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Abstract. For the absolutely ®-summing operators T: X - Y
between Banach spaces X and Y we consider martingale inequalities of

the type
k N A2
[ sup IE Talll,, < ell sup (X Keoo adPYl,,,
1<k<N I=1 i=1,2,.. k=1

where (d)f-o = IX(Q, &, P) is a martingale difference sequence and
(@), is a sequence of normalized functionals on X, and we show that
these inequalities are useful in different directions. For example, for
a Banach space X, x,,..., x,€X, independent standard Gaussian
variables g¢,, ..., g,, and 1 <r < oo we deduce that

" n
IZL X ddxll=<ed/rll sup S0 el X gixill e
1 +1 L 1<ig i=1 1

i k=14 <i<n

i=

where f = (d,)f—o is a scalar-valued martingale difference sequence
such that (d)f-,; is predictable, 0=t <17, <... <7,=N is
a sequence of stopping times, and

SE=( Y 4P,

k=ti-1+1

- Introduction. There are several reasons to extend inequalities involving
operators defined on martingales from the scalar-valued setting to the Banach
space valued setting. For example, one possible variant of the Burk-
holder-Davis—Gundy inequality in the vector-valued setting is

k N
(1) | sup I3 dllyl, < el X i)™,
1Sk<€N I=1 k=1

where X is a Banach space and (d,))-o = IX (Q, &, P)is a martingale difference
sequence. This inequality can be used to characterize and to handle those
Banach spaces X which admit renorming with the modulus of smoothness of
power type 2 (see [29]). There is also another way to consider a vector-valued
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Burkholder—Davis-Gundy inequality. Instead of (1) we take a bounded and
linear operator T: X — Y between Banach spaces X and Y and regard

k N
@ | sup |3 Tdl ]|, <l sup (¥ Kde» a1 |a
1<k<€N ]I=1 i=1,2,... k=1

where ()2, is some normalized sequence of linear functionals. First of all,
the consideration of inequality (2) requires the usage of operators T since the
validity of (2) for all N =1, 2, ... for an identity T = I, of a Banach space
X implies dim(X) < c0 in general.

The subject of the paper is to show that inequalities of type (2) are useful in
different situations and to develop a general approach for such inequalities.

The paper is organized as follows. In Section 1 we recall some facts about
the absolutely #-summing operators. These operators are used to state in
Theorem 3.2 the basic result of the paper, which is an abstract version of (2).
Since the BMO,-L, estimates, the starting point of Theorem 3.2, are based on
Lorentz norms, whereas the notion of absolutely ®-summing operators is
based on Orlicz norms, we show in Section 2 that the BM. O,-spaces have a re-
presentation by Orlicz norms. Besides the applications of Theorem 3.2 given in
Section 3 we derive in Section 4 contraction principles for vector-valued Gaus-
sian random variables. A corresponding contraction principle for Rademacher
variables is proved in Section 5 by using a different technique.

Throughout this paper [, #, P] stands for a probability space, and
(FR=o for a filtration with &, € # and #, = {@, Q}. All random variables
and Banach spaces are assumed to be real. By standard Gaussian random
variables we mean symmetric random variables distributed like 47 (0, 1).
A random variable eeL,(M, u) is called a Rademacher variable if
ple=1)=pu(e=—1)=1/2. The Haar functions (h)i=o < L,[0,1) are
given by

ho =1, by = Yi0.1/2)— Xt/2,05 B2 = Xio,1/4— Xasa.112)5 B3 = X1/2,304 = Xi3sa1ys -+

where #}:= o (h,, -.., h;). Given a Banach space X its dual is denoted by X,
and its closed unit ball by B,. Moreover, I% (2, %, P) is the space of all Borel
measurable h: Q > X such that there is a separable and closed subspace
X, < X with P(heX,) =1, where L,(Q, # P) = I%(Q, &, P). The symbol
Z (X, Y) stands for the linear and continuous operators T: X — Y between
the Banach spaces X and Y equipped with the operator norm ||T|
:=sup {||Tx||ly: xeBy}. Given quantities ||| and ||| we use

[l ~ I for ™I < IIHIE < ell.

1. Absolutely #-summing operators. The introduction of the absolutely
$-summing operators, where @ is an exponential Young function, was moti-
vated by the consideration of majorizing measures for Gaussian processes (cf.
Corollary 3.11). The results of this section are folklore.
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DerNITION 1.1. (1) A Young function ®: [0, o) — [0, c0), that means an
increasing and convex bijection, is said to be sup-multiplicative if there is some
¢ > 0 such that @ (1) ®(u) < (cAp) for all A, u > 1. We write Pe %, and let
Agp (P):= infc.

(2) Given a Young function &, the space I%(Q, % P) consists of all
he X (Q, #, P) with

||h||L$:=inf {C>OIEQ(@> < 1} < o,

where L, (Q, &, P):= L%(Q, #, P).

(3) For Qe@sup an operator Te Z (X, Y) is absolutely ®-summing if there
is a constant ¢ > 0 such that for all probability spaces [2, % P] and all
helX(Q, #, P)

@) IThll.g < ¢ sup lI<h, a)llpy.

acsBx’

We write Tell (X, Y) and let 74(T):= infc.

In particular, we use @ (A):=exp{i?}—1€%,, for 1 <q<oo. The
absolutely $-summing operators form a Banach operator ideal in the sense of
[27]. In the case Ly = L, we obtain the absolutely p-summing operators
I (X, Y). We restrict ourselves to the sup-multiplicative Young functions for
two reasons. First, according to (4) and Lemma 2.2 this case is of only interest
in our situation. Secondly, this condition on & ensures that the typical
absolutely @-summing operators are the embeddings C(K) = Lg (K, u), where
K is a compact Hausdorff space and u a normalized Borel measure (see Theo-
rem 1.2 and Remark 1.5 (1)). From this latter fact one can deduce
Oa(X, Y)c Iy (X, Y) if and only if Ly [0, 1] = Ly [0, 1]. Let us start with
the basic example of an absolutely @-summing operator.

