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WEAK MARTINGALE HARDY SPACES* 

Abstract. Weak martingale Hardy spaces generated by an opera- 
tor T are investigated. The concept of weak atoms is introduced and 
an atomic decomposition of the space wW; is given if the operator T is 
predictable. Martingale inequalities between weak Hardy spaces gene- 
rated by two different operators are considered. In particular, we ob- 
tain inequalities for the maximal function, for the g-variation, and for 
the conditional q-variation. The duals of the weak Hardy spaces gene- 
rated by these special operators are characterized. 

8 .  Introda&sa We consider martingale operators and weak martin- 
gale Hardy spaces generated by them. The Hardy space HT and the weak 
Hardy space WH; of martingales are introduced with the L,-norm and weak 
wL,-norm of the maximal operator T*, respectively. We d e h e  also the weak 
BMO spaces. 

The martingale Hardy spaces H i  and their atomic decomposition were 
investigated in Weisz [19]. In this paper, besides the p-atoms a new concept of 
atoms, the so-called weak atoms, is introduced. Then the martingales from WH; 
(0 < p < m) are decomposed into the sum of weak atoms, and an equivalent 
norm of WHF is also given whenever the operator T is predictable. The atomic 
decomposition of wH,T is also obtained in the case where T is adapted and the 
stochastic basis is regular. The atomic decomposition of wH, was shown by 
Fefferman and Soria 181 in the classical case. 

In Section 5 martingale inequalities are verified. We show that if an in- 
equality holds for a number p, then, by the weak atomic decomposition, it also 
holds for all parameters less than p. As special operators the maximal operator 
M, the q-variation S,, and the conditional q-variation s, are considered. The 
weak type Burkholder-Davis-Gundy inequality is obtained from the general 
results. 

* This research was supported by the Hungarian Scientific Research Funds (OTKA) N o  
F019633 and T020497. 



134 F. W e i s z  

The dual spaces of H; were considered in Garsia [9] (T = S , ,  p = 11, 
Herz [lo], [11] (T = S , ,  T =  s2, p <  a), Lepingle [I31 (T = s e , p =  1) and 
Weisz [la], [I91 (T = S,,  T = s,, p < m). In Section 6 we extend these results 
and investigate the duals of the Hardy spaces Ri, the wH$ closure of 23:. More 
exactly, the duals of H r ,  and P; generated by the maximal operator, 
q-variation and conditional q-variation are characterized, respectively. It is 
proved that the dual of R: is w ~ A ! U q 1  (a) (0 < p < q, 1 < q < m, a =  l / p  - 1, 
l j q  + l/q' = 1). Besides these conditions, if the stochastic basis is regular, then 
the dual of is also w&IMO,, (a). The equivalence of the wBMO, spaces is 
obtained as well. 

. 1 \yould like to thank the referee for reading the paper carefully. 

2. Preliminaries and notation. Let (61, d, P)  be a probability space and let 
F = (F,,  EN) be a non-decreasing sequence of a-algebras. The G-algebra 
generated by an arbitrary set system A?' will be denoted by a (X). We suppose 
that d = a(u, , , !~~) .  

The expectahon operator and the conditional expectation operators rela- 
tive to Fn  EN) are denoted by E and En, respectively. We briefly write 
L, instead of the L,@, d, P) space while the norm (or quasinorm) of this 
space is defined by (1 f (1, : = (E (f (p)llp (0 < p 6 m), For simplicity, we assume 
that for a function f E L, and for a martingale f = (f,, n E N) we have E ,  f = 0 
and f, = 0, respectively. 

The stochastic basis 9 is said to be regular if there exists a number R > 0 
such that for every non-negative and integrable function f 

We define E -  : = Eo. The simplest example for a regular stochastic basis is the 
sequence of dyadic a-algebras where 52 = LO, I), d is the a-algebra of Borel 
measurable sets, P is the Lebesgue measure and 

In this paper the constants C,  are depending only on p and may denote 
different constants in different contexts. 

