We have 

(5.4) - 

4uZ 

( 
2" 

) exp - 
D2 (X W)) 

where in (5.4) we take t = u/c. 
From (ij(iv) we have the expansion (5.3) and 

for u + 00 E4 

Remark  5.3. Note that from Theorems 5.2 and 5.3 we infer that if the 
assumptions (iHiv) hold, then the constant y in the exponent is asymptotically 
the best: 

log P ( A  (x, C )  > U )  
lim = -7 .  
u-t m u 

In the Appendix we study the asymptotic of the integral 

m 

j exp(~(x ,u) )dx  for u+co 
0 

for particular forms of S(x, u). We need the following notation. Let x o ( u )  
denote the point at which the function S(x, u) of x achieves its maximum over 
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[ O ,  GO). For some suitably chosen function q(u) we put 

We state now the result of Theorem 2.3 and Corollary 2.1 from Fedoryuk [6] .  

THEOREM A.1. Suppose that 
(a) there exists a function q(u) + co as u + co such that 

as u -, og un$ormEy for x E U (xo (u)); 
(b) 'S:',,(x, u) < 0 for all x, u;  

k) limU+, xo ~ ' l s : . ~  ( ~ 0  (UI, u)l= 
Then as u + co 

We now apply Theorem A.1 to get the following asymptotic: 

LEMMA A.1. For 0 < H < 1 and u -t m, 

Proof, We apply Theorem A.1 to the equality 

where 0 < H < 1. We take 

By examination we obtain 
x0(u) = [ ~ / ( c ( l - ~ ) ) ] ~ - ~ u l - q  
S:iPx (xo (u), u) = - c2/(H (1 - H)). 

Hence we infer that condition (c) of Theorem A.l holds true. 
To check condition (a) we choose 

c 
uH(l - H )  

We show now that 

7 - PAMS 18.1 
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as u -+ m uniformly in 

(A.1) X E { Y :  I~-xo(u)l < u H ( 1  - H I ) .  

It suffices to check that (1.1) hdds for x = x,(u)f uH''-" because in this case 
the difference in (A.l) is the biggest. Computing we get 

c2 + -0  as U-+m. 
H ( 1 - H )  

To check condition (b) we evaluate 

Putting z = x - ~ I " - ~ )  we obtain the square function 

of variable z. By standard calculation it can be checked that for all u and z (so 
for all x) 

and the proof is completed. H 

Analogously we can prove: 

LEMMA A.2. For 1/2 < H < 1 and u -t m, 

Proof.  We need to study the following function: 
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The first and second derivatives of the function S have the following form: 

(A.3) S : ( X , U ) = -  
2H 

(A.4) S L  :,x , 4 

x -  lI(1  - f f ) + c -  

2H 

2 -  H 

For fixed u the function S(x, u) takes its maximum at the point 

(A.5) 1-H 

and then 

(A. 6) 
1-H six (x,, (u), u) = - c2 - 
4H3 ' 

Define the function 

Using (A.2HA.7) we can check the following conditions: 
the function q (u) -+ oo as ~k -+ 00 and 

uniformly on the interval (x0 (u)- u ~ ( ~ - ~ ) ,  x0 (u)+ uH(' as u -+ CKI ; 
for all x and u, S;!(x, u) < 0; 

lim.,, x . ( u ) \ l l ~ ~ ( x o ( u ) ,  u)l = 

Now it is sufficient to apply Theorem A.l in order to complete the proof. H 
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