THEOREM 1.2. For ®€%,,,, a compact Hausdorff space K, and a normalized
Borel measure p on K, we have for the embedding I: C(K)— Lo (K, p)

To(l) < (1+ D (1))* A5y (D).

Proof. We use standard arguments from the theory of the Orlicz spaces
which can be exploited to prove Fubini type theorems. The only point is that
we do not assume the sup-multiplicativity of @ for all 4, u > 0.

(1) For geLg(K, p) With llgllLo,s > ¢o:= (1+2(1)) 45y (P) We show

Q(M) < (gl dp.
I'sf K

0
Indeed, by convexity,

v @ (v)

A

A
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so that for 1 <b < ||gllLai.m/co We get

lgl 1 lgl
L<le (bco) WSTTam ,{qj (bAs,,p (cp)) dp

1 gl

STve() [|g|>,,£wm"’(b4m (@)) d””””]
1

< 1100 I:@(b) § gl dﬂ+¢(1):|

_ (2) Now let he I$® (R, &, P) be a step function taking a finite number of
values (see Remark 1.5 (2) below). For

Q.= {“h“Lm(K,u) >cpSQ and ¢, (1 +¢(1)) < ””h”LMK,u)”Lo(ﬂ,P)
we deduce with the help of the first step

|17 ()| Lo,y 1 (17 ()|, )
1<£¢(co(1+¢(1)))d”‘°)<1+¢(1)[”( s )dp(‘””@(”]

<1zoM 1+¢(1) [Q{K@(K"l (@), 8. 21)d (u x P)(a, w)+P(1)]

1
STxo@ [S,,‘E‘,f ;E ®(|<h, 8,0 AP+ (1)]

and 1 < supgex Jo@(<h, 8,0))dP. &

To obtain a special case of Theorem 1.2 we need
LemMa 13. Let 1<g<o0, K:={1,2,...}, and

~Then
ozl

su p T “(al):x_)_: “ @, L1
) ~ 1llLog(k.p)

where ¢> 0 depends on q only.

Proof. If we have I
sup ————o>1
i=1,§).... Hlog(i+1)
then we get some i, with |o;| > &/log(i,+1) and
' ”(ai)?iﬂlr,w(x,m > ”X[O’io(iolﬂ)] Ylog (ip+ 1)”Lmq[0,1]

Ylog(iy+1) S 1

T gttt Y2




Operators on martingales 153

so that
o]

< .
s e T Y2101 1 Loy

The remaining inequality is left to the reader. =
COROLLARY 14. For 1 € g < oo we have

D,eMy, (., 1) ifD((é-)E";l)F(g/H%)m '

Proof Either we go.a direct way or we use Theorem 1.2. For the latter
we observe that it is sufficient to show D, ) €Iy, (€, €), where € is the space of
convergent sequences. Since % = C(K) in a canonical way, where
K=1{1,2,..., o} is equipped with the metric d(k, [) = |1/k—1/l|, we apply
Theorem 1.2 and Lemma 1.3. =

Remark 1.5. (1) Theorem 1.2 is a part of the basic characterization of the
absolutely @-summing operators: For ® € %,,, an operator Te £ (X, Y) is ab-
solutely @#-summing if and only if T'can be factorized through a restriction of
an embedding C(K)— L4 (K, p) like in Theorem 1.2. We have seen the “if”
part; the “only if” part follows from the corresponding result of Assouad [1]
about the #-0-summing operators. In particular, it turns out that the #-0-sum-
ming and the absolutely @-summing operators coincide whenever ®e%,,,,.

(2) There are some straightforward reductions in Definition 1.1 (3).
First we have for a norming sequence (a)2,; < By, which means
lIxllx = supi=1,2,...I<x, a;)| for all xeX,

sup [IKh, dlle = sup Kk, @Iz,

acBx-’ i=1,2,...

Secondly, it is enough to consider in inequality (3) step functions h taking
a finite number of values.

2. BMO,-spaces
'DeFINITION 2.1. (1) Let @ be the set of all increasing bijections
V:[1, o0)—[1, o0)
and let 2 be the subset of those ye 2 for which

VA+w+1 YA+ for L, u=>1.

(2) For Y €2 the Lorentz space M, (Q, #, P) consists of all he L, (2, %, P)
with
|hla, :=inf{c >0 | P(lhl > A) < exp{1—y (/c)} for 4> c} < oo.

(3) Let Yy e and (f)f-0 = Ly (Q, &% P) be adapted to (F)f-o. Then

”(fk);cv= ollamo, := sup sup Iy —ﬁc—1|M¢(C,Pc),
0<k<ISN CefFy
P(C)>0

where f_; :=0 and P, := P/P(C) is the normalized restriction of P to C.
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In view of [13] (Theorem 4.6 and Lemma 4.4 (1)) the restriction to the
subset ¥ of 2 in the definition of the above BMO-spaces is of no loss of
generality. The typical examples for elements of Z are given by (1) := A7
for 1 £ g<o0. Lemma 4.4 (2) of [13] implies

. o Y(ad)
@ ey
so that the next lemma shows that the BMO,-spaces have a representation with
the help of Orlicz norms. This gives the link between the BMO,,-spaces and the
absolutely #-summing operators, which is behind Theorem 3.2. This also com-
pléments [13] (Remark 4.14) where some relations between the BM O-definition
in [2], which uses Orlicz norms, and our BMO-definition are outlined.