We define the martingale diflerences as follows: 

The concept of a stopped martingale is we11 known in the martingale theory: if 
v is a stopping time (briefly, v €9) and f is a martingale, then the stopped 
martingale f v  = (f,', n E N )  is defined by . 
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where x(A)  is the characteristic function of a set A. We know that f,' has the 
property: f,' = f, on the set ( v  = rn) whenever n 2 m. Especially, in the case 
v = n (n~lV)  we have 

f" = (fo, f l ,  ... 1 f", fn, ... 1. 
We shall consider the following special martingale operators. The maximal 

function of a martingale f = (A, n E N)  is denoted by 

The q-vqrimion S, (f) a d  the conditional q-variation sq(f) (1 < q < a) of a 
martingale f are defined as follows: 

and 

while for q = ca let 

Usually the Zvariations are delt with, however in Lepingle [12], [13], Pisier 
and Xu [I51 and Weisz [I91 the q-variations are also considered. 

Following Burkholder and Gundy [4] we investigate more general mar- 
tingale operators T that map the set of the martingales stopped by n for any 
n E N  into the set of non-negative d measurable functions. Throughout the 
paper we will assume the following conditions: 

(Bl) T is subadditive, i-e. if f = ~ k m ~ o  f, in the sense of f, = x,"=, &;,, 
a.e. for all r n ~  N ,  then 

where f, (k EN) are martingales. 
(B2) T is homogeneous, i.e. T (cf) = Icl T(f ). 
(B3) T is local, i.e. T( f )  = 0 on the set (s2 (f) = 0). 
(B4) T is symmetric, i.e. T(f) = T(-f). 
We define, for an arbitrary martingale f, 

Under these conditions the operator T has some natural properties. For exarn- 
ple, To(f) = 0, T(f-g) < T(f)+T(g) and T(fp-fv) = 0 on the set (p = v]. 
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Moreover, if we set T, (f) = T, ( f )  on (v = n), where v E F is a finite stopping 
time, then we have T , ( f )  = T(fu). It  is easy to see that the operator T* also 
satisfies dl the above conditions. For more details and examples we refer to 
Burkholder and Gundy [4]. 

An operator T is said to be adapted (respectively, predictable) if T , ( f )  is 
F,, (respectively, Fn- ,) measurable for all martingales f and for all n E N.  
If M (  f ") := If,(, then M,* (f) =&* and M* (f) = f *  EN). One can easily 
check that the operators M, S ,  and s, (1 4 q < co) satisfy the condition (B), 
moreover, that M and S, are adapted, and s, is predictable. 

The predictable operator of an operator T satisfying (B) is to be intro- 
duced. We consider all the non-decreasing, non-negative and predictable se- 
quences A = (An, n E IV) of functions for which 

f  EN). 
Set 

T,-If):= infk  EN), T-(f),:= supT,-(f). 
A neN 

One can simply prove that T -  satisfies (B) and is predictable, moreover, that 
T,- (f) is non-decreasing in n. We remark that T -  ( f )  is not necessarily finite 
a.e, whenever T* (f) is finite a.e. Note that T -  was introduced and investi- 
gated for the maximal operator by Garsia [9] while for S2 by Weisz 
ClSl. 

3. Weak martingaIe Hardy and BMO spaces. The weak Lp space wLp 
(0 < p < a) consists of all measurable functions f for which 

Ilf l l w ~ ,  : = supIJP({lf l > y))llP < a 
Y > O  

while we set wL, = L,. 
The martingale Hardy space H; and the weak martingale Hardy space W H ;  

(0 < p < a) generated by T denote the space of martingales for which 

respectively. It is known that 

H T c w H ;  ( O < p < o o )  and wHicHqT ( O < q < p < m ) .  

It  is interesting to remark that L, c W H Y ,  WHY because of the inequalities 

(cf. Neveu [14], Burkholder [3]). Moreover, H f  - Hg2 for 1 < p < oo and 
H f  -- - Lp for 1 < p < a, where - denotes the equivalence of the spaces 
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and norms (see Weveu [14], Burkholder [3], Davis [7]), Using the interpola- 
tion results of Weisz [17] and [I91 we can prove that wHf .Y w H 2  - 
wLp (1 < p < a ) .  

