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WEAK MARTINGALE HARDY SPACES*

BY

FERENC WEISZ (BUDAPEST)

Abstract. Weak martingale Hardy spaces generated by an opera-
tor T are investigated. The concept of weak atoms is introduced and
an atomic decomposition of the space wH : is given if the operator T is
predictable. Martingale inequalities between weak Hardy spaces gene-
rated by two different operators are considered. In particular, we ob-
tain inequalities for the maximal function, for the g-variation, and for
the conditional g-variation. The duals of the weak Hardy spaces gene-
rated by these special operators are characterized.

1. Introduction. We consider martingale operators and weak martin-
gale Hardy spaces generated by them. The Hardy space HY and the weak
Hardy space wH of martingales are introduced with the L,-norm and weak
wL,norm of the maximal operator T*, respectively. We define also the weak
BMO spaces.

The martingale Hardy spaces HY and their atomic decomposmon were
investigated in Weisz [19]. In this paper, besides the p-atoms a new concept of
atoms, the so-called weak atoms, is introduced. Then the martingales from wH ;
(0 < p < 0) are decomposed into the sum of weak atoms, and an equivalent
norm of wHTY is also given whenever the operator T is predictable. The atomic
decomposition of wHj is also obtained in the case where T is adapted and the
stochastic basis is regular. The atomic decomposition of wH; was shown by
Fefferman and Soria [8] in the classical case.

In Section 5 martingale inequalities are verified. We show that if an in-
equality holds for a number p, then, by the weak atomic decomposition, it also
holds for all parameters less than p. As special operators the maximal operator
M, the g-variation §,, and the conditional g-variation s, are considered. The
weak type Burkholder-Davis—Gundy inequality is obtamed from the general
results.

* This research was supported by the Hungarian Scientific Research Funds (OTKA) No
F019633 and T020497.




134 F. Weisz

The dual spaces of H! were considered in Garsia [9] (T =S,,p=1),
Herz [10], [11] (T = S;, T = 53, p < ), Lepingle [13] (T = s, p=1) and
Weisz [18], [19](T = S,, T = s,, p < 00). In Section 6 we extend these results
and investigate the duals of the Hardy spaces HY, the wHY closure of H%,. More
exactly, the duals of HY, H3s and Hj: generated by the maximal operator,
g-variation and conditional g-variation are characterized, respectively. It is
proved that the dual of H# is wBM 0y () 0O <p<g, 1<g<o0,a=1/p—1,
1/q+1/q' = 1). Besides these conditions, if the stochastic basis is regular, then
the dual of H3¢ is also w#.# 0, (x). The equivalence of the wBMO, spaces is
obtained as well ,

- T would like to thank the referee for reading the paper carefully.

2. Preliminaries and notation. Let (2, o/, P) be a probability space and let

= (%,, ne N) be a non-decreasing sequence of o-algebras. The s-algebra

generated by an arbitrary set system # will be denoted by o (). We suppose
that o = O-(UneN )

The expectation operator and the conditional expectation operators rela-
tive to &, (neN) are denoted by E and E,, respectively. We briefly write
L, instead of the L,(Q, &, P} space while the norm (or quasinorm) of this
space is defined by | f]l,:= (E|f®)*? (0 < p < o). For simplicity, we assume
that for a function f € L, and for a martingale f = (f,, ne N)we have E, f =0
and f, = 0, respectively.

The stochastic basis & is said to be regular if there exists a number R > 0
such that for every non-negative and integrable function f

E,f <RE,_,f (neN).

We define E_, := E,. The simplest example for a regular stochastic basis is the
sequence of dyadic o-algebras where Q = [0, 1), o/ is the o-algebra of Borel
measurable sets, P is the Lebesgue measure and

F, = o {[k2™", (k+1)27"): 0 <k <27},

In this paper the constants C, are depending only on p and may denote
different constants in different contexts.
We define the martingale differences as follows:

do f:=0, dyf:=foifo-1 (n21).

