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Abstract. We investigate stability, with respect to convergence of 
coefficients, of one-dimensional It6 diRussions as well as one-dimen- 
sionat diffusions wrresponding to second order divergence form ope- 
rators. We assume that the coefficients are measurable, uniformly 
bounded and that the difhsion coefficients are uniformly positive. 

I. Introduction. In the present paper we investigate stability, with respect 
to convergence of coeficients, of one-dimensional diffusions (X, P$b) and 
( X ,  Q2b) corresponding to the operators 

I aZ a 
L(a,b)=-a-+b- and 

2 ax2 ax 
respectively, starting at time 0 from X E R .  Here and subsequently we assume 
that a,  b: [0, TI x R+ R are real measurable functions such that 

for all (t, X) E [0, x R, SO that the measures P"; and Q2b are uniquely deter- 
mined by L(a, b) and 9 ( a ,  b) (see [12j, Exercise 7.3.3, for the non-divergence 
case, and [7], [lo] for the divergence case). 

Let d ( A ,  A) and (A) denote the classes of all functions satisfying (*) and 
(**), respectively, and suppose that (a,) c &(A, A) and {b,) c B(A).  Then 
(P" = e"") and (Qn = QF+bn) are relatively compact in the topology of weak 
convergence. We will show that the limits are all again measures correspon- 
ding to some L(a, b) or Y (a, b). Characterization of weak convergence of 
measures in terms of convergence of coefficients presents a more delicate prob- 
lem. To see this, following [11] let us consider two special cases. If a, and b, 
do not depend on t, then P" * eb (and Q" Q2b) with a = 1/A, b = B/A iff 

(1.2) 1/a, -+ A and b,/a, -+ B locally weakly in L, (R)  



(see Remark 4.2). On the other hand, if a,, and b, do not depend on x, then 
p"=~n*p:,b iff 

(1.3) a, + a and b, -+ b weakly in L2 (0, T) 

(see Remark 4.2). Therefore, if the coefficients depend on both t and x, then the 
conditions (1.2) and (1.3) provide conflicting clues. To overcome this difficulty 
we impose some regularity assumptions on the dependence of diffusion coeffi- 
cients on the time variable. More precisely, we prove that if (a,) c &(A,  A) 
and { b n )  9 (4, 
( 4  - a A and b,/a, B locally weakly in L, ((0, T) x R) 

and either the condition 

considered in [B] or the following condition introduced in [2] is fuIffled: 

then P * P2b and Q" 5 Q$b with a = 1/A and b = B/A. 
From the results of [6] it follows that under (1.4) and (1.5) 

in the sense of G-convergence of parabolic operators, whereas in [2] (see 
Remark 4.2) it is proved that 

if (1.4) and (1.6) are satisfied. On the other hand, it is known that G-convergence 
of generators is equivalent to weak convergence of the corresponding diffu- 
sions (see [?I), so in the case of diffusions with divergence form generators 
the novelty of our work consists in extending the one-dimensional result of [2] 
to operators with non-zero first order terms. In the case of It6 diffusions we 
weaken the known sufficient conditions which state that, for general time-de- 
pendent coefficients, P" * Eb if a, + a and b, + b locally in L, ((0, T) x R) or 
a, + a, b, + b locally weakly in L, ((0, T) x R) and for each t E 10, TI the func- 
tions a, ( t ,  a), n E N ,  are equicontinuous (see Remark 4.2). 