LemMma 22. For Ye€9 with sup,», inf;>, [W (@A) (A)] > 1 there are
Pe¥,, and c > 1 such that

>1 whenever ye9,

|‘|M¢, ~'llLe-

Proof We extend ¢ to : [0, 00)—> [0, o0) by y(A) =4 for 0< i< 1
and find a > 1 and & > 0 such that ¥ (1)(1+¢) < ¥ (ad) for 1 = 0. Choosing
0<p< oo such that a'’?=1+4+¢ we get, for p=>1 with a"< p<a"*?,
ne{0,1,2,...}, and 120,

1
Yyl Zy@ )=+ y ()= "“)‘“’l// O ”"ll/ ().

For s>0 and t > 1/\‘/;1 this gives

) Yes) < atPyT (o).
Setting &, (1) := ¢*®—1 for A > 0 and observing that &5 ' () = ¢~ * (log(t +1))
we see that inequality (5) implies
—1 —1
P () _ (log (S+1)>” @5 " (1)
su — su - <a,

e 576 < 2 (og 1) 570
where s, > 0 depends on p. On the other hand, assuming that s,:=e—1 < s,
we have

s B5L() s @0 (1)
su and su
0<s€?‘\:s1 t Dot(s) sp\ t &5 (s)
so that for ¢ =agb
—1 -1
Do " (1) <c Dy~ (s)
t s
Putting h(t) :=inf,»o(1+cts™ ') D5 (s) we obtain a concave h: [0, o0)—
[0, oo} satisfying h(0) =0 and

=h < 0,

for 0 <s<t< 0.

—lh(t)<¢51(t)<h(t) for all 0 <t < o0;
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cf. [3] (Proposition 2.5.10). h is continuous at the origin. Moreover, since h is
increasing, concave, and satisfies lim,.,, h(f) = co, it must be continuous on
(0, c0) and strictly increasing on [0, o0). Setting @ (1) := h~" (1) we get a con-
vex bijection @: [0, oo) — [0, c0) satisfying

B () < By(A) < D((c+1)2).

To show that @ e%,,, we choose 4 > 1 such that inf;5 , ¥ (44)/¢ (A) > 2. This
implies for A, u =1

YA +Y () S 20 (M) S Y (AAp)  and eV V) < I | [H D) 4 V) 7],

which n;leans' that @, (1) D, (1) < D, (4ip). Consequently, we can deduce that
for A, u=1

D (2) D (1) < Po(4) Po (1) < By (42p) < P((c+1) Adp).
Moreover, assuming that |[f]|., < 1/(c+1), we get for A >0
AP (VWD) > 2) < Ee'VD S EB((c+1If)+1 <2,
so that P(|f] > 2) < e* "*® and |f|y, < 1. Now let |f]s, < 1 so that we have

P(f| > 2) < e ¥ for A = 0. Choosing some d > 1 with ¥ (d1) = (1+e)y (1)
for A =0, we get

won (1) [ (e ()} > 2)ar < Tr(oope () >2)

w 1 1+e

and |||, <d|'|M.p- &

N

3 A martingale inequality. Assume a subset E of sequences f = (d,)f=0 <
IX(Q, #, P) adapted to (F)i-o and

S:E—L5(Q, # P):={feL,(@, % P)| f>0 as.}.

If for all f=(d)-0€E, g=(e)f=0€E, and all stopping times o, T we
have

(A1) —f =(—d¥-0€E, dy =0, and °f" := (df<k<afi=0€E;

(A2) S(f+g) <ys[Sf+8Sg] as. for some y5 > 1if f+g:= ([d+efi-o€E;
(A3) Sf =0as.on {0 =E(|dl||F-1), k=1, ...,n} and Sf = S(—f)as.;
(Ad) Sf* < Sf as. for k=0, ..., N, where f*:=(d, yu<i)i=o0;

(AS) Sf* is %,_,-measurable for k=1, ..., N;
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then we say that (E, S) satisfies (A). Moreover, we use
k
fii= Z d, f*= sup [fdlx
=0 O<ksN

S*f:= sup Sf¥, and T*f:= sup ||Tflly, where Te £ (X, Y).

O<k<N O<k<N

DerFINITION 3.1. Let E be a set of sequences f= (d)i-0 = Ly(2, &, P)
with d, = 0 adapted to the filtration (%)¥=o and let X be a Banach space.
A sequence F = (D)Y-, < I5(Q, %, P) adapted to (F)i=¢ belongs to E* if
D, = 0 and if there is a sequence (a;){2; < By and a closed subspace X, = X
such that

P(DieX))=1 and <F,a):=(D,, aph-o€E
for I=1,.., N,i=1,2, ..., and [jxlly = supi=1,2,..|<x, @] for xeX,. We
say that (a,)i2; is norming for F.

THEOREM 3.2. Assume that (E, S) satisfies (A) and let Y€ and dPe¥,,,
with |'|pr, ~|VllLe for some ¢ > 0. If

N(fk=ollsro, < ISfllL, for feE,
then for Telly(X,Y), feEX with a norming sequence (a)2, < By, and
1<r< o0 we have

IT*flle, < c¥™ 1(r)ﬂm(T)H sup S/, a?)

Lr>

where ¢ > 0 depends on yg, W, and ¢ only.

Proof. Fix (a)i2, = By and a closed subspace X, = X such that for
all xeX, we have ||x|]|=sup;=1,,.IKx,a. Let & be the set of
f=d)W-0 = IX(Q, # P) adapted to (F )~ with d, =0,

Pd,eXy) =1, <f,a)eE, and sup S({f, a;) < © as.
_ j=1,2,...
fork=0,..,Nandi=1,2,..., and let 4, B: & — L}(Q, %, P) be given by
Af:=|TfHlly and Bf:= sup S({f, ap),

i=1,2,...

where Bf:= 0 on {sup;—;,,,.. S({f, a;5) = c}. The triple (§, A, B) satisfies the

-assumptions of [13] (Proposition 7.3, C = 0). For example, g’ & if g & since

S(°g°) < aSg as. for some a > 0 depending on yg only [9] (Lemma 2.1) (cf.
[13], Lemma 7.1). Now, from the definition of n,(T) and Remark 1.5 (2) with
f-1:=0and Af"1:=0 we get

A R=ollsmo, < sup  IT(fi—fi-2ll
O<kSISN
CeFi,P(C)> 0

LB(C,Pc)
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< 7g(T|Xy—Y) sup sup [K(Ufi—fe-1)s aDllec.ro

O0<k<iI<N i=1,2,..
Ce#.,P(C)>0

< e (T) sup < fe» aDli=ollBroy

< eng(T) sup [IS({S, a)lle., < cmg (T)1IBf ||,
1=1,2,...