The concept of a stopped martingale is well known in the martingale theory: if
v is a stopping time (briefly, ve 7)) and f is a martingale, then the stopped
martingale f* = (f;’, neN) is defined by

=Y a0 =R f,
k=0
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where y(A) is the characteristic function of a set A. We know that f;’ has the
property: fy = f, on the set {v = m} whenever n > m. Especially, in the case
v=n (neN) we have

f"=(f0! fl: Tees fr‘u f;ﬂ )

We shall consider the following special martingale operators. The maximal
function of a martingale f = (f,, neN) is denoted by
fi=suplfd, f*:=sup|fil-
k<n keN
The g-variation S,(f) and the conditional g-variation s,(f) (1 <q < ) of a
martingale f are defined as follows:

Sunl) = (5 1S9 5,00:= (3 e 1™,

and

sanl) = (3 Bacs b 10, 53000 = (3 Bucslde 19"

k=0

while for g = co let .
Swnlf) i=50a(f) :=supldi fl, S (f):=5x(f):=supldsfl.

k<n keN

Usually the 2-variations are delt with, however in Lepingle [12], [13], Pisier
and Xu [15] and Weisz [19] the g-variations are also considered.

Following Burkholder and Gundy [4] we investigate more general mar-
tingale operators T that map the set of the martingales stopped by » for any
neN into the set of non-negative o/ measurable functions. Throughout the
paper we will assume the following conditions:

(B1) T is subadditive, ie. if f = Z:; o Jx in the sense of f, = Yo Jim
a.e. for all meN, then

[+o]

T(fM< X T (reN),

k=0
where f, (ke N) are martingales.
(B2) T is homogeneous, i.e. T(cf)=|c| T(f).
(B3) T is local, i.e. T(f) =0 on the set {s,(f)=0}.
(B4) T is symmetric, ie. T(f)= T(—f).
We define, for an arbitrary martingale f,

L(f):=T(" (meN), T*(f):=sup L(f).

neN

Under these conditions the operator T has some natural properties. For exam-
ple, To(f) =0, T(f—9) < T(f)+T(g) and T(f*—f") =0 on the set {u = v}.
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Moreover, if we set T,(f) = T,(f) on {v = n}, where ve 7 is a finite stopping
time, then we have T,(f) = T'(f*). It is easy to see that the operator T* also
satisfies all the above conditions. For more details and examples we refer to
Burkholder and Gundy [4].

An operator T is said to be adapted (respectively, predictable) if T, (f) is
%, (respectively, %,_,) measurable for all martingales f and for all neN.
If M(f"):=|f,l, then M¥(f)=f* and M*(f) = f* (neN). One can easily
check that the operators M, S, and s, (1 < g < o0) satisfy the condition (B),
moreover, that M and S, are adapted, and s, is predictable.

The predictable operator of an operator T satisfying (B) is to be intro-
duced. We consider all the non-decreasing, non-negative and predictable se-
quences A = (4,, ne N) of functions for which

T.(f)< 4 (neN).
Set
E“(f):=i§lfln (meN), T~ (f):= sup T, (f)-

One can simply prove that T~ satisfies (B) and is predictable, moreover, that
T, (f) is non-decreasing in n. We remark that T~ (f) is not necessarily finite
a.e. whenever T*(f) is finite a.e. Note that T~ was introduced and investi-
gated for the maximal operator by Garsia [9] while for S, by Weisz

[18].

3. Weak martingale Hardy and BMO spaces. The weak L, space wL
(0 < p < ) consists of all measurable functions f for which

p

IS e, == gglgyP({lf | > Y < o0

while we set wL, = L.
The martingale Hardy space H, and the weak martingale Hardy space wH},
(0 < p < ) generated by T denote the space of martingales for which

I lgz:=1T*NH, <0 and  |f] o= IT*(Hllwz, < oo,
respectively. It is known that
. HfcwH] O<p< o) and wHIcH] 0<g<p< ).
It is interesting to remark that L, « wHY, wH3? because of the inequalities

AN g2e =supyP(f* > ) < Ifl1s  NFN, 45 =supyP(S2(f) > y) <311l

»>0 y>0

(cf. Neveu [14], Burkholder [3]). Moreover, H¥ ~ H5* for 1 < p < o0 and
HY ~ H3* ~ L, for 1 < p < 0, where ~ denotes the equivalence of the spaces
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and norms (see Neveu [14], Burkholder [3], Davis [7]). Using the interpola-
tion results of Weisz [17] and [19] we can prove that wHyY ~ wHy? ~
wL, (1 <p < ).