We will use the following notation: 

C (LO, TI;  R) is the space of real continuous functions on [0, TI equipped with 
the topology of uniform convergence, the Bore1 a-field V, and the canonical 
process X. 9 [Y I PI is the law of Y under P and "3" denotes weak conver- 
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gence of measures. L,(SZR,) is the Banach space of measurable functions on 
having the finite norm 

and W:r0 (a;) is the Hilbert space consisting of the elements u of L, (525) having 
generalized derivatives au/& square-integrable on 51;. The scalar product is 
defined by the equality 

(u, V )  = J j --+UU (t, x ) d t d x .  
at at rav > 

2. Diffusions corresponding to divergence form operators. In this section we 
will use some analytical results concerning G-compactness and G-convergence 
of parabolic operators to prove our main theorem on convergence of diffusions 
corresponding to divergence form operators. It is worth pointing out that in 
particular we will use results of [6], whose proofs are based on some estimates 
on solutions to equations in non-divergence form. These estimates were ob- 
tained from estimates of 131 on solutions of equations in divergence form by 
means of a change of variables which transforms parabolic equations in 
non-divergence form to equations in divergence form. In the next section we 
will go in the opposite direction. Namely, we will use a similar transformation 
to obtain results concerning convergence of It6 diffusions from the following 
theorem. 

THEOREM 2.1. Let {a,) c d (A, A), (b,) c &I (A) and let y, -+ y. 
(i) If Q;rbn -0 in C ([0, TI; R), then there exist > 0, and a E d (A, A), 

b E 9 (A) such that Q" = Qi.b. Moreover, if b, = 0 for n EN, then b = 0. 
(ii) Assume additionally that {a,) satisJies (1.5) or (1.6). if l/a, + A ,  

b,/a, + B weakly in I,,(@) for every R > 0, then Q;rbn Q;gb in C([O, TI; R), 
where a = 1/A and b = B/A. 

P r o  of. (i) By [13], Theorem 22, there exist bounded measurable functions 
a, b and a subsequence {n') c N such that diQ(anr, b,,) strongly G-converges to 
S ( a ,  b) in Q,. In particular, by Theorems 21 and 18 in [13], 9 (a,,, 0) strongly 
G-converges to 2 ( a ,  0) in SZ,, which forces b = 0 in the case b, = 0 for n E  N. 
Moreover, I- 9 (a,., 0) are in the class a (42, &@) defined in 1131; hence by 
[13], Theorem 26, 

A-S,(a, O ) E ~ ( I / ~ ,  &@I, 
which yields a€&(& A) (alternatively one can use [9], Theorem 3, and [13], 
Theorem 21). Due to Theorem 5.2 and Remark 7.3 in [fl, G-convergence of 
9 (a,,, b,.) to 2 (a, b) implies that Qz:gbn' 3 Q;b in C ([0, 7'l; R). Thus 
Q = ~ ; b .  



104 A. ~ o z k o s z  

(ii) In view of Theorem 4.2, Lemma 4.1 and Remark 7.3 in [7] it is suffi- 
cient to show that, for every t ~ ( 0 ,  TI, Qi p + Q" y, weakly in L2 (a) for all 
cp E C$ (R), where (Et) and {Q"') denote sernigroups of operators associated 
with LP(a,, b,) and 8(1/A,  B/A), respectively. By the inequality (2.3) in 
[7], {Q;lfy,) is weakly relatively compact in E2 (O,), so we only need to show 
that 

(2.1) Q;: cp + Q" cp weakly in Lz (Of) 

for any R > 0. If (a,) satisfies (1.51, then analysis similar to that in the proofs of 
Theorems 2 and 3 in [dl shows that Q: q -, Q" cp uniformly on compacts in OF, 
which implies (2.1). Now, suppose that the condition (1.6) is satisfied. Fix R > 0 
and define &": R2 + R by 

a-'(s,x) if ( S , X ) E O ~ ,  
a"(& x) = { A -  

otherwise, 

E,(s, X) = 
otherwise. 