It is known that the dual of the Hardy space HF is BMO, (a) (Herz [lo], 
Weisz [18 ] )  and the dual of H$ is BA'0,,(u) (Lepingle [13], p = 1; Weisz [19]) 
( O < p <  1, 1 < q <  a, O < a  = l /p-1 and l/qf 1/q1 = I), where the BMO 
spaces are defined with the norms 

and 

It is easy to see that 

Ilf I~BMO~(~~)  = Ilf llt%ifla2(~). 

Let us introduce the weak BMO spaces. Set 

t i ( f ?  x):= t:(x) := ~ - l / q - ~  SUP tl f-f "114 

v~*P(v  f m) < x 

and 

where 1 < q < GO and - l/q < a. For q = oo and a >  0 we define 

We say that f €wBMO,(a) and f ~waAO,(a)  (-l/q < a) if 

and 
m 

u: (4 < 11 f 11 ~~BAAIB,(=) : = j - (1 G 4 < m), 
O X  

respectively. Set 

wBMO, : = wBMO, (0) and w9A0, : = w ~ A O ,  (0) (1 < q < m). 

Obviously, 
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It is easy to see that, for x 2 1, 

Thus, if f # 0 and / then I )  f l l w ~ ~ o q b )  = I 1  f llwa&n,(.) = 03 
(1 G q < a). However, if a > - l/q, then we can write 

and 

PRo~os~no~  1. If 1 6 ql < q2 < m and a > - l/q,, then 

P r o  o f, By Holder's inequality, 

which shows the proposition. H 

4. Weak atomic decomposition. The atomic decomposition is a useful 
characterization of Hardy spaces used in proving some duality theorems and 
martingale inequalities (see e.g. Coifman and Weiss [6] and Weisz [17]). Let us 
introduce first the concepts of atoms. A martingale a is a p-atom relative to an 
operator T if there exists a stopping time v such that 

(i) a, = 0 if v 3 n; 
(ii) I(T*(a)((, < P(v # 00)-l ip.  

It  is proved by the author [19] that the martingales from H; (0 < p < 1) 
can be decomposed into the sum of p-atoms whenever T is predictable. Special 
cases of this atomic decomposition can be found in Bernard and Maisonneuve 
[2], Chevalier [ 5 ]  and Herz [lo]. To give the atomic decomposition of the 
weak Hardy spaces let us define the concept of weak atoms. A martingale 
a is a weak atom relative to an operator T if there exists a stopping time v such 
that (i) is satisfied and 

(ii') llT*(a)llm < a 
holds. The atomic decomposition of wH,T is stated as follows: 

THEOREM' 1. Assume that T is a predictable operator. A martingale 
f = (f.,  EN) is in WH; (0 < p < oo) i f  and only if there exists a sequence 
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(a,, k~ 2) of weak atoms relative to T with the corresponding stopping times 
vk such that 

(ii) sup 2kP P (v, # oo) < co , 
k€Z 

(iii) T* (ak) G A2k, where A is an absolute constant. 

Moreover, !he following equivalence of norms holds: 

(2) Il f II,,: - inf sup 2k P (vk # m)lIp, 
k€Z 

where the infimum is taken over all preceding decompositions of f. 

Proof. The first half of the proof will be sketched only. Assume that 
f E wHp (0 < p < a). Let us define the stopping times 

and martingales 

Since T is local, we have T* (ak) 6 3 .  2k; thus ak (with the stopping time vk) is 
a weak atom for each k EZ. It is easy to see that (i) holds (cf. also Weisz [19], 
p. 44). There are no convergence problems in (i), because only finitely many 
terms (depending on w) are non-zero. As (v, # m) = {T* (f) > 2k), by the 
definition we have 

which proves (ii) and one side of (2). 
Conversely, suppose that (i), (ii) and (iii) are satisfied and let 

For a fixed y > 0 choose ~ E Z  such that 2' ,< y < 2'". Then 

implies that T* (f) d T* (g) + T* (h) and 

P(T*(f) > 2Ay) < P ( T 4 ( g )  > Ay)+P(T*(h)  > Ay). 