It is known that the dual of the Hardy space H}? is BMO,(«) (Herz [10],
Weisz [18]) and the dual of His is B4 0, (o) (Lepingle [13], p = 1; Weisz [19])
O<p<1,1<qg<0,0<a=1/p—1 and 1/g+1/q' = 1), where the BMO
spaces are defined with the norms

1S I8p0,00 = SUp P (v # 00) "4~ | f—f"|l,,

ved

N o = SUp P (v £ 00) "4~ [E (Y ldy fl9x (v < )™
k=1

ved
and

1 | #.t00r = SUP P (v # 0)~*sup [l i S (v < k)| -

ved keN

It is easy to see that

”f"BMOg(a) = “f”.gbﬂ@z(m)-
Let us introduce the weak BMO spaces. Set
2(f, x):=td0):=x"""  sup =S,

veJiP(v# 0)€x
and

ul(f, x):=ud(x):=x"1"*  sup [E(fldkfnqx(mk))]”“,
k=1

veT:P(v# w0)<x

where 1< g< o0 and —1/g <a. For g =00 and o > 0 we define

ug (f, x):=ug(x):=x""  sup |dfx( < k)|

veTiP(v¥ w)<x
We say that fewBMO, () and fewBM0,() (—1/q <a) if
wtg X
||f||wBM0.,(a)5= j )(c )dx <o (1<g<x®)
0
and
Qul(x
I lnaae:= ] = dx <0 (1 <q< )
0

respectively. Set
wBMO,:=wBMO,(0) and wBMO,:=wBMO,0) (1<q< ).
Obviously,

) tazt (x) = “.3 (x) and If "wBMOz(a) =|f ||wgmaz(a) (x> —1/2).
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It is easy to see that, for x = 1,
)~ x| fll, and ul(x) = xS, (),

Thus, if f#0 and a< —1/g, then | fllwemo,m = IIfllwsso,m = ©
(1 € g < ). However, if o > —1/g, then we can write

112 (x) (P4
If lweroq@ ~ !; dx+ 1/ _:a
and
Lul(x) IS4 (N
I f N wastomm = '(E dx+ l/qq _qu-

PropoSITION 1. If 1 < gy < gy < o0 and « > —1/q,, then
”f”wBMOql(a) < ”f”wBMOqz(at)'
Proof By Hoélders inequality,
) =x""" sup  [E(f=f10 0 # )]

veFP(v# ) Sx

<x~ 1/a1—a sup (E If_fv|qz)1/qz P (v # 00)‘1 —q1/q2)(1/a1)
veJ i P(vFo)<Sx

Sx7MeRTesup || f—fg, = 8 (x),
veF:P(v# 0)€x

which shows the proposition. &

4. Weak atomic decomposition. The atomic decomposition is a useful
characterization of Hardy spaces used in proving some duality theorems and
martingale inequalities (see e.g. Coifman and Weiss [6] and Weisz [17]). Let us
introduce first the concepts of atoms. A martingale a is a p-atom relative to an
operator T if there exists a stopping time v such that

@) a,=0if v=>mn;

(i) IT* @)l < P(v# c0)~ 1.