By (1.41, for every e > 0 there is 6, > 0 such that 

for 1/11 < SE. Given E > 0 put 

for (s, x)ED,, where g e ~ C m ( R )  is a non-negative function such that 
J eE(s) ds = 1 and Q, (s) = 0 for Is1 > 6,. W.e check at once that for every E > 0 

and 

Moreover, by the dominated convergence theorem, a,, + a, weakly in Lz (51;). 
Write 

(2.5) b, = b/(aa&), bn,& = bn/(an an,&)- 

Let (Q:,) be the semigroup corresponding to g(l/an,,  b,,,) and let (Q:) 
correspond to 2&(l/a,, bJ. Since {a,,,),, satisfies (2.3) and for every E > 0 



weakly in L2 (Q!), it follows that Q:,, q + Q: q uniformly on compacts in A2fJ 
and hence 

I 
I (2.7) q + Q: rp weakly in L2 (Or), 

because (Q:,, p},, is bounded in L, (OF), and hence weakly relatively compact. 
I 

Observe now that 

as E + 0 and that u, = Q: cp - Q" rp is a weak solution to the Cauchy problem 

where a 1 a 
f .=(b-bJZ(Q"rp) .  f ;=Z(a- l /a~z(~ 'O 

(see the proof of (2.7) in 171 or Theorem 111.4.5 in [5 ] ) .  Consequently, 

(2.91 Q: p 4 Q" q in L, (a:) 
due to the energetic inequality and by the assumption that f, =x  = 0 on 
R2\@. Finally, from (2.4) it follows that 

(2.10) lim sup (ll(l/a.,.)-4 ll 2,a$ + llbn..-~.ll,,,~) = 0; 
~ - ' 0 " 2 1  

hence by the same manner as above we can see that 

(2.1 1 )  Q;lt,, - Q;II CP + 0 in L, (a:) 
uniformly in  EN. Combining (2.7) with (2.9) and (2.11) yields (2.1), and the 
proof is completed. 

3. It8 diffusions. We begin with introducing a transformation of the phase 
space which transforms diffusions corresponding to divergence form operators 
into It8 diffusions. This transformation is a counterpart of the transformation 
of variables used in [6].  

LEMMA 3.1. Let a E d (A, A) and b EB (A). Set 

and assume that there is Al > 0 such that 

(3.1) sup - ~ ( t , z )  < A , .  
(~,z)ERT 

Then for every X E R  
I 

Eb = Y [ F - I  (-, X )  I Q;S~J, 



where y = F(0, x), F - ' ( t ,  .) is the inverse of F (t, 3, and 

for ( t ,  z) E DT. 
Proof ,  Let Cz (R) be a non-negative function such that I, [ (x) dx = 1, 

and define [, (x) = nc(nx) foi n E M. Set 

5 bn(t,.)=ln*b(t,.) 

(* dendtes convolution); then 

for (t, z) E LICIT, where 

Then {a,) c d (1, A), (B,)  c (1- ' A +  A,) and, by the generalized It6 for- 
mula ([4], Theorem II.10.1), for each  EN 

(3.5) 9 [F,  ( a ,  X) ( P $ ~ ~ ~ ]  = Qz.fln 

with yn = F,, (0, x). Moreover, a,, -t a and b, + b in L, (52;) for R > 0; hence 
using Krylov's estimates ([4], Theorem 11.3.4) and arguing as in [12], Exer- 
cise 7.3.2, we prove that 

(3.6) P";,bn=cb in C([O,TJ;R). 

We next show that 

(3.7) Q;;,pn + Q;,S in c([o, TJ; R).  

To this end, first observe that for every (t, z) E D, 

and that 
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hence for every (t, Z) E QT 

Since 

for (t, z ) ~  LIT', it follows by the above that {a,) satisfies (1.5). Now notice that 
for arbitrary but fixed R > O and for any bounded continuousf: R2 + R with 
suppf EQRT 

which converges to 

1 5 f (s, F(s, z))dsdz = J j -f (s, z)dsdz, 
RT nf @ 

since Fn + I; pointwise in @. Furthermore, F, + F in &(St;) and (F,) is 
bounded in W2.O (a;), and hence weakly relatively compact in W2."(IR{). The- 
refore aF,/at + aF/at weakly in L, (@), and, consequently, 

b aF B 
(s, I) f (s, F(s, z))dsdz = 1 i- f (s, z)dsdz, 

nT a 

because b,/a,, + b/a in L2 (Q{) and Fn + F pointwise in QR,. On the other hand, 
{l/un) and (P,/a,) are weakly relatively compact in L, (@); hence l/a, -r l/a 
and /3,/an + B/a weakly in L,(StR,). Thus, (3.7) follows from Theorem 2.1. 
Finally, let us define 