Hence we can apply [13] (Theorem 1.7) and are done. &
Combining Theorem 3.2 with [13] (Theorem 4.6 (23)) we obtain

COROLLARY 3.3. Assume that (E, S) satisfies (A) and let 0 < s < % be such
that

sup  sup Pc(fi—fi-1l > Iflle.) <s  for feE.

0SKkSISN CeFi
P(C)>0

Then for Telly(X, Y) with ®()) =e*—1, feEX with a norming sequence
(a,)f21 =« By, and 1 <r < oo we have

IT*flle, < crg (T)|| sup S, a))

i=1,2,...

Lp> .

where ¢ > 0 depends on yg and s only.
For some further applications we need

DermNITION 3.4. (1) For martingale difference sequences
f=@l-0oc L@ #P) and F=@D)N-0cX(@Q, % P)
we let

N
S.f:=(% [dJ3)"* and  SYF:= sup S,((F, @),
=0 .

aeBx:

Sp.0fi= sup \'/%d,’:‘, and S}, F:= sup S, . ((F, a)),

1<k<N acBx:

where 1 <p<2 and (df (w)):=1 is a non-increasing rearrangement of
(e @)= -

(2) The set of all martingale difference sequences f = (d)i-=o <
L, (Q, &, P) with respect to (#)i=o such that d, = 0 and |d,| is % _ ;-measu-

rable for k=1, ..., N is denoted by Z((Fh-0)(")

Note that for example (h, x)i-0€ P* ((F1)-0), Where (x)i=o = X with
xo =0. For Se{S,, S,,.} the function S* F is measurable as a composition of
Q- ¥ (X) with @ > (D, (@), ..., Dy(w)) and a continuous map from I3, (X)

() We will write 2% ((F)Y_,) instead of (2((F_,)"-
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into R. Moreover, given (a;)2; < By., norming for X, by duality we get
sup S(F,ap)(@)<S"F(w)<c sup SKF,ap)(w)
i=1,2,... i=1,2,...
withc =1if§ =5, and ¢ = ¢} if S = §,, ., where ¢, > 1 is a constant such that
sup  TkEE ~, IEJ |
k=1,2,...

for an equivalent norm ||| on [, .. In order to describe tail estimates for
Sp.« We use the notion of the K-functional, which is defined for a compatible
couple of Banach spaces (X,, X,) and xeX,+X, as

Kx, t; Xo, X,)
r=inf {[|xqllx, + 2l X1llx, | X = Xg+%,, Xo€Xg, X; eX,} (@=0).

LemMmA 3.5. Let 1<p<2<g<oo with1=1/p+1/q,8=S, if p=2,
and S = S, if 1 < p < 2. Then there is a constant ¢ > 0, depending on p only,
such that

”(fk)llLo”BMowq <cliSflle, for fegz((,%‘)ﬁ:()),

Proof. According to a result of Hitczenko [16] (Theorem 4.1), for A > 0
and f = (d)f-0€Z((FJi-0) we have

N /12
(6) P dif > c|[K (@h=1, 4 B, B)e..) < 2exp{—7},
k=1

where ¢ > 0 is an absolute constant. Hitczenko proved this inequality for
a transform (v, &)¥=, of a Rademacher sequence (g)}'~, by some predictable
sequence (v)i-=1. If we consider (d)f-0€?(F )=o), then d, =|d, sgnd,,
where sgn d, () := d; (w)/|d; ()] if d,(w) # 0 and sgnd, (w) :=0 if d,(w) = 0.
Since (sgnd)i-o€2((FNi-o) and (|4 )¥-, is predictable, we replace ¢, by
sgnd,, and v, by |[d,]. Now looking at Hitczenko’s proof we realize that this
proof works as well without any changes. In particular, we can also use for
“a predictable sequence (wy)i-; the inequality

N AZ
P( Y. wisgndy| > 1S, gll..) < 2exp{—7},
k=1

which follows from [10] or [15] (Lemma 4.3) and an approximation argument
with respect to the w,. It is known that there is an absolute constant ¢, > 0,
depending on g only, such that

@] K(x, A% B, B) < Acyllxll,y  for 420,

where &;:=15 if p=2 and &% :=I  if 1 <p < 2. Inequalities (6) and (7)
imply, for 1> 0 and f=(d -0 2 (FN-=0);

N lq
P(|Y 4| > dc,clSfll) < 2exp{._?}_
k=1
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Considering 0 < k <I< N and Ce%, with P(C) >0 we obtain

1 1
|i§k di|M¢q(C,Pc) < C; Di:%— ldiIM-/;q(C.PC)+ ”Sf”Lm] < C;’ ”Sf”Lw L

COROLLARY 3.6. Let 1<p<2<gqg<oo with 1=1/p+1/q, S=8, if
p=2,and S=8,, if 1 <p <2. Then there is a constant ¢ >0, depending on
p only, such that for TeHly (X, Y), f€P*((FI=0), and 1 <r < 0

IT*fllz, < ¢ &/rna, (DIIS* Iz,
Proof. We take E = 2 ((#)}-o) and use Theorem 3.2 and Lemma 3.5. =

COROLLARY 3.7. Let 1< p<2<qg<oo be such that 1=1/p+1/q,
Telly (X, Y), and f = (d)X=0€ P* (Fi=0)- Then, for some c > 0, depending
on p only,

N
®) IT*f I, < cmo, (T)(f Y ld%dP)"”.