It is proved by the author [19] that the martingales from H} (0 <p < 1)
can be decomposed into the sum of p-atoms whenever T is predictable. Special
cases of this atomic decomposition can be found in Bernard and Maisonneuve
[2], Chevalier [5] and Herz [10]. To give the atomic decomposition of the
weak Hardy spaces let us define the concept of weak atoms. A martingale
a is a weak atom relative to an operator T if there exists a stopping time v such
that (i) is satisfied and

(i) T*@)o <
holds. The atomic decomposition of wH} is stated as follows:

THEOREM 1. Assume that T is a predictable operator. A martingale
f=(fy,neN) is in wH; (0 <p <o) if and only if there exists a sequence
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(ax, ke Z) of weak atoms relative to T with the corresponding stopping times
V¢ Such that

(@) Y ay,=f, forall neN,
k=—o0
(ii) sup 2¥2 P (v, # o0) < 00,
keZ
(1ii) T*(a,) < A2%, where A is an absolute constant.

Moreover, the following equivalence of norms holds:

@ | 1f1, gz ~ infsup2¢ P (v, # o0)*/7,

keZ

where the infimum is taken over all preceding decompositions of f.

Proof. The first half of the proof will be sketched only. Assume that
fewH, (0 <p <o) Let us define the stopping times

V.= inf{neN: T;ltl(f) > 2k}
and martingales

G @ = frri—f*  (keZ).

Since T is local, we have T*(a*) < 3-2%; thus a* (with the stopping time v;) is
a weak atom for each ke Z. It is easy to see that (i) holds (cf. also Weisz [19],
p- 44). There are no convergence problems in (i), because only finitely many
terms (depending on ) are non-zero. As {v, # oo} = {T*(f) > 2*}, by the
definition we have

2P (v # 00) = 29 P(T*(f) > 2 < | fI7 1,

whiéh proves (ii) and one side of (2).
Conversely, suppose that (i), (ii) and (iii) are satisfied and let

D := sup2*? P (v, # o0).

keZ

For a fixed y > 0 choose je Z such that 2/ < y < 2/*!, Then

ji—1 ©
f;l= Z ak;n+zak;n=:gn+hn (nEN)

k=-o k=j
implies that T*(f) < T*(g)+ T*(h) and
P(T*(f) > 24y) < P(T*(g) > Ay)+P(T* (h) > Ay).
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From the inequality
i—-1
T*@) < Y, T*(a) <AV

k=-—ow
we get
P(T*(g) > Ay) < P(T*(g) > A2} = 0.

It follows from the definitions that
@) T*(a) = T*(a,—ap) =0 on {v, = o0}.
This and the inequality T*(h) < Z;f:j T*(a,) imply that

{T*(h) # 0} = | J {v # o}
k=j
Consequently,

P(T*(f) > 24y) < P(T*(h) > Ay) < P(T*(h) > 0) < iP(vk # 00)

k=j
<)Y D27 C,D27?<C,Dy?,
k=j

which shows that | f{|? AT S C,D. The proof of the theorem is complete. m

Note that the definitions of a; and v, (k€ Z) in the first part of the proof of
Theorem 1 are independent of p.

With the usual method we can extend Theorem 1 to adapted operators in
the case where & is regular.

THEOREM 2. If T is adapted and F is regular, then Theorem 1 holds as well.
Proof. Let
:=inf{neN: T*(f)> 2%}
and
F&:= {E,-, (x(u. = n) > UR},
where R is the regularity constant. It is clear that FXe %, _; and, by the regu-
larity of &, F¥ > {1, = n}. Define
vi(w):=inf{neN: weFt, }.
Then {z; (w) = n} implies w e F¥, which yields {v,(w) < n—1}. In other words,

Vi < 7; on the set {7, # oo}. This implies that if g is defined again by (3), then
T*(a;) < 3-2% By Chebyshev’s inequality we obtain

P(F) < RE[E,-1 (1(t = m)] = RP(t, = n).
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Hence

P(v # ) < i P(FY < f P(1. = n) = RP(t; # 00) = RP(T*(f) > 2.
n=1 n=1

The proof can be completed in the same way as in Theorem 1. &

5. Martingale inequalities. In this section the connection of the weak mar-
tingale Hardy spaces is investigated. The idea of the method is the following. If
a strong inequality holds for a number p, then by the atomic decomposition we
can verify its weak version for all parameters less than p. We single out the
results for some ‘special operators. As a consequence the weak version of the
well-known Burkholder—Davis—Gundy inequality is obtained.