F", F,: C([O, Tj; R) + C([O, TI;  R) 

by 
P (q ( t )  = F(t, 23, F"n(3(t) = Fn(t, 

for ~"EC([O, T J ; R ) ,  t€[O, TI. It is easy to check that F",(~,,)+P($ in 
C ([0, TI;  R) as 2, + x" in C ([0, TI; R), so & + F uniformly on compacts in 
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C([O, T I ;  R). Therefore, taking into account (3.5)-(3.7) and applying the con- 
tinuous mapping theorem we obtain 

This proves the lemma, because the inverse F"-' o f  i;" is easily seen to be 
continuous, and hence measurable. 

The next lemma is based on Lemma 7.1.5 and Theorem 7.1.6 in [12], 
however differently from [I21 we consider diffusions with non-zero drift term. 

LE- 3.2. Let a E d (A, A) and b ~g (A). For T,  R > 0 de$ne 

and 

for f E CT (a$)). Then: 
(i) For each p ~ [ 2 ,  61, Kzb admits a unique extension (again denoted by 

Kzb)  as a bounded operator on L,(@) into itself and the extensions correspon- 
ding to diflerent p's are consistent. 

(ii) Assume that 0 < T < T, = L2/(32A3). Then there is 6 > 0, depending 
only on 1, A, R such that I - ~z~ admits a bounded inverse (I  - K : ~ )  on L, (IRR,) 
for p E [2 ,2  + S], ( I  - Kzb)-' are consistently defined for p E [2,2 +a] and the 
norm of (I-KZb)-' on L,(Q$) is less than or equal to 4A/L. 

(iii) For every (s, x ) E [ O ,  To] x R ,  t ~ ( s ,  To] and p ~ C 2 ,  2i-61, 

for all f E Lp (a,) with supp f E Qf, where E,,, is the expectation sign with respect 
to the masure P,,, associated with L (a, b) such that P,,, ( X ,  = x, t E [O,  s] )  = 1. 

P roo f .  Observe that u = G z  f is a classical solution to the Cauchy 
problem 

au nazu -+-- = -f on R x  [0, 7'); limu(s, x) = 0, X E R .  as 2 axz s r  T 

Integrating b y  parts and taking into account that au/Jx(T, .) = 0 we obtain 
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for any t E [0, T). Hence 

because, by the inequality (0.4) in the Appendix in [12] and Exercise 7.3.3 
in [12], - 

Therefore, 

Clearly, 

for all (s, X) E QT, SO, by the above and the fact that supp f E a;, 

By the inequality (11.3.2) in 151, we obtain 

Hence taking into account (3.8), (3.9) and using Holder's inequality we see that 

for some C > 0 depending only on A, A, R and T. Combining (3.10) with (3.1 1 )  
and using the Riesz-Thorin interpolation theorem proves that K:, admits 
a bounded extension on A!,,(@) for ~ € 1 2 ,  61. Moreover, the extensions of 
Kzb  are defined consistently for different p's, because iff  E L, (O;))nLq (12:) for 
some p ,  q E [22, 61, then we can find {f,) c C$ (@) such that f, + f in both 
Lp(OF) and Lq (a;). This proves (i). 

