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ON WEAK CONVERGENCE OF ONE-DIMENSIONAL DIFFUSIONS
WITH TIME-DEPENDENT COEFFICIENTS
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Abstract. We investigate stability, with respect to convergence of
coefficients, of one-dimensional It6 diffussions as well as one-dimen-
sional diffusions corresponding to second order divergence form ope-
rators. We assume that the coefficients are measurable, uniformly
bounded and that the diffusion coefficients are uniformly positive.

1. Introduction. In the present paper we investigate stability, with respect
to convergence of coefficients, of one-dimensional diffusions (X, P%%) and
(X, 0%%) corresponding to the operators

1 & 0 10 0 0
L(a, b)—iaw-f'ba and g(a, b)—ia(aa>+ba,
respectively, starting at time O from xeR. Here and subsequently we assume
that a, b: [0, T]x R— R are real measurable functions such that

(1) (%) A<a(t,x)<A, (**) |bt,x) <A, A, A=const>0,

for all (¢, x)e [0, T] x R, so that the measures P%® and Q%" are uniquely deter-
mined by L(a, b) and & (a, b) (see [12], Exercise 7.3.3, for the non-divergence
case, and [7], [10] for the divergence case).

Let o/ (A, A) and % (A) denote the classes of all functions satisfying (*) and
(*#), respectively, and suppose that {a,} = & (4, 4) and {b,} = %#(A). Then
{P" = Pi~"} and {Q" = Q%~P~} are relatively compact in the topology of weak
convergence. We will show that the limits are all again measures correspon-
ding to some L(a, b) or ¥ (a, b). Characterization of weak convergence of
measures in terms of convergence of coefficients presents a more delicate prob-
lem. To see this, following [11] let us consider two special cases. If a, and b,
do not depend on ¢, then P"= P%® (and Q"= Q%") with a = 1/A4, b = B/A iff

(1.2) l/a,—»A and b,/a,—»B locally weakly in L,(R)
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(see Remark 4.2). On the other hand, if a, and b, do not depend on x, then
P" = Q"= P%? iff
(L3) a,—»a and b,—»b weakly in L,(0, T)

(see Remark 4.2). Therefore, if the coefficients depend on both ¢ and x, then the
conditions (1.2) and (1.3) provide conflicting clues. To overcome this difficulty
we impose some regularity assumptions on the dependence of diffusion coeffi-
cients on the time variable. More precisely, we prove that if {a,} = & (4, A)
and {b,} = #(A),

(14 -l/a,>A and b,/a,—»B locally weakly in L,((0, T)xR)

and either the condition

x

Eﬁan(t, y)

considered in [6] or the following condition introduced in [2] is fulfilled:

(1.5) V(R >0) sup sup

{t,x)e(0,T)X(—R,R)nz21

dyl<oo

(1.6) V(K = (0, T)x R, K—compact)lim sup { |a, (t+h, x)—a,(t, x)| dtdx = 0,
h

021k

then P"=> P%%* and Q"= Q%" with a = 1/4 and b = B/A.
From the results of [6] it follows that under (1.4) and (1.5)

& (ay, b,) > £ (1/4, B/A)

in the sense of G-convergence of parabolic operators, whereas in [2] (see
Remark 4.2) it is proved that

£ (a,, 0)— £ (1/4, 0)

if (1.4) and (1.6) are satisfied. On the other hand, it is known that G-convergence
of generators is equivalent to weak convergence of the corresponding diffu-

~sions (see [7]), so in the case of diffusions with divergence form generators

the novelty of our work consists in extending the one-dimensional result of [2]
to operators with non-zero first order terms. In the case of It6 diffusions we
weaken the known sufficient conditions which state that, for general time-de-
pendent coefficients, P* = P4’ if a, —» a and b, — b locally in L,((0, T) x R) or
a, — a, b, — b locally weakly in L, ((0, T) x R) and for each te[0, T] the func-
tions a,(t, ), neN, are equicontinuous (see Remark 4.2).

We will use the following notation:

QR =(0, T)x(—R, R), Qr=(0, T)xR.

C ([0, T7T; R) is the space of real continuous functions on [0, T] equipped with
the topology of uniform convergence, the Borel os-field €, and the canonical
process X. Z[Y | P] is the law of Yunder P and “=" denotes weak conver-
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gence of measures. L,(QF) is the Banach space of measurable functions on
QX having the finite norm
=([ { lu(, )P dedx)""

aF

lul, o8

and W3-° (QR) is the Hilbert space consisting of the elements u of L, (QF) havmg
generalized derivatives du/t square-integrable on Qf. The scalar product is
defined by the equality

w,v)=| j (Z—z%+uv>(t, x)dtdx.