2 k=1
Proof. Use Corollary 3.6 and S*¥f< (Z:=1||dk||§’r)1/P_ 8

Remark 3.8. (1) Pisier has shown in [29] that for T = I inequality (8) is
equivalent to a renorming of the Banach space X such that the modulus of
smoothness is of power type p. The same arguments apply in the operator case
(see e.g. the forthcoming book [28]), so that Corollary 3.7 implies smoothness
properties of the absolutely & -summing operators.

(2) Inequality (8) fails to be true for the absolutely @,-summing operators
whenever 2 < g <r < 0. In fact, for the embedding

I,.: C [0, 1) d Lq)r [0, 1)€H¢r
inequality (8) would imply type p, which means

N N
§ “ Y & xk”;,[o,l)d.“ <c? ) Ixdlero,1
M k=1 =1

for all x,, ..., x4eC[O0, 12 and independent Rademacher variables ¢, ..., &y.
Approximating r, (¢) = Zi;,}. 1h()e L, [0, 1) by x, € C[0, 1) in an appropriate
way we obtain a contradiction to the type p property of I,.

COROLLARY 3.9. For Tely,(X,Y) and f = (d)F-0€ P* (FR=0) we have

N
NT*flz, < Cﬂwz(T)” Y & dk”L;f(Mxn),
k=1

where ,, ..., &y are independent Rademacher variables and c > 0 is an absolute
constant.

Proof. Use Corollary 3.6 and S% f < ”2kN=1skdk”LX(M ;o
2 si
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Note that we have only used that the Rademacher variables form an
orthonormal system. To explain another application let us consider for ¢ > 1
and 2 < g < oo the weight w?: [0, 1] - [0, 1],

1
———— for 1/t<s<1,
wi(s) 1= < ~/ 1+log(sy)
1 for 0 <s < 1/t,

so that

1
————< Wi,
1 +logt

and for 1 <r < oo and heL,(Q, &% P) the weighted K-functional

K*(h, t; L, L) := K(Wi(s)h(w), ;Lo (2), L,(2)) with £ =1[0, 1]xQ.
The next corollary is contained and motivated for p =2 in [13].
COROLLARY 3.10. Let 1<p<2<g<oo with 1=1/p+1/q and

feP(FI=o). Then
K¥(f*, 1 Lo, L)< cYrK(Spwfr t'; L, L)
Jor t=1 and 1 <r< oo, where ¢ >0 depends on p only.

Proof We can easily see that it is enough to prove the statement for
te{l,2,...}. Consider

[, #, P]:= Xi[Q, & P]
and the product filtration

(FiR=0 1= (XL FR=o0.

Fix f=(@R-0c®(F=0) and let f7 = (@N-0eP(Fi-0) be given by

di(ﬂ)l, ey 6!],) = dk(wj)-
Then [13] (Theorem 1.8 and the proof of Theorem 1.7) gives
* . * -
wp L@ | | gy L1@)
1<j<t Y1 +log § 1<jse Ylog(j+1)

where ¢ > 0 depends on g only. Now Theorem 3.2 (X = I, (a,); = is the unit vector
basis of /), Lemma 3.5, Corollary 1.4, and once more [13] (Theorem 1.8) yield

sup f* (wj)
1<j<t Hlog(j+1)

K (f*, ¢ Ly, L) ~,

3
L) Ly (2%

< C(s.z)%ﬂmq(Dq)cg).s)“ SUp Sy, f"'
L) 1sjst

< C(s.Z)Mﬂmq (D) c®5K(Sp, f, t'7; Ly, L),

where we have used the notation of Corollary 14. =

L2’
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For Te # (I3, Y) we set I(T) :=||}.._, 9; Tv,| 7, where (v){=, is the unit
vector basis of I5. From Talagrand’s majorizing measure theorem it should be
folklore that mg, (") ~ I(). Now we easily extend this equivalence to

CorOLLARY 3.11. For some absolute ¢ > 0 we have, for all Te % (I3,Y)
n=1,2,..),

7oy (T) ~, () ~sup {IT* fllz, | IS% fllz, = 1, Fe P2 (FNR=0)}-

Proof. Let us denote the last item in the assertion by ¢ (T). The estimate
o(T) < ¢cng,(T) follows._ from Corollary 3.6. To get I(T)<o(T) take
Xy, ..., Xy €15 and martingale differences d, := g, x,, where ¢, are independent
Rademacher variables. We obtain

N N
©) IS & Txilly < o(T) sup (Y <, apl?)"”.
k=1 aeBlg k=1

By the consideration of blocks s~/ (gg—y)s+1+ -.- +&s) X, in the above in-
equality and by letting s — co the central limit theorem (cf. [31], p. 90) implies
that we can replace in (9) the Rademacher variables by independent standard
Gaussian variables so that [(T) < ¢ (T). To deduce 7, (T) < cl(T) we can as-
sume that Y = [. It is known that the majorizing measure theorem for Gaus-
sian variables [30] ([23], Theorem 12.10) implies the existence of ||u,||,g <1
(t=1,2,..) such that

|Tall < cI(T) sup —dzt?l

1=1,2,../log(t+1)

where ¢ >0 is an absolute constant (cf. the arguments of the proof of
Lemma 3.3 in [14]). Hence we can conclude with Corollary 1.4 in the case
p=2.=

for ael,

Finally, for UMD-transforms (%), from Corollary 3.3 we get

COROLLARY 3.12. For TeIl (X, Y) with ®(A) = e*—1, (x)i=1 = X, and
0, = £ 1 we have

N
1Y B T
k=1

where ¢ > 0 is an absolute constant.

