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Abstract. For the absolutely @-summing operators T: X + Y 
between Banach spaces X and Y we consider martingale inequalities of 
the type 

where (dR)F='=, c L: (R, f, P) is a martingale difference sequence and 
(a,)l",, is a sequence of normalized functionals on X, and we show that 
these inequalities are useful in dflerent directions. For example, for 
a Banach space X, x,, ..., x,EX, independent standard Gaussian 
variables g , ,  .. ., g,, and 1 < r < a, we deduce that 

where f = (d,)f=,  is a scalar-valued martingale difference sequence 
such that (Id,l)f=l is predictable, 0 = zo < z ,  < .. . < z,, = N is 
a sequence of stopping times, and 

Introduction. There are several reasons to extend inequalities involving 
operators defined on martingales from the scalar-valued setting to the Banach 
space valued setting. For example, one possible variant of the Burk- 
holder-Davis-Gundy inequality in the vector-valued setting is 

where X is a Banach space and (d,)f= c LX, (i2,9, P) is a martingale difference 
sequence. This inequality can be used to characterize and to handle those 
Banach spaces X which admit renorming with the modulus of smoothness of 
power type 2 (see [29]). There is also another way to consider a vector-valued 
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Burkholder-Davis-Gundy inequality. Instead of (1) we take a bounded and 
linear operator T: X + Y between Banach spaces X and Y and regard 

where (ai)l",, is some normalized sequence of linear functionals. First of all, 
the consideration of inequality (2) requires the usage of operators Tsince the 
validity of (2) for all N = 1, 2, . . . for an identity T = I ,  of a Banach space 
X implies dim (X)  < m in general. 

The subject of the paper is to show that inequalities of type (2) are useful in 
different situations and to develop a general approach for such inequalities. 

The paper is organized as follows. In Section 1 we recall some facts about 
the absolutely Csumming operators. These operators are used to state in 
Theorem 3.2 the basic result of the paper, which is an abstract version of (2). 
Since the BM09-L, estimates, the starting point of Theorem 3.2, are based on 
Lorentz norms, whereas the notion of absolutely @-summing operators is 
based on Orlicz norms, we show in Section 2 that the BMOg-spaces have a re- 
presentation by Odicz norms. Besides the applications of Theorem 3.2 given in 
Section 3 we derive in Section 4 contraction principles for vector-valued Gaus- 
sian random variables. A corresponding contraction principle for Rademacher 
variables is proved in Section 5 by using a different technique. 

Throughout this paper 162, 9, PI stands for a probability space, and 
(gk);='=, for a filtration with Fk E 9 and So = (0, 9). All random variables 
and Banach spaces are assumed to be reaI. By standard Gaussian random 
variables we mean symmetric random variables distributed like N(0, 1). 
A random variable E E L ~ ( M ,  p) is called a Rademacher variable if 
p ( ~  = 1) = p(r = - 1) = 1/2. The Huur functions (h,),",, c L1 LO, 1) are 
given by 

where 9; : = a (h,  , . . ., k,). Given a Banach space X its dual is denoted by X', 
and its closed unit ball by B,. Moreover, L: (a, P) is the space of all Bore1 
measurable h: P + X such that there is a separable and closed subspace 
X, G X with P(h€X0) = 1, where Lo(P, 8 P) = Po (8, P). The symbol 
9 ( X ,  Y) stands for the linear and continuous operators T: X + Y between 
the Banach spaces X and Y equipped with the operator norm (IT11 
: = sup {llTxll,: x E 3,). Given quantities I ] . ) (  and 1 I I . I I I  we use 

1. Absolutely @-summing operators. The introduction of the absolutely 
@-summing operators, where 8 is an exponential Young function, was moti- 
vated by the consideration of rnajorizing measures for Gaussian processes (cf. 
Corollary 3.11). The results of this section are folklore. 
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DEFINITION 1.1. (1) A Young function @: [0, oo) + [0 , m), that means an 
increasing and convex bijection, is said to be sup-multiplicative if there is some 
c > 0 such that @(A) @ (IL) 6 @(CAP)  for all A, p 2 1. We write @ E g,,, and let 
A,,,(@):= infc. 