2. Diffusions corresponding to divergence form operators. In this section we
will use some analytical results concerning G-compactness and G-convergence
of parabolic operators to prove our main theorem on convergence of diffusions
corresponding to divergence form operators. It is worth pointing out that in
particular we will use results of [6], whose proofs are based on some estimates
on solutions to equations in non-divergence form. These estimates were ob-
tained from estimates of [3] on solutions of equations in divergence form by
means of a change of variables which transforms parabolic equations in
non-divergence form to equations in divergence form. In the next section we
will go in the opposite direction. Namely, we will use a similar transformation
to obtain results concerning convergence of It6 diffusions from the following
theorem.

THEOREM 2.1. Let {a,} c o (4, A), {b,} = #(A) and let y,—y.
() If o5n dn= G in C([O T1; R), then there exist A > 0, and ac 4 (A, A),
be B (A) such that ( = Q%t. Moreover, if b, =0 for neN, then b =0.
(ii) Assume additionally that {a,} satisfies (1.5) or (1 6). If l/a,— A,
b,/a, — B weakly in L, (Q%) for every R > 0, then Qi = Q in C([0, T]; R),
where a=1/A and b = B/A.

Proof. (i) By [13], Theorem 22, there exist bounded measurable functions
a, b and a subsequence {r'} < N such that ¥ (a,, b,) strongly G-converges to
& (a, b) in Q. In particular, by Theorems 21 and 18 in [13], & (a,, 0) strongly
G-converges to % (a, 0) in 4, which forces b = 0 in the case b, = 0 for neN.
Moreover, A—.% (a,, 0) are in the class o (4/2, ./ A/2) defined in [13]; hence by
[13], Theorem 26,

A—Z.(@a, 0)ec (42, /A)2),

which yields ae o/(4, A) (alternatively one can use [9], Theorem 3, and [13],
Theorem 21). Due to Theorem 5.2 and Remark 7.3 in [7], G-convergence of
Z(ay, by) to ZL(a,b) implies that Q¢ = Q%" in C([0, T]; R). Thus
g=0;"
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(i)) In view of Theorem 4.2, Lemma 4.1 and Remark 7.3 in [7] it is suffi-
cient to show that, for every te(0, T, @y ¢ - Q* ¢ weakly in L,(Q,) for all
9 € Cg§ (R), where {05} and {Q*} denote semigroups of operators associated
with ¥ (a,, b,) and £ (1/A, B/A), respectively. By the inequality (2.3) in
[71, {Q; ¢} is weakly relatively compact in L,(£2,), so we only need to show
that

(2.1) Oip—Q'¢ weakly in L,(Qf)

for any R > 0.If {a,} satisfies (1.5), then analysis similar to that in the proofs of
Theorems 2 and 3 in [6] shows that @ ¢ — Q™ ¢ uniformly on compacts in QF,
which implies (2.1). Now, suppose that the condition (1.6) is satisfied. Fix R > 0
and define 4, R> >R by

a (s, x) if (s, x)eQy,

A7 otherwise,

a(s, x) = {

a; (s, x) if (s, x)eQr,
A7 otherwise.

a,(s, x) = {
By (1.6), for every & > O there is 6, > 0 such that

§ [ 1a.(s+k, x)—d,(s, x)|dsdx < ¢
oF

for |h| <4, Given ¢ >0 put

(22) as(s, x) = j &(s—‘c, X)QE(T)dT, an,e(sa x) = jdn(s_Ta x)Qa(T)dT
R

R

for (s, x)eQ;, where g,eC*(R) is a non-negative function such that
fo:(s)ds = 1 and g,(s) = 0 for |s| > 8,. We check at once that for every & > 0

23) Sup_ sup | J aya(s, 3) dy\ <A R | 6,6\ ds
e nz1]080 r|ds
and
1
(2.4) sup | | a—(s, X)—a, (s, x)|dsdx < A?e.
nz1 % |@ne

Moreover, by the dominated convergence theorem, a,, — a, weakly in L, (Q¥).
Write

(25) be = b/(aae)a bn,e = b, (an an,e)-

Let {QF.} be the semigroup corresponding to %(1/a,,, b,.) and let {Q%}
correspond to %(1/a,, b,). Since {a, .}y satisfies (2.3) and for every ¢ >0