Now, assume that T G T,. Then from (3.10) we see that the norm of 
K z b  on A!,,(@) does not exceed 1 -A/(2A). Hence applying once again the 
Riesz-Thorin interpolation theorem we conclude that there is a S > 0 depending 
only on A, A and R such that for each p E 12, 2 + 61 the norm of Kzb  on Lp (@) 
is less than or equal to 1-12/(4A). Therefore (I -Kz, ) - '  exists and is given by 
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~ n m ~ , ( ~ ~ b ~ .  In particular, it follows that (I-Kz,)-' has the norm not 
greater than 4A/A and that (I-Kzb)-' are consistently defined for diffe- 
rent p E [2, 2 + Sj. Finally, by Krylov's estimates ([4], Theorem 11.3.4; see 
also [12], Exercise 7.3.3) there is a C > 0 depending only on A, A, T and R 
such that 

T 

E S ,  I f ( ~ 3  Xu) du i C ll f ll,,,f 
S 

for f EL, (QJ with supp f c @, so to prove (iii) we can proceed as in the proof 
of equality. (7.1.8) in [12]. I 

We can now state the analogue of Theorem 2.1 for It6 diffusions. 

THEOREM 3.3. Let (a,) c a+' (A, A), {b,) c 53 (A) and let x, 4 x. 
(i) If P 2 b n  5 in C ([O, ; R), then there exist > 0 and a E d (A, A), 

b ~ g ( 2 )  such that p =  P2b. Moreover, if b, = 0 for  EN, then b = 0. 
(ii) Assume additionally that (a,) satisfies (1.5) or (1.6). If l/a, + A, 

bda, 4 B weakly in L2 (@)for every R > 0, then P z b n  =- P $ ~  in C([O, TI;  R), 
where a = 1/A, b = B/A, 

Proof.  (ii) Write P = eb, Pn = eibm and let E and En denote the expec- 
tation signs with respect to P and P, respectively. {Pn) is weakly relatively 
compact in C([O, TI; R), so due to [12], Theorem 6.2.3, it suffices to show that 
for every t E [0, TI and (P E C$ (R) 

lim En q (X,) = Eq (X,) . 
n-+w 

Obviously, (3.12) is satisfied for t = 0, so we need only consider the case 
t ~ ( 0 ,  TI.  First suppose that 

where Fn is defined by (3.4). Then {F,) is bounded in w;s0 (a$) for each R > 0. 
On the other hand, F,, + F in L2 (OF), and hence, for each R > 0, {dFn/dt) 
converges weakly in L,(Q;) to the generalized derivative aF/at. Moreover, 
from (3.13) it follows that there is a version of 8F/dt satisfying (3.1). Define 
now an, fin by (3.3) and a, /I by (3.2). Then as in the proof of Lemma 3.1 we show 
that (a,) satisfies (1.5) and l/u, -+ l/a, &,/an -, p/a weakly in L2 (52;) for R > 0. 
Observe also that y, = F,(O, x,) -, P(0 ,  x) = y and F l l ( t ,  -) -, F-'(t, -) uni- 
formly on compacts in R. Hence, by Theorem 2.1, Lemma 3.1, and the con- 
tinuous mapping theorem, 

2' [ X ,  ( P%bn] = 9 [F;' (t, Xt) I Q;;Bn] 

+ L ~ [ F - ~  (t, xt} I Q;@1= =Wxt 1 FYI 
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in R for t ~ ( 0 ,  q. This clearly forces (3.12), and the proof under the assumption 
(3.13) is complete. Suppose now that (1.5) is satisfied. For n,  EN let 

( s )  if ( s , x ) E ~ $ ,  
,als, x) = otherwise, 

an(s,x) if (s,x)ED$, 
kC1n (s,  = otherwise. 