(2) Given a Young function @, the space L%(Q, F, P) consists of all 
h€LX,(Q, F, P) with 

llhllL;:= inf { C  > O I E @ ( F )  G 11  < a, 

where L,(IR, P):= ,!$(a, P). 
(3) For 9 E an operator T E 9 (X, Y) is absolutely @-summing if there 

is a constant c > 0 such that for all probability spaces [a, F, I"] and all 
h~ LX,(Q, 9, P) 

We write TEL!,(X, Y) and let n,(T): = infc .  

In particular, we use 3 (A)  : = exp (A4) - 1 E YSu, for 1 ,< q < co . The 
absolutely @-summing operators form a Banach operator ideal in the sense of 
[27]. In the case L, = L, we obtain the absolutely p-summing operators 
4 ( X ,  Y). We restrict ourselves to the sup-multiplicative Young functions for 
two reasons. First, according to (4) and Lemma 2.2 this case is of only interest 
in our situation. Secondly, this condition on @ ensures that the typical 
absolutely @-summing operators are the embeddings C ( K )  + L,(K, p), where 
K is a compact Hausdorff space and p a normalized Bore1 measure (see Theo- 
rem 1.2 and Remark 1.5 (1)). From this latter fact one can deduce 
n, (X, Y) G 17, (X, Y) if and only if L, [0, 11 c L, [0, 11. Let us start with 
the basic example of an absolutely @-summing operator. 

THEOREM 1.2. For @ E tYsup, a compact HausdorfSspace K, and a normalized 
BoreE measure p on K, we haue for the embedding I :  C ( K )  -, L,(K, p) 

Proof. We use standard arguments from the theory of the Orlicz spaces 
which can be exploited to prove Fubini type theorems. The only point is that 
we do not assume the sup-multiplicativity of @ for all 1, p 2 0. 

(1) For g E L,(K, p) with Ilglt~~(~,~) > co : = (1 + @ (1)) Asup(@) we show 

Indeed, by convexity, 
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so that for I < b < ) lgHLm(K,fij /~o we get 

(8) Now let h~ L$K)(Dl P) be a step function taking a finite number of 
values (see Remark 1.5 (2) below). For 

a' : = {IIhIILmI,,, > ~ o )  and co (1 + @ (1)) < Illlhll~m~~,p, I ~ L ~ w , P )  

we deduce with the help of the first step 

and 1 < sup,, JQ @(l<h16,)l) dP.  
To obtain a special case of Theorem 1.2 we need 

LEMMA 1.3. Let 1 < q <  coy K : = f l , 2  ,... ),, and 

Then 

where c > 0 depends on q only. 

Proof. If we have 
IaiI 

i=s::... 
> 1, 

then we get some io with lql > d m  and 
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so that 

The remaining inequality is left to the reader. 

COROLLARY 1.4. For 1 < q < oo we have 

Proof. Either we go. a direct way or we use Theorem 1.2. For the latter 
we observe-that it is sufficient to show Dq~nbe(@,  %), where V is the space of 
convergent sequences. Since V = C ( K )  in a canonical way, where 
K = (1, 2, . . ., m) is equipped with the metric d (k, E )  = Il/k - 1/11, we apply 
Theorem 1.2 and Lemma 1.3. m 

Remark 1.5. (1) Theorem 1.2 is a part of the basic characterization of the 
absolutely @-summing operators: For 8 E gs,, an operator TE 2' (X, Y) is ab- 
solutely @-summing if and only if T can be factorized through a restriction of 
an embedding C (K) + L,(K,  p) like in Theorem 1.2. We have seen the "if' 
part; the "only if' part follows from the corresponding result of Assouad [I] 
about the @-0-surnming operators. In particular, it turns out that the 8-0-sum- 
ming and the absolutely @-summing operators coincide whenever @ E  Ys/,,,. 