(26) 1/(1/an,a) =g, a; = 1/(1/ae)a bn,e/(l/an.s) = bn/an —-B= bs/(l/ae)
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weakly in L, (QF), it follows that Q;', ¢ — Q7 ¢ uniformly on compacts in QF,
and hence

2.7 Qn:0—> Q¢ weakly in L, (QF),

because {Q}, @}nen is bounded in L, (2F), and hence weakly relatively compact.
Observe now that

2.8 l/a,—»a, b,—»b in L,(Q%)

as ¢ 0 and that u, = Q; ¢ — Q" ¢ is a weak solution to the Cauchy problem
du, e, 0 0

0s  0Ox

P
( “E) f+ f*, limu,(s, ) =0 in L,(R),
x st .
where

f==b)2 @9, fi=1a—1/a)2@"9)

(see the proof of (2.7) in [7] or Theorem IIL.4.5 in [5]). Consequently,
29) Qlop—>Q'¢ in L(QF)

due to the energetic inequality and by the assumption that f,=7. =0 on
R*\QR. Finally, from (2.4) it follows that

(2.10) hm Sup(”(l/an &) — 0 ”2 QT+ ”bn e "”2,9%) =0;

Onz1

hence by the same manner as above we can see that

(2.11) 0r:0~Qnp—~0 in Ly ()

uniformly in ne N. Combining (2.7) with (2.9) and (2.11) yields (2.1), and the
proof is completed. =

3. Itd diffusions. We begin with introducing a transformation of the phase
space which transforms diffusions corresponding to divergence form operators
into It6 diffusions. This transformation is a counterpart of the transformation
of variables used in [6].

LEMMA 3.1. Let acsf (4, A) and be B(A). Set
F(t, z) = E—Ldy, (t, 2)eQy,
Oa(ta Y)
and assume that there is Ay > 0 such that

3.1 sup

(t,z)eR2T

F(t,z)) <4

o
ot

Then for every xeR
=Z[F'(, X) 1031,
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where y = F(0, x), F~'(t, ") is the inverse of F(t, ", and
1 oF

b 1
(3.2) “(taz)—m, B(t, z) = ( at)(tF t, 2)

for (t, z)eQr.

Proof. Let { e C§ (R) be a non-negative function such that | ro)dx =1,
and define {,(x) = n{(nx) fof neN. Set

an(t”') = 1/(Cﬂ*é(t’ .))! b’l(t’ .) = Cn*b(t5 .)

(* denotes convolution); then

1 b, OF _1
(33) cx,,(t, Z) = mz—», ﬁn( Z) ( at )(t, F,, (t, Z))

for (¢, z)e Qr, where

z

(3.4) Fu(t,2)=| RGEE 5.

0an(t, y

Then {a,} = o/ (4, A), {B.} = B(L™"' A+4,) and, by the generalized It5 for-
mula ([4], Theorem II1.10.1), for each neN

(33) L [Fy(, X) | Py] = g5

with y, = F,(0, x). Moreover, a,—a and b, —» b in L, (QF) for R > 0; hence
using Krylov’s estimates ([4], Theorem II. 3 4) and arguing as in [12], Exer-
cise 7.3.2, we prove that

3.6) Ponbn = pabin C([0, T]; R).
We next show that

(3.7 Qb 08 in C([0, T1; R).
To this end, first observe that for every (t, z)e Qr
z 1 z
dy = \a,(t, F;1(t, y)dy = F;1(t, z
gan(t’y)y £ ( . y) (t, 2)

and that

0
0= E(F,, (t. F71(t, 2))

oF, _1 oF; ! .
e (¢, Fal(t, z))_ﬁt—(t’ z);

= %if(t, F (@, 2)+
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hence for every (t, z)eQr

2z 1 oF,,
Egcx"(t, m ‘ Py — (¢, Fy ' (2, 2))/oa (¢, 2)
0
<A7'A sup | F,(t, 2)|.
(t,z)eg'_r at ( Z)
Since
2 Pt D = [2(F(t, x—2)~F 0, —2)(2)d
at n\ls _R(?t » X—2Z ’ Z))6n Z

for (¢, z)-e Qr, it follows by the above that {«,} satisfies (1.5). Now notice that
for arbitrary but fixed R > 0 and for any bounded continuous f: R*> — R with
supp f € Q% ‘

F i f(s 2dsdz=1{ | (s, Fuls, z)) (s 2)dsdz

nrrn .()Tn(a)