Then, for each  EN, (,a,)nEN satisfies (3.13), so by what has already been 
proved, p r b  = P!f*b in C (LO, TI; R) as n + m for k E N. Hence arguing as in 
the proof of   he or em 11.3.4 in 1121 we show that P",-ibn * in C([O, TI; R). 
In turn assume that (1.6) is satisfied. Define a,, a,,,, b,, b,,, by (2.2) and (2.5). 
From (2.3), (2.6) and what has already been proved it follows that 
PjttJlan+).bn-z = Pj,lJas)*bc in C (10, TI ; R), and, consequently, 

(3.14) lim En*, y (X,) = E' cp (X,) 
n-* m 

for every t ~ ( 0 ,  TI, where En+' (Ee) stands for the expectation sign with respect 
to P~~Jan~s),bn,s (P!ilu8).be), Using (2.8) and proceeding as in Exercises 7.3.2 and 
7.3.3 in [12] we prove that Pi1/a3*be+ P in C([O, TI ;  R). Hence 

lim E" (X,) = E q  (XJ 
8 - 0  

for t ~ ( 0 ,  TI. Finally, we will show that 

(3.16) lim lim sup IEn3" (X,) - Encp (Xt)I = 0. 
e - + O  n-+m 

By ItB's formula, we have 

where g,,, = L (a,,,, b,J q and g, = L (a,, b,) cp. By Krylov's estimates ([4], 
Theorem II.3.4), there is C, > 0 depending only on A, A and T such that 

Hence, by (2.10), 

limlim sup I", = 0. 
e - 0  n - r m  



To estimate 1% we assume first that T  < To, where To = n2/(32n3). Then, by 
Lemma 3.2, 

By Schwarz's inequality, 

while from the identity 

and Lemma 3.2 it folIows that there is a C ,  > 0 depending only on R, A, R such 
that 

Therefore, 

lim lim sup I", 0 
e-0 n 4 w  

by (2.10) and the boundedness of {g,] in L2+,(@). Combining (3.17) with (3.18) 
we obtain (3.12) under the additional assumption that T < To. Now suppose 
that this is no longer so. For fixed S E  [O, T )  let p, denote the distribution of 
X, under P and let p: denote the distribution of X, under Pn,  EN. Obvi- 
ously, the general case will be proved once we prove that for every S E  [0, T), 
if p," - p,, then (3.12) holds for t E [s, (s + To) A TI. So, fix s E LO, T), 
t E [s, (S + To) A TI and assume that p: ps. Let P,,, denote the diffusion mea- 
sure associated with L(a, b) such that Ps,y(X, = y, 0 < t < S) = l and let 
E,, stand for the expectation sign with respect to P,,,. Similarly, for each n E N 
define P:,,, E:,, on the basis of a,, b,. By the Markov property, 

By what has already been proved, 9 [X, I e,y] 3 9 [Xt I P,,J for every y ER; 
hence E;. 9 (X,) + E , .  rp (Xt) pointwise. Actually, the convergence is uniform on 
compact subsets of R, because by Theorem 3 in [3] (see also [6]) ,  the functions 
E';. (P (X,),  EN, are equicontinuous on compact subsets of R. Therefore 
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3: + 0, since (p i }  is tight. The convergence J ;  -+ 0 follows from the bounded- 
ness and continuity of E,,. cp (X,). The proof of (ii) is complete. 

(i) Fur n, k E N set a,,k = Ck * an, b,,, = tk * b,, where lk = k" (kt, kx), 
( E C; ( R ~ )  is a non-negative function such that 1 j,, { (t, x) dtdx = 1, and when 
computing convolutions we regard an's b,'s as defined on the whole R2 by 
extending them to be zero outside 10, T ]  x R .  Then {a,,,),,, c &(A, A), 
{bnbkIkEN = (A)  and, for each n E N  and R > 0, a,,, + a,, brisk 4 b, in L2 (a;) as 
k + m; hence P2-ktb-ok* P:sbn in C([O, 71; R). Therefore, for each  EN we 
can choose k = k (n) E N such that p (E,  PF;".hn) < l/n, where is a measure 
corresponding to L(u,,~(,,, bn,k(n)) such that P"(X, = x) = 1 and g is the 
Prokhorbv metric on the set of probability measures on %'. On the other hand, 
an,k(n), bn,k(n), n E N ,  are smooth functions having bounded derivatives; hence by 
Theorem 3 of [I] there is a subsequence {n') c N and a E d ( I ,  A), b E W ( A )  
such that Q (P:,  P$b) + 0 as nr + 0, Moreover, b = 0 if b, = 0 for n EN. By the 
above, g (P$ubn, P$b) + 0. In particular, E; q~ (XJ -+ E q  (XJ for every t E [0, 7-J 
and rp E C$ (R), where E; stands for the expectation sign with respect to P>9bn. 