Proof. Consider E:= 2((#F1-o) and the operator S: E— L§[0, 1)
given by

N
< cmg(T) IIkZ 6 hy xk“
=1

L¥10,1) X0,1)’

k

S((dk)ﬁ=0) = sup [I 6, dzl +di+al] -
0

O0Sk<N I=

(3) UMD stands for ‘unconditional martingale differences.’
11 — PAMS 18.1
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The pair (E, S) satisfies condition (A). For f = (d)f-o€E, 0<k<I<N,
Ce #! of positive measure, and the Lebesgue measure A we get (we can assume
that ||Sf]l, > 0)

|Z d| > 8“Sf” 8||Sf|| ”Z “Lz(C Ac)

1 1
i d; <
~BISTN. ”Z hacaa<y

Hence Corollary 3.3 applies for s =1/4 so that for F =(Q‘)ﬁ=erx with
a.norming sequence ()i, we obtain

[IT* Fl|r, < 8¢. 3)75¢(T)” SUP S(KF, a>)”Lz

246(3 3)”@(T)” Sup “ Z 0 DI”X”L:

1€k€EN

< 48c.3 e (T)|| Z O, Dk”Lx’
k=1 2

where we have used Doob’s maximal inequality. =

4. The contraction principle and Gaussian variables. For a symmetric ran-
dom vector d,, ..., d,), where d,, ..., d,€ L, (2, %, P), a Banach space X, and
X, ..., X,€X, the contraction principle states that

(10) |2 dixl] <] sup 14 IIILzIIZ x| -
i=1

1<i<n

For basic information the reader is referred to [217], [17] and [18]. As we will see
in Theorem 5.1 inequality (10) remains true with some additional multiplicative
constant if (d;)7-, is a martingale difference sequence. Now we ask for a similar
inequality for the Gaussian variables instead of the Rademacher variables. Since

IS el g < VAR IT gl
i )

for independent standard Gaussian variables g,, ..., g,, from Theorem 5.1 for
a martingale difference sequence (d)i-=; we also get

(1) 1Y dixi| CII sup IdIIILZIIZ gi%{| 5
i=1

1<i<n

Analyzing (11) we observe that ||sup; <;<a 4|z, is far from being an optimal
factor since for d; =g,

x| <C|| sup lgxtIILzllZ 9:%| x ~/log(n+ D[ Y g:x,] -
i=1 2

1<i<n

12) IIZ g %;

In Corollary 4.2 we remove this defect in (12). The corollary will follow from
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THeOREM 4.1. Let gy, ..., g, be independent standard Gaussian random
variables, X be a Banach space, and x,, ..., x,€ X. If (v,)}=; is the unit vector
basis of 15 and if we have (d};)kN_o < L,(@Q, #, P) such that

(Z di 00 € P (F-0),

then for 1 £r < o

E sup |3 (3 d)xl)" < s rl Al g,

1sk<N i=1 I=1

Z glxl” X’

where A(w) := ( L (@), k‘ , and ¢ > 0 is an absolute constant.

L,

Proof. We have to combine Corollary 3.11 for the operator Te Z (I3, X)
defined by Tv; := x; with S% f = ||A||5M2 3, ®
To discuss some special cases we use the following. If (W)L, = 1% and

()=t ch Iy are vectors havmg pa1rw1se disjoint supports respectively, and if
T=Y. Vi®yecZ (@, 1) is given by Tx: —Z; <x, VDy,, then

(13) IIZ VO, gy, = 9P IVl llyiley.

“(i2,12 1<i<L

Moreover, for an adapted sequence f = (d)i=¢ = Lo(Q, &, P) and stopping
times o, T we write
GA‘tf = Z dk'
o<k<t

COROLLARY 4.2. Let g,, ..., g, be independent standard Gaussian random
variables. Then for all Banach spaces X, Xy, ..., X,€ X, f = (dR=0€ 2 (FNR=0),
all sequences of stopping times 0 =1, <17, <...<t1,=N,and 1 <r < o0, we
have

(14). (E sup ||Z[’- A xR

1<k<N i=

S /r || sup S, (% 1f)

1<i€n

Z 9:% | o

Ly

where ¢ > 0 is an absolute constant.

Proof. The matrix A4 (w) of Theorem 4.1 can be written as
n

A(@) = ), 1;(0)®y; (),
i=1
where ;= (0, aany 0, dti—1+1 g eeny dti’ O, ceey 0) and dTi—1+1 is the (’C,-_1+1)-St
coordinate and where (v))}-; is the unit vector basis of /5. Moreover, the mar-
tlngale difference sequence generated by Z [F-14%f] v, belongs clearly to

P (FoR=o). =



164 S. Geiss

If we approximate the Gaussian variables by

1
= W(g(i~1)M+l + ... &),

gt
then, by using the central limit theorem (see [31], p. 90), (14) turns into the
Khintchine—Kahane inequality for the Gaussian variables:

n _ . n M n
09 Z sl = m | S ol e < oIS ooy

Consequently, a defect like in (12) does not appear. In this sense,
|lsups<i<aS, (- 1f )|z, is an optimal factor in (14). The argument for inequali-
ty (15) shows more. We cannot replace in (14) the Gaussian variables by the
Rademacher variables. If this were possible, then (14) and again the central
limit theorem would imply

n n
15, 05l g < o213 sl

which uniformly in n holds for Banach spaces of finite cotype only (see [26]).
Considering X = R and n =1 in (14) gives the following Burkholder—-Davis—
Gundy type inequality:

I *llz, < ex/rllgalle ISy Sl for £ €2 (FHh-o)
(see [10], [4], [15], and [32]). Another consequence of Theorem 4.1 is

COROLLARY 4.3. Let (g;;)1 <i< j<n be independent standard Gaussian random
variables, f=(dR-=0€P(FIi=0), and 0=1,<1, < ... <7,=N be a se-
quence of stopping times. Then for all Banach spaces X, all (X;)1 <i<j<. © X, and
all 1 <r< o we have

| T mo AT,
1si<j<n v

i—1

< C-\/;“ sup (z |1:|—1Anf|2)1/2 S2 (ti—lfﬂ) L Z gijxij”Lf’