THEOREM 3. Assume that T is predictable and U is adapted, moreover, that
there exists 0 < p; < oo such that for all martingales f

(5) 1T* (Dl < CIT*(Hps-
Then
1o S Collflyzr  ©<p<py).
Proof. Taking the atomic decomposition and the martingales g and h
given in the proof of Theorem 1 we get U*(f) < U*(g)+U*(h) and
P(U*(f) > 2y) < P(U*(g) > y)+ P(U*(h) > y).
By (iii) of Theorem 1, (2) and (5),
izt i

. ji-1
1U*@)llp, < Y, 1U*@lp <C Y 1T*@lp, <3C ), 26P (v # o0)'/P

k=—o k=—w k=—w

ji—1
_ / - !
<C ¥ 207 flgpe < Cpy TP I f Igr

wHp’
k=—wo
where 2/ < y < 2/*1. Hence
(6) P(U*(@) > y) Sy mE|U*@I" < Cpy ? | fI2 ga-

On the other hand, Theorem 1 and (4) for the operator U* imply

P(U*(H) > y) < P(U*(B) > 0) < . P(U*(a) > 0)
)

J

8

< Y P #0)<Cpy P I f 12,
k=j

This and (6) show the theorem. m
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The equivalence HT ~ HT™ and the inequality
™ 178 gz < If Iz~ @ <p < )
are clear from the definition. The next result is 2 consequence of Theorem 3
and (7).

COROLLARY 1. Assume that U and T are adapted operators, moreover, that
there exists 0 < p; < oo such that (5) holds. Then

||f||ng < Cp“f”wﬂg- O <p<pi)

" By Theorem 2, for a regular stochastic basis we can omit the predictability
of T in Theorem 3.

COROLLARY 2. Let % be regular. Assume that U and T are adapted and for
all martingales f

I1U*(fMpy ~ IT* (), where 0 <p; < 0.
Then
gz ~ 1S gz @ <p<py)

Consequently, we obtain

CorOLLARY 3. If & is regular and T is adapted, then wH] ~ wHj "
0 <p< ).

Now we consider the quadratic variations and the maximal operator.
PropoSITION 2. If 1 < g < oo, then

1/ se S Coll e O <p<a),
1f Vygze < Coll Fllyse @< < 00),
1f e S Coll fll e O<p<q<2).
Proof. The first and third inequalities follow from
® 1S4(NNg = lsg(Nlly (1 < g < 0),

©) 1 *le < Colisg(Nll;, A<q<2)

and from Theorem 3. Note that (9) is due to Lepingle [13]. The second in-
equality of Proposition 2 comes from the concavity lemma (cf. Garsia [9]). =

CoROLLARY 4. If & is regular and 1< q < oo, then wH3? ~ wH3s
(0O<p< o, p#q) and wHY ~wH3* (0 < p < ).

Proof. The equivalence wH3? ~ wH3s for ¢ < p < o0 comes easily from
the regularity and from the second inequality of Proposition 2. If 0 < p < g,
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then the equivalence follows from (8) and Corollary 2. The Burkholder—
Davis-Gundy inequality HY ~ H5? and Corollary 2 imply wH}' ~ wH}?
O<p<o0). =

6. Duality results. The dual spaces of the weak Hardy spaces generated by
the operators S, and s, are going to be characterized. The spaces L, or L,, are
not dense in wL, (0 < p < o). A characterization of the wL, closure of L., can
be found on p. 47 of Bergh and Léfstrém [1]. Then the space HY is not
necessarily dense in wH; (cf. also Fefferman and Soria [8]), so we take its
closure. More exactly, let AT be the wHY closure of HE.

THEOREM 4. The dual of Hi is wBMOy (), where 0 <p < g, 1< g < o,
a=1/p—1 and 1/g+1/q' = 1.