Furthermore, by Theorem 3 of [3], the functions E"(XX,), n EN, are equi- 
bounded and equicontinuous; hence En rp (X,) - E", (X,) 0 as n -, ao. Thus, 
(3.12) is satisfied, and (i) is proved. 

4. Remarks and comments. In this section we gather remarks concerning 
assumptions (1.4H1.6) and give examples of applications of the preceding theo- 
rems. 

THEOREM 4.1. Assume that (a,) c &(A, A), {b,) c B(A)  and that x, + x, 

Yn -) Y- 
(i) If a, + a in L2 (a$) and b, + b weakly in L2 (52;) for R > O, then 

Pzbn a eb and Q;;'bn * Q;sb. 

(ii) If a, are functions of x only, l/a, -t A weakly in L2(-R, R) and 
b,/an + B weakly in L2 (52;) for R > 0, then 

(iii) If a, are functions of t only, a, + a weakly in L2(0, T )  and b, 4 b 
weakly in L2 (a!) for R > 0, then 

P r o  of. If an + a locally in L2 (O,) or a, are functions of x only, then (1.6) is 
satisfied, so (i) and (ii) follow immediately from Theorems 2.1 and 3.3. As for 
(iii), observe that Theorem 11.3.3 of [I21 is applicable. H 

Remark  4.2. (a) If a, are functions of t only, then (1.6) implies that (a,) is 
relatively compact in L2 (0, T). Therefore the assertion (iiij of Theorem 4.1 does 
not follow from Theorems 2.1 and 3.3.   his is the main weakness of our results. 

8 - PAMS 18.1 
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(b) The conditions (1.5) and (1.6) are in general not comparable. Clearly, 
(1.6) does not imply (1.5). The following example shows that the opposite 
implication is also false. For n = 1, 2,  . ,, define a,: [0, 711 x R by 

Then for any h > 0 

- cos - t i ( d t d x  
X 

Observe that 

sin Zn(1 +t)+nhl 2x d t > -  1 J sin ( t+----- n(2x+W)l dt  

( [ y ]  denotes the greatest integer less than or equal to y)  for n EN, x E (0, 11 and 
h > 0, and 

By the above, I" (h) 8 [nh/(2x)]/(Bnh), and hence 

lim sup I" (h) = 4/(9x). 
h l O  n B l  

Accordingly, {a,) does not satisfy (1.6). On the other hand, for every t E [0, TI, 
x > 0 and  EN, 

" cosy x n( l+t )  
= n  j - d y - -  

l + t C O S .  n(l+t)/x Y X 
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Therefore {a,] satisfies (1.5), because 

" cosy " 1 X 
< n  5 5 d y = - .  

"(1 +t)/x Y l + t  

Let us remark also that l/a, -, 1 weakly in L, (52;) for R > 0, so (P?:".'} and 
{Q";IO) converge weakly to the Wiener measure starting at x. 

(c) Ef an and b, do not depend on t, then p","pbn * PijA,BIA iff (1.2) is satisfied 
(see [XI and [ll] for the case of diffusions with no drift terms). Similarly, 
Qpvbn * QilA3B/A iff (1.2) is satisfied. The "if" part is a special case of Theorem 
7.2 in [7], Since fillan) and (b,/a,) are weakly relatively compact in L, - R, R) 
for eve j R > 0, to prove the "only if' part we only need to show that if a, a, b, 
f l  do not depend on t, satisfy (1.1) and Q;yb = Q ; , ~  for every ~ E R ,  then a = ot, 
b = f l  a.e. To see this, for fixed P E  C," (R) set 

u (t, y) = 1 q ( X ,  (a)) dQ7b (4 = j cp ( X t ( 4 )  dQ;?' (w), t 2 0, Y E R -  

Then for every t > 0 and $ E Cg (R) 