From the inequality 
j- 1 

T* (g) d T* (a,) < A2j 
k= - m  

we get 
P (T' (g) > AY) < P (T* (g)  > A2') = 0. 

It follows from the definitions that 

This and the inequality T* (h) 6 zr= T* (ak) imply that 

Consequently, 

which shows that 11 f llf:Hf < C p D .  The proof of the theorem is complete. H 

Note that the definitions of a, and vk ( k ~  Z) in the first part of the proof of 
Theorem 1 are independent of p. 

With the usual method we can extend Theorem 1 to adapted operators in 
the case where 9 is regular. 

THEOREM 2. If T is adapted and 9 is regular, then Theorem 1 holds as well. 

Proof. Let 

Z, := inf{n~N: T,*(f) > 2,) 
and 

where R is the regularity constant. It is clear that I;k, €9"- and, by the regu- 
larity of 9, Fi  3 ( z ,  = n). Define 

Then (2, (a) = n) implies w E Ff, which yields {vk (o) < n - 1). In other words, 
vk < zk on the set { T ~  # m). This implies that if ak is defined again by (3), then 
T* (ak) < 3 - 2k. By Chebyshev's inequality we obtain 

P(F:) < RE (x ( zk  = n))] = RP(zk = n). 
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Hence 

The proof can be completed in the same way as in Theorem 1. 

5. Wg,h@le IneqnaPties. In this section the connection of the weak mar- 
tingale Hardy spaces is investigated. The idea of the method is the following. If 
a strong inequality holds for a number p, then by the atomic decomposition we 
can verify its weak version for all parameters less than p. We single out the 
results far some special operators. As a consequence the weak version of the 
well-known Burkholder-Davis-Gmdy inequality is obtained. 

THEORBM 3. Assume that Tis predictable and U is adapted, moreover, that 
there exists 0 < pl < m such that for all martingales f 

(5 )  II u* (~III,, a c 11  T* (f)llP,. 
Then 

l l l l l l f l l w  ( ~ - = P < P I ) .  

Proof. Taking the atomic decomposition and the martingales g and h 
given in the proof of Theorem 1 we get U* (f) < U* (g) + U* (h) and 

P(U*If) > 2 ~ )  G P(~*(Q) > y)+P(U*(h) > Y) .  

By (iii) of Theorem 1, (2) and (5), 

j -  1 

4 c  PIPI PI PI) 11 f 11"; c cpyl -~~i  
WAF I l f  IIW&? k =  - m  

where 2j ,< y < 2j''. Hence 

On the other hand, Theorem 1 and (4) for the operator U* imply 

P (U* (h) > y) < P (U* (h) > 0) C P (U* (a,) > 0) 
k =  j 

This and (6) show the theorem. H 
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The equivalence HZ - H z -  and the inequality 

are clear from the definition. The next result is a consequence of Theorem 3 
and (7). 

COROLLARY 1. Assume that U and T are adapted operators, moreover, that 
there exists 0 < p ,  < co such that (5)  holds. Then 

BynTheorem 2, for a regular stochastic basis we can omit the predictability 
of T in Theorem 3. 

COROLLARY 2. Let F be regular. Assume that U and T are adapted and for 
all martingabs f 

I  I - I  f l l  w k r e  0 < PI G 
Then 

I ~ f ~ ~ W H p U N I / f ~ ~ W R ~  ( O < P < P I ) '  

Consequently, we obtain 

COROLLARY 3. If F is regular and T is adapted, then wH; wH;- 
(0 < p d a). 

Now we consider the quadratic variations and the maximal operator. 