={ [ f(s. Fu(s, 2))dsdz,
Qr
which converges to

J § (6 P, 2)dsde = | Ile(s, 2dsdz,

since F,—F p01ntw1se in Q. Furthermore, F,— F in L,(Q%) and {F,} is
bounded in Wi*° (QR), and hence weakly relatively compact in W;°(QF). The-
refore OF,/0t - 0F/0t weakly in L,(QF%), and, consequently,

jjﬁ”f(s z)dsdz-jj(

ﬂ'r'l

d S") (s, 2) f (s, Fa(s, 2))dsdz

- j (b 5F)(s 2) f(s, F (s, z))dsdz—jj' f(s z)dsdz,

because b,/a, — b/a in L, (2¥) and F, - F pointwise in Qf. On the other hand,
{1/a,} and {B,/a,} are weakly relatively compact in L, (QF); hence 1/, — 1/a
and B,/a, — B/a weakly in L,(QF). Thus, (3.7) follows from Theorem 2.1.
Finally, let us define
F, F,: C([0, T]; R)— C([0, T1; R)
by
F®@O=F¢ %), F.®0O=F¢%)

for xeC([0, T]; R), te[0, T]. It is easy to check that F,(%) - F(%) in
C([0, T]; R) as X, —» X in C([0, T]; R), so F, > F uniformly on compacts in
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C([0, T]; R). Therefore, taking into account (3.5)3.7) and applying the con-
tinuous mapping theorem we obtain

ZF(, X)| P"] = 05"
This proves the lemma, because the inverse F~! of F is easily seen to be
continuous, and hence measurable. =

The next lemma is based on Lemma 7.1.5 and Theorem 7.1.6 in [12],
however differently from [12] we consider diffusions with non-zero drift term.

Lemma 3.2. Let ac s (A, A) and be B(A). For T,R >0 define

6T f(s, %) = [de | fit y)—i——exp(— ly—x )dy
’ s kR 2rA(t—s3) 2A(t—s)

and

Gif

f(s x)+b(s, x)aa

KT, f(s,x)= l(a(s, x)-—A) (s, x)

for feCg(2%). Then

(i) For each pe[2, 6], KX, admits a unique extension (again denoted by
K7:) as a bounded operator on L,(Q) into itself and the extensions correspon-
ding to different p’s are consistent.

(i) Assume that 0 < T < Ty = A%/(3243). Then there is 6 > 0, depending
only on A, A, R such that I — K], admits a bounded inverse (I—KJ,)™* on L, (Q%)
for pe[2,2+8]), (I—KZI,)! are consistently defined for pe[2, 2+5] and the
norm of (I—KZ,)™' on L,(QF) is less than or equal to 4A/1.

(iii) For every (s, x)e[0, Ty xR, te(s, T,] and pe[2, 2+4],

E,J (4, X.)du = G0~ K41 15, %)

for all feL,(,) with supp f € QF, where E,  is the expectation sign with respect
to the measure P, associated with L(a, b) such that Py, (X, = x, te[0, 5]) = 1.

Proof Observe that u = G} f is a classical solution to the Cauchy

problem
ou Ad*u

s 2o
Integrating by parts and taking into account that du/dx(T, -) = 0 we obtain
ou 2 ou
haba P - — d
6x(t’ ) LR jd ‘[as(ax) *

du *u ouo’u
="2I‘”a asox ™ —2”56 b

—f on Rx[0, T),” limu(s,x) =0, xeR.
52T
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for any te[0, T). Hence

ou 2 ou 0%u
3.8 su —(t, - <2)—=— -—
38) os:gr 6x( ) 2,R 05| 2,07 || 0%*| 2,01
u u
< g vz
= {A axz 2,QT+2"fHZ'QT} axz 2.00

<847 f13.00s

because, by the inequality (0.4) in the Appendix in [12] and Exercise 7.3.3
in [12], . . ,

ou
- < -1
(39) |, , <27
Therefore,
) <ETAY S0
0x|;3 0.
Clearly,
: _ 0%u ou
KL £ (s, 9 <271 (A=) | 556 ) +A.6_x(s’ %)
for all (s, x)eQr, so, by the above and the fact that supp f € QF,
(3.10) IKTy flz0r < (1—AA™ + BT A | £, oa-