Proof. Since H% is dense in H% and H34 is dense in Hy (p < q) (see Weisz
[19]), we infer that HS: and H3s are also dense in Hjz. Let ge w#.# 0, (v); then
geH3s. Define the linear functional I, by

(10) L() = E(ki dfdyg) (feH.

It is clear that

[+.a]
dkf = Z dka, a.ce.
I=—w
for all ke N, where the weak atoms g, are the same as in Theorem 1. Moreover,
it was proved in Weisz [19] that the last series converges to di f also in
Hi-norm. Hence

L(f)= 2 2 E (dy a,d, g).
k=1l=—o
Applying the identity a,, = a;,, x(v, <n) and Holder’s inequality we get

@ W

LNI< Y E(Y ldead x (v < k) |digl)

I=—w k=1

0] oo

< Y (EY lal)™(E 3 ldglt 10 < 0)'.
. I=-—o0

k=1 k=1

By (iii) of Theorem 1, s,(a;) < 3-2' (e Z). Thus

o0

(E Y ldeal)’ = [E (s3(a))] " < 3-2'P (v, # o).

k=1

Using (2) we have
POy # 00) 277 fI2 e
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Therefore

LUI<3 Y @ 1S 12 Y e (B z i g7 % (v < k)"

I=—w

o]

<30Sl X W B2,

{=~w

where B = || f I _ Since

L xR ) ST (k) (< xa),
we can show that
il 2 uf (x) p

(1) Y ul (B2~

l=—w 0

(B > 0).
This implies
|lg (f)l < Cp,q ”f”wH-‘Iq “g”w.‘JBJt(Dq: (feng)'

Conversely, if [ is in the dual of Hj, then it is also in the dual of H3s.
Henceforth, there exists g eH ¢ such that ! has the form (10) for all f € Hs. Let
v; be stopping times satlsfylng

(12) Pwm#w0)<2™? (leZ)

and let

aie Yo [degl® ' sign(dig)— Ex—4 (i gI* ”SIgn(dlkg))] < k)
27PN (EY S |dygl? x (v < K

If the denominator is 0, then let g, = 0. g, is not necessarily a weak atom,
however (i) holds, namely, a;, =0 on the set {v, > n}. Let the martingales

fn, gn and hy (NeN) be defined by

(13) Z aln= Z a!n+zaln_:gN;n+hN;n (HEN)a
1=—N 1=-N

where 2/ < y < 2/*1 for a fixed y > 0. We will show that

(14 I fxllypee < € (NEN),

where C, is independent of N. As in Theorem 3,

Isq(gmllq < Z 1S4 @)l, < 2 Z 27hUaTR < Cyyt T

I=—N .
and

P(s,(gn) > ¥) S y 1E(s2(gn)) < Cpy 2.
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The inequality
(15) P(Sq(hN) > y) S pr—p

can be verified in the same way as in Theorem 3. Thus we have proved (14).
Hence

C, M = (=
2 I = [E(fRl 5

YN 3= E(degl? x (v < k)

—lip(1/p—1/q) (EZ;:]:l Idk glql X(vl < k))]'/q

N ) ,

= Y (EY ldigl? (v < k) 27tetia= 1),
k=1

I=-N

. 'I! Taking the supremum over all stopping times satisfying (12) and over all Ne N
and using (11) we obtain

s}

"”l »>’ Cp Z ug’-(z—!p) 2 Cp ||g"wm.ﬂl!?qn(u)-

I=—ow
With a slight modification the theorem can also be shown in the case g = 1. m
Taking into account Corollary 4 and (1) we can point out the next results.

| COROLLARY 5. If & is regular, then the dual of H3% is wBMO 4 (2), where
| 0<p<g 1<qg<om, a=1/p—1, and 1/g+1/q = 1.

COROLLARY 6. The dual of H is wBMO,(x), where 0 <p <2 and

a=1/p—1.
Now we consider the weak Hardy spaces generated by the maximal
operator.

THEOREM 5. wBMO, () is equivalent to a subspace of the dual of H¥,
where 0 <p < o0 and a=1/p—1.