PRO~SITION 2. If 1 < q < coy then 

111 1lWHP G Cpllf ll,&,g (0 < P < 413 

Proof. The first and third inequalities follow from 

(8) l l l l = l l f l  ( 1 < 4 < 0 0 ) ,  

(9) IIf*II,< cqllsq(f)llq (1 G 4  G2)  

and from Theorem 3. Note that (9) is due to Lepingle [13]. The second in- 
equality of Proposition 2 comes from the concavity lemma (cf. Garsia [9]). H 

COROLLARY 4. If 9 is regular and 1 6 g < co, then W H ~  - wH> 
( O < p < c r , , p # q )  and wHf-wHp ( O < p < w ) .  

Proof. The equivalence w H 2  - wH> for q < p < comes easiIy from 
the regularity and from the second inequality of Proposition 2. If 0 < p < q, 
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then the equivalence follows from (8) and Corollary 2. The Burkholder- 
Davis43undy inequality Hf - H i 2  and Corollary 2 imply wHr - wHg2 
( O < p < c o ) .  

6. Duality results. The dual spaces of the weak Hardy spaces generated by 
the operators S, and s, are going to be characterized. The spaces L, or L, are 
not dense in wL, (0 < p < a). A characterization of the wL, closure of L,  can 
be found on p. 47 of Bergh and Lofstrom [I]. Then the space H: is not 
necessarily dense in wH; (cf. also Fefferman and Soria Kg]), so we take its 
closure, More exactly, let H,T be the wH; closure of Hz. 

TwEoIzle~ 4. The dual of B"p' is w B A O q l ( u ) ,  where 0 < p < q ,  1 < q < my 
ol = l/p-1 ind l /q+l /qf  = 1. 

P r o  of. Since H% is dense in HSgg and H i g  is dense in HSlq (p < q)  (see Weisz 
[Ig]), we infer that H? and H p  are also dense in B";. Let g E wBdO, .  (a); then 
g ~ H i 7 ' .  Define the linear functional 1, by 

It is clear that 

for all  EN, where the weak atoms al are the same as in Theorem 1. Moreover, 
it was proved in Weisz [I91 that the last series converges to dk f also in 
H2-norm. Hence 

m m 

Applying the identity a,;, = a!,. x (vl < n) and Holder's inequality we get 

By (iii) of Theorem 1, s, (al )  C 3 -2' (I E Z). Thus 

Using (2) we have 
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Therefore 

where B = Il f IItGq. Since 

we' can. show that 
m m 

(1) I =  z - u $ ( B 2 - ' ~ ) . - . ~ a d x  (B>O). 
m 0 X 

This implies 

Conversely, if 1 is in the dual of F;, then it is also in the dual of H?, 
Henceforth, there exists g E If?' such that 1 has the form (10) for all f E H p .  Let 
v, be stopping times satisfying 

and let 

If the denominator is 0, then let al = 0. al is not necessarily a weak atom, 
however (i) holds, namely, a,;, = 0 on the set {v, 2 n). Let the martingales 
fN , gN and kN ( N  E N )  be defined by 

(13) f ~ ; n  : = C at;, = C at,, + C at,, = : g ~ ; ,  + hN,, (n E N ) ,  
1= - N  I =  - N  l = j  

where 2j 6 y < 2j" for a fixed y > 0. We will show that 

where C, is independent of N. As in Theorem 3, 

I=  - N  I = - N  e 

and 
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The inequality 

115) P(s,(h,) > Y )  < C,Y-~ 

can be verified in the same way as in Theorem 3. Thus we have proved (14). 
Hence 

Taking the supremum over all stopping times satisfying (12) and over all N E N 
and using (11) we obtain 

With a slight modilkation the theorem can also be shown in the case q = 1. a 

Taking into account Corollary 4 and ( 1 )  we can point out the next results. 

COROLLARY 5 .  If 9 is regular, then the dual of RF is wBAOq,(a) ,  where 
O < p < q ,  1 < q < c a ,  a = l / p - 1 ,  and l / q + l / q T = 1 .  