By the inequality (I1.3.2) in [5], we obtain

2,.0(1/3 P 2/3
..(?E < 21/3 _6_1; sup _u(t, )
0x | 6,01 0x”||2,0r 0<t<T ||OX 2,R
Hence taking into account (3.8), (3.9) and using Hélder’s inequality we see that
_ T <
(311) IKZs f1 e <CISI

for some C > 0 depending only on 4, 4, R and T. Combining (3.10) with (3.11)
and using the Riesz-Thorin interpolation theorem proves that K7, admits
a bounded extension on L,(Qf) for pe[2, 6]. Moreover, the extensions of
K?T, are defined consistently for different p’s, because if f € L, (QF)nL,(QF) for
some p, ge[2, 6], then we can find {f,} = C§ (€2F) such that f, —fin both
L,(QF) and L,(QF). This proves (i).

Now, assume that T < T,. Then from (3.10) we see that the norm of
KT, on L,(R2%) does not exceed 1—4/(24). Hence applying once again the
Riesz—Thorin interpolation theorem we conclude that there is a 6 > 0 depending
only on 4, 4 and R such that for each pe[2, 2+ 4] the norm of K], on L,(QF)
is less than or equal to 1—A/(4A). Therefore (I —KZ,)~* exists and is given by
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> o(Ki) In particular, it follows that (I—KZ,)”! has the norm not
greater than 44/A and that (I—KI,)”! are consistently defined for diffe-
rent pe[2, 2+6]. Finally, by Krylov’s estimates ([4], Theorem I1.3.4; see
also [12], Exercise 7.3.3) there is a C > 0 depending only on 4, A, T and R
such that

T
Eox [ fu, X)du < CIf]], om

for feL,(2,) with supp f = @R, so to prove (iii) we can proceed as in the proof
of equality, (7.1.8) in [12]. = o
" We can now state the analogue of Theorem 2.1 for It6 diffusions.

THEOREM 3.3. Let {a,} < o (4, A), {b,} = B(A) and let x,— x.

Q) 1f P;:'b"=>ﬁ~in C([0, T]; R), then there exist A > 0 and ac.of (A, A),
be B (A) such that P = P%, Moreover, if b, =0 for neN, then b =0.

(ii) Assume additionally that {a,} satisfies (1.5) or (1.6). If 1/a,— A,
by/a, — B weakly in L, (QF) for every R > 0, then P%b== P** in C([0, T1; R),
where a = 1/A, b = B/A.

Proof. (ii) Write P = P%?, P" = P4 and let E and E" denote the expec-
tation signs with respect to P and P", respectively. {P"} is weakly relatively

compact in C([0, T]; R), so due to [12], Theorem 6.2.3, it suffices to show that
for every te[0, T] and ¢eCg (R)

(3.12) lim E" ¢ (X)) = Ep (X)).

Obviously, (3.12) is satisfied for ¢t =0, so we need only consider the case
te(0, T]. First suppose that

EF,,(S, 2)

3.13
( ) | sup sup 7

(5.2)eRT n21

~~<~‘/11:

“where F, is defined by (3.4). Then {F,} is bounded in W,"°(Q%) for each R > 0.

On the other hand, F,— F in L,(Qf), and hence, for each R > 0, {dF,/ét}
converges weakly in L,(Qf) to the generalized derivative 0F/dt. Moreover,
from (3.13) it follows that there is a version of 0F/dt satisfying (3.1). Define
NOW d,, B, by (3.3) and a, 8 by (3.2). Then as in the proof of Lemma 3.1 we show
that {a,} satisfies (1.5) and 1/a, — 1/, B,/a, — B/a weakly in L, (2X) for R > 0.
Observe also that y, = F,(0, x,) > F(0, x) =y and F,;(t,)> F~!(t, ) uni-
formly on compacts in R. Hence, by Theorem 2.1, Lemma 3.1, and the con-
tinuous mapping theorem,

L[X, | Pot] =2 [F '@, Xy | Q5]

=Z[F7'(t X)| Q"1 =Z[X,| P¥']
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in R for te(0, T]. This clearly forces (3.12), and the proof under the assumption
(3.13) is complete. Suppose now that (1.5) is satisfied. For n, ke N let
(5. %) = a(s, x) if (s, x)eQ%,
K3 XY=, otherwise,
_ fan(s,x) if (s, x) ek,
16n (5 x) = {A otherwise.
Then, for each ke N, {,a,}.~ satisfies (3.13), so by what has already been
proved, Pim* = Px** in C([0, T]; R) as n — oo for ke N. Hence arguing as in
the proof of Theorem 11.3.4 in [12] we show that P4 = P%" in C([0, TT; R).
In turn assume that (1.6) is satisfied. Define a,, a,,, b., b, by (2.2) and (2.5).