2€i€n I1=1 1Ki<j<n

where ¢ > 0 is an absolute constant.
Proof. Define random vectors V,, ..., V,el5»~1/2 by
Vii=(0,...,0,7" f, ..., % 24% 1,0, ..., 0),

where ©A™ f is the (L+[1+ ... + (i—2)])-nd coordinate, and determine ran-
dom vectors y,, ..., y,€lf by

y;:=00,..,0,d;;_ 415...,4d,,0,...,0),

where d,,_,;q is the (z;_;+1)-st coordinate. If we arrange the elements
(xi)1<i<j<a In the linear order X, X;3, X23, -+ X1ps -+-» Xy—1.n» then the
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matrix A(w) from Theorem 4.1 takes the form A(w)= Z; , Vi(@)®y;(w).
Again, we can easily check that the martingale difference sequence gene-
rated by

Y[R A Do,

1<i<j<n

where (v;)i<; is the unit vector basis of l""‘m“’2 arranged for example in the
linear order of the x;;, belongs to P ((Fk=0). Hence we can apply
Theorem 4.1 and (13). =

Finallyﬂ let us mention the classical setting behind Corollary 4.3.

COROLLARY 4.4. Let X be a Banach space and (X;j)1 <i<j<n = X. Then for
all 1 <r< oo we have

|| ) g:9;% u” ”\/_” > gijxu'”dn

1<i<j<n 1<i<j<n

where (g)i=1 and (9i))1 <i<j<n are mutually independent standard Gaussian varia-
bles and ¢ > 0 is an absolute constant.

Proof. We apply Corollary 4.3 to the sequence of independent Radema-
cher variables f = s,,/J )ee, and 7, = is such that the central limit theorem

(cf. [31], p. 90) and the inequality ||(}},_ 11 < ey /r/n—1 imply our
assertion. m

Remark 4.5. The factor ﬁ (for fixed r) in Corollary 4.4 is optimal up
to a multiplicative factor. To see this consider x;;:=v,®v;e X := Z (13, [3),
where (v){=, is the standard basis of I3. Then, on the one hand, we
obtain

n n
2” Z gigjvi®vj”dc = " Z 9:9;v,Qv;— Z 91"”:'@”;‘”!}
ij=1 i=1

1<i<j<n

|| sup 19|z,

1<€i<n

= || ”;1 givi”lzg
Since EY,_, lg/*> = n and ||sup; <i<algd*|z, < ¢, (1+logn) we continue to

I Y 0:9;0@0] x> cam,

1<€i<j<n

where ¢, > 0 is an absolute constant. On the other hand, we have according to
Chevet’s inequality [11] (or {23], Theorem 3.20)

” > gu”:®”1” ” Z gu”:®v1”x 63\[

1<i<j<n
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5. The contraction principle and Rademacher variables. In this last section
we prove a version of Corollary 4.2 for the Rademacher variables.

TueoREM 5.1. Let (d)Y-o = L, (Q, &, P) be a martingale difference sequence
with respect to (F)N-o- Then for all Banach spaces X, all x, ..., xye X, and all
1<r< o we have

(€ sup |3 dx[f)" <] sup
1€kEN

1€ks€N I=1

N
Ll X gkxk”Lx’
k=1 !
where ¢, ..., &y is a sequence of independent Rademacher variables and ¢ > 0 is
an absolute constant.

For the proof the following direct consequence of [22] (Theorem 5.1.2) is
needed:

Lemma 52. Let X be a Banach space, x,,...,xy€X, and (d)i-, c
L, (Q, %, P) be a martingale difference sequence with respect to (9, )8=1. Then
for independent Rademacher variables &,, ..., &y we have

N
E|Y. dx] < sup ||dk||LwE||Z Al
k=1

1<k<N
Proof of Theorem 5.1. We can assume that do = 0. First we apply the
Davis decomposition ([12]; see also [5], Chapter III) to (d,)¥-, and obtain
martingale difference sequences (a;)f=o and (b))}, with respect to the same
filtration satisfying a, = b, =0,
(1) dy=a,+b, as. for k=1,...,N,
) la] <4df-, as. for k=1,...,N

@) Yo b ST lzd + Yo E(zd | Fi-y) a5, where 2= dyX g5 20t 0

N
@ Y, |zl <2df as,
where we make use of the notation df :=supg< ,<k|dl| We get

(16) (E sup ||de,||x 1/' <(E sup ||Z a,x,||x ”r
1<k<N I=1 1<k<N =1
H(E sup |15 boxf)”
1<k<N I=

The second term on the right-hand side can be estimated as follows:

(E sup |3 b)) < sup_ e 2 16

1sksN =1 k=

< sup Ikallx[”Z ||12:3 (12 | Fe-1)

1<k<N

< sup [lxllx L < sup [xlly2(1+n)ldF |z,
1<k<N 1<k<N
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where we have used the convexity lemma {8] (cf. [5] (Lemma 16.1), and for the
constant e.g. [25] (1.9.6.)). Let us turn to the first term on the right-hand side of
(16). Define
v,:=4df_; for k=1,..., N, 14:=0,
and the set E of sequences adapted to (F)i-o:
E:= {i((akn vk)X(a'<k$.1:})kN=0 < LI}.$OQR(Q’ 'g‘;s P) l o, 1 Stopping times}.

Moreover, we consider operators A4, B: E — L§(Q, %, P) given by
N
A((( Bp=o) = | X awxillx  and  B(((o4 B)e=g) i= sup IBy-
k=1

. 1<k<N
The triple (E, A, B) satisfies the conditions of [13] (Proposition 7;\;7” C=0).
Now let 0 < k < I < N and Ce &, with P(C) > 0. For f = (&, B),_,€E we
get

!
A4S = AS* Y|eceo < || 2 @i < sup |l ||Lw||z & x” ©
i=k

LECPo)  cigt

where we have used Lemma 5.2, Consequently,

N
IAS'~Af* izycpey < sup ||ﬁuf,w||ze x| x < IBSflle || X &%l
1 i=1 1

k<i<l!