COROLLARY 6. The dual of Pp" is wSM02 (m), where 0 < p < 2 and 
a = l /p -1 .  

Now we consider the weak Hardy spaces generated by the maximal 
operator. 

THEOREM 5.  wBMOl (a) is equivalent to a subspace of the dual of 8:-, 
where 0 < p c oo and u = l /p-1 .  

Proof. Let g ~ w 3 M O ~ ( a )  and define 1, for f EL, again by (10). Then 

where we used ( 1 1 )  for t, instead of u,. 
Conversely, suppose that there exists g E L ,  such that the bounded linear 

functional E is of the form (10) for all f E L,. Let 

10 - PAMS 18.1 
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where the stopping times vl satisfy (12) and hi := sign(g-g"). I t  is easy to see 
that each al (EEN) is a weak atom with respect to M - .  Thus, by Theorem 1, if 
f, is again defined by (131, then 11 f n r l l W H r -  < Cp (NEM). Therefore 

N N 

c p  l l  Ill 3 I1 ( f ~ l l  = IE lf~ B)I = I C E Car Q)] = I C 2' E ((hi - h!') g)( 
I =  - N  l =  - N  

As above .we derive 
w 

l l E l l  2 Cp t : ( 2 - * p )  3 Cp Ilglllu~~~l{a)a)l 
I = - m  

which shows the theorem. w 

By the duality between Lq and La# (1  < q < co) we can infer that for every 
linear functional 1 on fly there exists g E L1 such that 1 has the form (10). 
Corollaries 3 and 4 imply 

COROLLARY 7. If S is regular, then the dual of Hr and HF is wBMOl (a), 
where O c p < co rand a = l /p-1.  

Remark. It follows from the equivalence wLp - wHf (1 < p < co) that if 
P is regular, then the dual of the wL, cIosure of L ,  is wBMO,(ct) 
(1  < p  < oo, a = l/p-1). 

Now we extend Corollary 7. 

THEOREM 6. Suppose that 9 is regular and 1 < q < oo, 0 < p < q/(q - 1) 
and a = l / p -  1. Then the dual of R r  and Rp is wBMOq(a). 

Proof.  By Proposition 1 and Theorem 5 we have 

where g E wBMOq (a) and f E L,, (l/q + l/q' = 1). 
Conversely, since p < q', there exists g EL,  such that the bounded linear 

functional 1 equals 1, on L,,. Let 

where the stopping times v, satisfy (12) and 

Of course, Ilhrlle* = 1. Define fN, g, and hN (NEW again by (13). Then 



Weak martingale Hardy spaces 147 

and 

P(g& > y) < y-q'E(g2q')  < C , y p P  

Applying the analogue of (15) we can conclude that 11 f N l l  wHF 6 C p  (N E N) .  
Consequently, 

and hence ' 
m 

11 E l l  2 Cp 2 ~ ( 2 - l ~ )  3 C p  l l ~ l l w B ~ O ~ ( a ) -  
I =  - m  

The proof of the theorem is complete, ra 

Now we formulate the weak version of the John-Nirenberg theorem. 

COROLLARY 8. Suppose that F is regular and 1 < q < co. If - 1 < aq for 
afixed a, then the wBMO, (a) spaces are all equivalent. In  particular, the wBMO, 
spaces are all equivalent if 1 6 q < a. 

Finally, some martingale inequalities are formulated. 

COROLLARY 9. We have 

and 

~IISIIBMOI(~)<IIS\~WBM~I@)G~IISIIBMOI(B) (OGa<b) .  

Proof. It is proved in Weisz [19], [18] that the dual of HSp4 is BALOqr (a) 
and that BMO, (a) is equivalent to a subspace of the dual of H f - ,  where 
0 < p < 1 ,  1 G q < m, a = l ip  - 1 and l/q + l /qf  = 1. The corollary follows 
from Theorems 4 and 5 and from the inequalities 

I l l l l  I f  I (0 < r < p ) ,  

llf / I H y -  G llf llwBF- G llf l I c -  (0 < r < p). 
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