From (2.3), (2.6) and what has already been proved it follows that
P/anebne o pliseibe in C([0, T]; R), and, consequently,

(3.14) lim E™ ¢ (X,) = E* ¢ (X))

n—a

for every te(0, T], where E™* (E°) stands for the expectation sign with respect
to P/amedbne (p{1/adbe) sing (2.8) and proceeding as in Exercises 7.3.2 and
7.3.3 in [12] we prove that P{!/**== P in C([0, T]; R). Hence

(3.15) lim E*p (X) = Ep(X)

for te(0, T]. Finally, we will show that
(3.16) lim lim sup |[E™* @ (X,)— E"¢@ (X)) = 0.

e=0 n-w
By 1t6’s formula, we have
I"= |[E™ @ (X)—E"@ (X))

t t
= |E"’ngn,z (Sa Xs)dS—E"Ign(S: Xs)dsl
0o 0
t t t
< iE"‘ej(gn.e—‘gn)(ss Xs)ds|+|E"’”jg,,(s, Xs) dS—E"j g,.(s, Xs)ds|
0 0 0
=Ii+15,

where g,. = L(aye, bne) @ and g, = L(a,, b,) 9. By Krylov’s estimates ([4],
Theorem I1.3.4), there is C, > 0 depending only on A, A and T such that

Ir]'. < Cl ”gn,ﬂ_gn||2’9¥'
Hence, by (2.10),
(3.17) limlim sup It = 0.

e2+0 n—ow
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To estimate I5, we assume first that T < Tp, where Ty = A2/(3243). Then, by
Lemma 3.2,

49H,,0,00, x,), Hp.=(I—Kyp,, 5,0 —([—K;5)"
By Schwarz’s inequality,
I3 < (A) "4 1 | H gl oas
while from the identity
=({I—KYja,,b..) ' OU-K} p)0(I—KE )71
~(T =Koy oin)  OU =K o) 0T — K 5) 7!

=(I —'Ktlfa,.,.;,b,. Jto (K" an obm.e — Ko O — K5, b)) "

and Lemma 3.2 it follows that there is a C, > 0 depending only on 4, 4, R such
that

1ol gn < Co {I(1/and—tull, g+ Nbne—bul, gu} Iul ,,, o

Therefore,
(3.18) limlimsupI5 =0

>0 n-owo
by (2.10) and the boundedness of {g,} in L, . ; (2%). Combining (3.17) with (3.18)
we obtain (3.12) under the additional assumption that T < T,. Now suppose
that this is no longer so. For fixed se[0, T) let u, denote the distribution of
X, under P and let u? denote the distribution of X, under P", ne N. Obvi-
ously, the general case will be proved once we prove that for every se[0, T),
if ug=>p, then (3.12) holds for te[s, (s+Ty)AT]. So, fix se[0, T),
tels, (s+ To) A T] and assume that p? = u,. Let P, denote the diffusion mea-
sure associated with L(a, b) such that P, (X,=y,0<t<s)=1 and let
E,, stand for the expectation sign with respect to P, . Similarly, for each ne N

~ define P, E}, on the basis of a4, b, By the Markov property,

E"o(X)—Ep(X)) = ‘j‘ Ey o (X)) ps(d@y)— | E, 0(X,) ps(dy)
= Ij‘ (B, 0 (X)—E,, 0 (X)) us(dy)
+ i‘; (Esy @ (X)) (12 (dy)— 15 (dy))

= 4.
By what has already been proved, # [X, | P; ]= #[X, | P, ] for every yeR;
hence E_ ¢ (X,) - E,, ¢ (X,) pointwise. Actually, the convergence is uniform on

compact subsets of R, because by Theorem 3 in [3] (see also [6]), the functions
E; ¢ (X,), neN, are equicontinuous on compact subsets of R. Therefore
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J7 — 0, since {u2} is tight. The convergence J3 — 0 follows from the bounded-
ness and continuity of E; ¢(X,). The proof of (i) is complete.