Proof. Let gewBMO, («) and define I, for feL, again by (10). Then

Il ()i = |E(fg)l = | i E(@g)| =| i E(a(g—g")

== I=—o0

<3Uflge X QTP e) 7 lg =g

<3Sl 3 B2 Col Sl e 19hwmreosior
I=—o0

where we used (11) for ¢, instead of u,.
Conversely, suppose that there exists ge L, such that the bounded linear
functional [ is of the form (10) for all feL,. Let

a:=2'(h—h" (leN),

10 — PAMS 18.1
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where the stopping times v, satisfy (12) and A, : = sign(g—g"). It is easy to see
that each g, (e N) is a weak atom with respect to M ~. Thus, by Theorem 1, if
fw is again defined by (13), then | fNile:‘- < C, (NeN). Therefore

N N
Collll = Ll = |E(fag) = II—Z—NE (@g)| = llzz_NZ’E((hz—hz“’) g)

N N
=| Y 2Eh@—gm)= Y 27V |g—g",.

iI=—N I=—N

As above we derive

H=C, ¥ 22" = Cplglwsmosms

I=—ow
which shows the theorem. m

By the duality between L, and L, (1 < g < o) we can infer that for every
linear functional ! on HY there exists geL, such that [ has the form (10).
Corollaries 3 and 4 imply

COROLLARY 7. If & is regular, then the dual of HY and H3* is wBMO, (cc),
where 0 <p < oo and a=1/p—1.

Remark. It follows from the equivalence wL, ~ wHY (1 < p < o0) that if
& is regular, then the dual of the wL, closure of L, is wBMO, ()
l<p<ow,a=1/p-1).

Now we extend Corollary 7.

THEOREM 6. Suppose that & is regular and 1 < g< 0, 0<p<gqflg—1)
and o= 1/p—1. Then the dual of HY and H3* is wBMO, ().

Proof. By Proposition 1 and Theorem 5 we have
(N =IE(fo)l < C, "f”wHM gl wemon < Cp ||f||wHM g1l wermo,w>

~ where gewBMO, (o) and feL, (1/g+1/q =1).

Conversely, since p < ¢/, there exists ge L, such that the bounded linear
functional / equals I, on L,. Let

ay =27 tari=ng By (1eN),
where the stopping times v, satisfy (12) and
lg—g"*" " sign(g—g")

h:= —
’ lg—g”l§™"
Of course, ||h|, = 1. Define fy, gn and hy (NeN) again by (13). Then
-1 i-1

lgilly < lgnle < X lally <2 ) 2077400 < C,ytmrtei

I=—N I=—N
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and
Pgi>y<y YE@¥)<C,y".

Applying the analogue of (15} we can conclude that || leleg‘ < C, (NeN).
Consequently,

N N
Clll =Wl =] Y E@mg)|=| Y 27" 1" E(h(g—g")

I=—N I=-N

N
= 2 2~ lp(—1jg+1-1/p) ug_gw”q’

- I=oN
and hence
I =C, Y, 2272 C,lglwemo,m-
I=—o0

The proof of the theorem is complete.
Now we formulate the weak version of the John—Nirenberg theorem.

COROLLARY 8. Suppose that & is reqular and 1 < q < o0. If —1 < ag for
a fixed o, then the wBMO, () spaces are all equivalent. In particular, the wBMO,
spaces are all equivalent if 1 < q <o0.

Finally, some martingale inequalities are formulated.

COROLLARY 9. We have

clglzmopm < |9lwaao,w < Clglane,y (1<g <0, 0<a<f)
and
cllg9llsmos@ < 19l wemos@ < C Igllamoy O < a < B).

Proof. It is proved in Weisz [19], [18] that the dual of H}? is B4, ()
and that BMO, (o) is equivalent to a subspace of the dual of HY ", where
O<p<l,1<g<w,a=1/p—1 and 1/q+1/qg' = 1. The corollary follows
from Theorems 4 and 5 and from the inequalities

1 e < 1S Dyse < 1Sl se @ <7< p),

1 e < SN e < D fllpe- @ <7 <p). m
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