Differentiating both sides of the above equality with respect to t and then 
letting t L O  we obtain 

because [O, TI 3 t H u ( t ,  A) E W: (R) is weakly continuous (see [lo], Theorem 
11.3.8). Since (4.1) holds true for arbitrary q, I) E C z  (R), the desired conclusion 
follows. 

(d) If a, and b, are functions of t only, then P X n v b n =  Q::".bn* 
P;IAgBIA = QilA*BIA iff (1.3) is satisfied. The "if" part is the very special case of 
Theorem 11.3.3 in [12]. The "only if' part follows from the "if' part and the 
relative weak compactness of {l/a,} and {b,/a,) in E, (0, T), because if P$b = 

pzB, where a, b, ot, fl  satisfy (1.1) and do not depend on the space variable, then 
a = ot, b = f l  a.e. 

(e) It is known that PFsbn P $ ~  if an + a and b, + b in L, (52:) for R > 0 
(see [12], Exercise 7.3.2) or a, + a and b, -+ b weakly in L, (a;) for R > 0 and 
there is a non-decreasing function 6: (0, ao) -+ (0, ao) such that lim,, , S (h) = 0 
and 

supla,(t, x)-a,(t, Y)I G 6(Ix--yl), t€[O, n, x, YER 
n >  1 

(see [12], Theorem 11.3.3). Theorem 4.1 sharpens these results. In particular, it 
is worth pointing out that in the second case we do not assume that a, and 
a are continuous in x. 
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(fl In view of Theorem 5.2 in [7], part (i) of Theorem 2.1 states that the 
sequence (9 (a,, b,)) is G-compact, while from part (ii) it follows that if (1.4) 
and (1.5) or (1.4) and (1.6) are satisfied, then {dP(a,, b,)) G-converges to 
9 U / A ,  WA). I 

(g) If (1.6) is satisfied and I/a, j A IocaIIy weakly in k, (Q,), then from 
every subsequence (n') c N one can choose a further subsequence {nu) such 
that, for almost every t ~ L 0 ,  TI, l/a,,, (t, .) -3 A(t, .) locally weakly in L2 (R). 
Therefore, combining Theorem 5.6 of [2] with Theorem 17 of [14], we con- 
clude that under (1,4), if l / a ,  + A locally weakly in k2(S2,), then {Y (a,, 0)) 
G-converges to Y ( l / A ,  0), hence that Q;:" - Q;IAi0, by Theorem 5.2 of [7]. 
Theorem 2.1 (ii) extends this result to diffusions corresponding to divergence 
form operators with non-zero first order terms. 

(h) By Theorem 29 of [13], if 1 /a, (t , .) -, A (t, .), b, (t, .)/a, ( t ,  -) + B (t , .) 
locally weakly in L, (R) for every t E [0, T ]  and 

(4.2) lim sup sup (la, (t + h, x)-a ,  (t, x)I + Ib, It + h, x )  - b, ( t ,  x)l) = 0 
h - 0  n 2  1 ( t , X l E ~ f  

for R > 0, then (2?(a,, b,)} G-converges strongly to $a(l/A, B/A), hence 
G-converges, and so Qg:+bn =z- QyllA*B/A, as remarked in [73, Theorem 7.2. We do 
not impose any regularity assumptions on the coefficients b, and, moreover, 
(1.6) is weaker than (4.2). Note, however, that strong G-convergence is in gene- 
ral essentially stronger than G-convergence. 

(i) If a, (t , x )  = a (t , nx), n E N, where a (t , x )  is a function periodic in x with 
the period independent of t, then {a,) satisfies (1.6) (see Remark 5.12 in [2]). 
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