(i) For n,keN set a,, = & *ay, by = & +b,, where & = k*&(kt, kx),
¢e C¥ (R?) is a non-negative function such that § {_, £(t, x)dtdx = 1, and when
computing convolutions we regard a,’s b,’s as defined on the whole R*> by
extending them to be zero outside [0, T]xR. Then {a,;}ren = & (4, A4),
{bpi}ren = %#(A) and, for each ne N and R > 0, g,y — @y, b,y — by in L, (QF) as
k = oo; hence Penkbnk = Pawbn in C([0, T]; R). Therefore, for each ne N we
can choose k = k(n)e N such that g (P7, P*") < 1/n, where P is a measure
corresponding te L(a,xmy» buxwm) such that P"(Xo=x)=1 and ¢ is the
Prokhorov metric on the set of probability measures on %. On the other hand,
G kny Dninyy €N, are smooth functions having bounded derivatives; hence by
Theorem 3 of [1] there is a subsequence {n'} = N and ae (4, A), be #(A)
such that ¢ (P%, P%?) -0 as n’ — 0. Moreover, b = 0 if b, = 0 for ne N. By the
above, g (P4, P%%) - 0. In particular, E} ¢ (X,) » E@(X,) for every te[0, T]
and @ € C¥ (R), where E” stands for the expectation sign with respect to Pa,
Furthermore, by Theorem 3 of [3], the functions E7 ¢ (X,), neN, are equi-
bounded and equicontinuous; hence E" ¢ (X;)— E; ¢ (X,) = 0 as n — co. Thus,
(3.12) is satisfied, and (i) is proved. =

4. Remarks and comments. In this section we gather remarks concerning
assumptions (1.4){1.6) and give examples of applications of the preceding theo-
rems.

THEOREM 4.1. Assume that {a,} = o (1, A), {b,} = #(A) and that x, — x,
Yn—=Y.

@) If a,—a in L,(QF) and b, - b weakly in L, Q%) for R >0, then
Pirbn= P2t gnd  Qimbn= Q3.

@) If a, are functions of x only, 1/a,—> A weakly in L,(—R, R) and
b,/a,— B weakly in L,(Q%) for R >0, then

b 1/4,B/A anb 1/4,B/A
Pirbn = Py and oron =0 .

(iii) If a, are functions of t only, a,— a weakly in L,(0, T) and b,— b
weakly in L,(2%) for R > 0, then
Piwbn— PP gnd b = Q2P

Proof. If a, — alocally in L, (27) or a, are functions of x only, then (1.6) is
satisfied, so (i) and (ii) follow immediately from Theorems 2.1 and 3.3. As for
(iii), observe that Theorem 11.3.3 of [12] is applicable.

Remark 4.2. (a) If a, are functions of ¢ only, then (1.6) implies that {a,} is
relatively compact in L, (0, T). Therefore the assertion (iii) of Theorem 4.1 does
not follow from Theorems 2.1 and 3.3. This is the main weakness of our results.

8 — PAMS 18.1
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(b) The conditions (1.5) and (1.6) are in general not comparable. Clearly,
(1.6) does not imply (1.5). The following example shows that the opposite
implication is also false. For n =1, 2, ... define a,: [0, n] xR by

6, ) = 2/(2—cos(n(1+t)/x)) if te[0, n], x>0,
@nth %) =11 if te[0, 7], x < 0.

Then for any A>0

Ir"h = jl"|a,, (t+h, x)—a,(t, x)| dtdx
o 0

ntieh) m(+o)]

T

. 2n(14+t)+nh
sin————

dt.
2x

QObserve that

. 2n(1+t)+nhd S

X [x/n]n
sSin t -
2x =

sin (t +n (2+h))' dt
0 X

=f[x]j|sint|dt>1
ARAR

([y] denotes the greatest integer less than or equal to y) for ne N, x€(0, 1] and
h>0, and

|

nh ”zj'/("")s. nhxdx_ 2 [nh
m| 3 T Tk 2|

By the above, I"(h) > 8 [nh/(2n)]/(9nh), and hence
lim sup I" (h) = 4/(97).
h 1

NO Rz

Accordingly, {a,} does not satisfy (1.6). On the other hand, for every te[0, T],
x>0 and neN,

0% t ® 1
9 COSn(1+ )dy=2 n( +r2)cosydy
Oty ot n(1+0/x y

o0

cos b n(l+t
Zyd — cos (1+ ).
w(troix Y 1+t x
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Therefore {a,} satisfies (1.5), because

°  cosy < 1 x
n dy|<n —dy = —.
n(13[z)/x ¥ n(1£:)/xy2 1+t

Let us remark also that 1/a, - 1 weakly in L,(Q%) for R > 0, so {P%°} and
{Q%°} converge weakly to the Wiener measure starting at x