Applying [13] (Theorem 1.7) with 1//(2) = 1+logi we obtain

1A*fllz, < cr|| Z &3] 1B .-

Summarizing the estimates of the first and second terms on the right-hand side
of (16) we can conclude the proof with

k
(E sup |3 dixff)"

1<k€N I=1

<er| sup_ ol 5 een o+ sup 20040 sup

1sk<N

Z & x"“L{" B

COROLLARY 5.3. Let f = (dk)k o < L (Q, #, P) be a martingale difference
sequence,0 =ty <t, < ... <t,= N, and (ock)k_l be a sequence of positive reals
such that Zk . ock =1 for i=1,...,n. Then for all Banach spaces X,
Xis e X, €X, and all 1<r<oo we have

(E sup ||Z [ 1Ak f x| ) < er

1<k<N i=

Ly

<[4er+2(1+n]|| sup |d,)
1<k

o x| e

Ly i=1

sup Y
1<ksN Ok

where g, ..., g, is a sequence of independent standard Gaussian variables and
¢ >0 is an absolute constant.
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Before proving the corollary let us note that

a 2172 d Idklz
sup (), ld)?) "= sup{ X oF

1<isn k=ti-1+1 1<isn \k=tj-1+1 o
| & dy
W 212 |d,
< sup I: sup —]( Y o) = sup —.
1<i<nltoi<kst % | k=t;-,+1 1sk<N O

Hence Corollary 5.3 is closely related to Corollary 4.2

Proof of Corollary 53 We apply Theorem 5.1 for the martingale
difference sequence ((dk/ock) ykk ,» Where y,:=o,x, for £, < k<t and
observe that

15 el < 315 ol = [315 el

Remark 54. Assume the martmgale dlfference sequence from Lem-
ma 5.2 to be a Walsh—Paley martingale difference sequence (d,)f~o = L, (Dy)
so that d, = ¢, v, (1 < k < N) for some predictable sequence (v )f=; = L, (Dy),
where DN = {—1, 1}¥ is the Cantor group equipped w1th the Haar measure
and the filtration generated by the coordinates. Then Zk & X = ZN= dy X,
turns into a UMD-transform Z D, _’Zk v, D,, where Dk = & X. Using
thls interpretation Lemma 5.2 states the followmg Among all transforms
Zk_ D, —>ZZ v, D, with sup; <z <nllvgllL, =1 the deterministic transforms
v, = 9 (0 e{— 1 1}) are the extreme ones. This is closely related to a general
fact about UMD-transforms, proved by Burkholder in [7] (Lemma A.1) and
[6] (Lemma 2.1).

The example below shows that it is not sufficient to consider a symmet-
rized inequality

(E,[ sup ||Z & d,(0) x [, dP (w))

R1<ksN I=1
to get the assertion of Theorem 5.1.

EXAMPLE 5.5. There is a constant ¢ > 0 such that for all N =2"—1
(m=1,2,3,..) there is a Banach space X, (x)8-,c< By, and
(d)R=0€? ((‘ga_k)kN=0) with

(1) ldl.., <1,

(2) “ZLI d, kaX =m as.,

@) (E, |, |25, e di(@) %) dP (@) < ¢ /rm for 1<r < o0,
@ HIE_ s gl o < em

where (¢,)f=, is a sequence of independent Rademacher variables. Consequently,

1 ;‘r

|

Z & xk“

<cl s 14

(17) m B § Y edi (@)% dP ()"
C\/; Q k=1

Jr. |

N N
< ” > dkxk“Lx ~ ” sup |d;] > Ekxk“Lx
k=1 T 1<k<N k=1 1
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Proof. Let (H)V-o<=I2" be the sequence of ‘discrete’ Haar-func-

tions normalized with respect to /2" and starting with Hy =(1, ..., 1) and
H, =(1,..,1,—1,..., —1). Furthermore, let X:=12", x.:=H,

Q:={1,...,2"} equipped with the measure P({w}) : = 27", and let d; := H,.
Finally, let (#)¥-, be the filtration on Q generated by (H,)i=o. Now (1) is
evident. (2) follows from

N N N
| ;1 dy (@) xi|x = ”kgl H,(w) H"“;g,’" = Ikzl H, (o) Hy (0)| = m.

To prove (3) let o, 1¥™ — %" be the operator of summation and let x{ € I{" be
such that ¢,x{ = x, and lIx2il,>~ < 4. Now it is known that the operator of

summation a: I, — I, has type 2 (according to [197] and [20], o even factors
through a Banach space which is of type 2), which means that there is a con-
stant ¢, > 0 such that for all finite sequences (y,), = /; we have

E[Seonl )" < e (Tlvdi2) .

We get, for all weQ, by the Khintchine—-Kahane inequality for the Radema-
cher averages (see [23], Theorem 4.7),

N N
Bl Z ad @) = Eou(E ady(@)38)n)”

N

<o F(E ol T sne(@ )"
N 5 12

< coei /T (T 1y (@)l “xk” ,,.)
k=1

N
Sdegei Jr( z |d, (w )l" =4cycy/rm.

Integrating with respect to w we obtain assertion (3). Finally, let us show (4).
From [24] we get

N
E| Y guxd| < cpi/m sup. (Z 1<%, @D
k=1

aeB ll
=cy/m sup (Z IKxp» €1 )1/2 c,m,

where (e,)?, is the unit vector basis of I3”. Concerning the ~ part of (17), the
relation < follows for example from Theorem 5.1 whereas > is a consequence
of (1), (2), and 4). =

Acknowledgment. I would like to thank S. Kwapien, who proposed the
usage of Theorem 5.1.2 from [22] to prove Theorem S5.1.
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