(c) If a, and b, do not depend on t, then P2~ = PL/4.B/4 iff (1.2} is satisfied
(see [8] and [11] for the case of diffusions with no drift terms). Similarly,
Qrbn = QL/I4-BI4 iff (1.2) is satisfied. The “if” part is a special case of Theorem
7.21in [7]. Since {1/a,} and {b,/a,} are weakly relatively compact in L, (—R, R)
for every R > 0, to prove the “only if” part we only need to show that if g, a, b,
B do not depend on ¢, satisfy (1.1) and Q% = Q%* for every yeR, then a = o,
b= p ae. To see this, for fixed qJECS" (R) set

u(t, y) = [0 (X, (0)d05" (@) = [ ¢ (X:(0))d05" (@), t>0, yeR.
Then for every t > 0 and I/IGCO (R)

1 Budy au 1 oudy
”(_ Gudy_, ou )(s Ydsdy = ”(2 s w)(s y)dsdy.

Differentiating both sides of the above equality with respect to ¢t and then

letting 0 we obtain
: L dody_,d 1 dody d
1) f(2 b >() 13;(5 s ‘pnp)( )dy,

because {0, T}at—ult, -)e W4 (R) is weakly continuous (see [10], Theorem
I1.3.8). Since (4.1) holds true for arbitrary ¢, ¥ € C& (R), the desired conclusion
follows.

(d) If a, and b, are functions of t only, then P%Pr= Qirbr=
pLABIA — OL/A.BI4 iff (1.3) is satisfied. The “if” part is the very special case of
Theorem 11.3.3 in [12]. The “only if” part follows from the “if” part and the
relative weak compactness of {1/a,} and {b,/a,} in L, (0, T), because if P3® =
P=# where a, b, o, B satisfy (1.1) and do not depend on the space variable, then
a=0ao b=Ff ae.

(e) It is known that P = P%t if g, > g and b, > b in L,(Q¥) for R> 0
(see [12], Exercise 7.3.2) or a, — a and b, — b weakly in L, (Qf) for R > 0 and
there is a non-decreasing function §: (0, oo) — (0, co) such that lim, (k) = 0
and

Suplan(t= x)_an(ta y)i < 5(|x_—yl)9 tEI:O’ T]s X, yER

nzl
(see [12], Theorem 11.3.3). Theorem 4.1 sharpens these results. In particular, it
is worth pointing out that in the second case we do not assume that a, and
a are continuous in X.
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() In view of Theorem 5.2 in [7], part (i) of Theorem 2.1 states that the
sequence {.% (a,, b,)} is G-compact, while from part (i) it follows that if (1.4)
and (1.5) or (1.4) and (1.6) are satisfied, then {&( a,,, b,)} G-converges to
Z(1/A4, B/A).

(g) If (1.6) is satisfied and 1/a, - A locally weakly in L, (2y), then from
every subsequence {n'} < N one can choose a further subsequence {n"} such
that, for almost every te[0, T], 1/a,- (¢, ") — A(t, -) locally weakly in L, (R).
Therefore, combining Theorem 5.6 of [2] with Theorem 17 of [14], we con-
clude that under (1.4), if 1/a, — A locally weakly in L,(Qq), then {¥ (a,, 0)}
G-converges to £ (1/4, 0), hence that Q%° = Q}/4° by Theorem 5.2 of [7].
Theorem 2.1 (ii) extends this result to diffusions corresponding to divergence
form operators with non-zero first order terms.

(h) By Theorem 29 of [13], if 1/a,(¢t, ) > A (¢, *), ba(t, )/a.(t, ") = B(t, ")
locally weakly in L, (R) for every te[0, T] and

(42) limsup sup (|a,(t+h, x)—a,(t, x)|+|b, (E+h, x)—b,(t, x)) =0

=021 (2, x)e0h

for R>0, then {¥(a,, b,)} G-converges strongly to .#(1/4, B/A), hence
G—converges and so Qiwbn = QL4814 a5 remarked in [7], Theorem 7.2. We do
not impose any regularity assumptlons on the coefficients b, and, moreover,
(1.6) is weaker than (4.2). Note, however, that strong G-convergence is in gene-
ral essentially stronger than G-convergence.

@) Ifa,(t, x) = a(t, nx), ne N, where a(t, x) is a function periodic in x with
the period independent of ¢, then {a,} satisfies (1.6) (see Remark 5.12 in [2]).
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