(2) There are some straightforward reductions in Definition 1.1 (3). 
First we have for a norrning sequence (ai)i", c Bx8 , which means 
IIxIIx = suPi=l,~, ... I(x, ai)I for all X E X ,  

Secondly, it is enough to consider in inequality (3) step functions h taking 
a finite number of values. 

DEFINITION 2.1. (1) Let 9 be the set of all increasing bijections 

and let 3 be the subset of those $ ~ 9  for which 

$(R+p)+l 2 $(A)+$(p)  for A, p 2 1. 

(2) For ~ €9 the Lorentz space M+ (a, F)  consists of all h E LO (a, P) 
with 

IhlM, : = inf (c > 0 I P (lhl > A) d exp (1 - $ (A/c)) for R 2 c) < co. 

(3) Let $ E 2 and c Lo (8, P) be adapted to (Pk)f= o. Then 

IICfklkN=oll~~o~ := SUP SUP Ifi -Sk- ~ I M ~ ( c , P ~ ) ,  
0 S k S l S N  C E S ~  

P(c) ' 0 

where f-l : = 0 and PC : = P/P(C) is the normalized restriction of P to C. 
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In view of [13] (Theorem 4.6 and Lemma 4.4 (1)) the restriction to the 
subset 3 of 9 in the definition of the above BMO-spaces is of no loss of 
generality. The typical examples for elements of 3 are given by $q(A) := 1" 
for 1 < q < a. Lemma 4.4 (2) of [13] implies 

sup inf - ' ("' z)> 1 whenever $ 3, 
o > l  l a 1  $(A)  

so that the next lemma shows that the BMO$-spaces have a representation with 
the help of Orlicz norms. This gives the link between the BMO$-spaces and the 
absolutely @-summing operators, which is behind Theorem 3.2. This also com- 
pl&ments [13] (Remark 4.14) where some relations between the BMO-definition 
in [2], which uses Orlicz norms, and our BM0-definition are outlined. 

LEMMA 2.2. For $ E 9 with sup,, i& [$ (aL)/$(A)] > 1 there are 
@E$!& and c 1 wch that 

I.IM* *c I I . l l ~ m .  

Proof,  We extend $ to $: [O,  m) + [O, co) by $(A) = L for 0 < R < 1 
and find a > 1 and E > 0 such that $(A) (1 + E) < $ (al) for A 2 0. Choosing 
O < p <  GO such that a l j p =  I+& we get, for p a  1 with ~ " < ~ < a " + ~ ,  
n ~ ( 0 ,  1, 2, ...), and 13 0, 

For s 2 0 and t 2 l/& this gives 

Setting @, (A) : = e*(') - 1 for L 2 0 and observing that (t) = (log (t + 1)) 
we see that inequality (5) implies 

-- log(s+l) @il (t) 
sQ ' l ( t )<SUp(  )----<a, 

S:?f t @il(s) , o t +  1 Qil(s) S0.S. 

where so > 0 depends on p. On the other hand, assuming that s, : = e- l < so 
we have 

s @; ' (t) s sPi1(t) sup -- < 1 and sup -- - b < o o ,  - 
~ c s < r < s ~  t @i (s) sl<s<t<so t @il (4 

so that for c = ab 

Putting h (t) : = in&, , (1 i-cts- l) @G1 (s) we obtain a concave h : [0, m) + 

[0, oo) satisfying h(0) = 0 and 
1 

-h( t )<@il( t )<h( t )  for all O < t < o o ;  
c+ 1 
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cf. [3 ]  (Proposition 2.5.10). h is continuous at the origin. Moreover, since h is 
increasing, concave, and satisfies lirn,,, h( t )  = a,, it must be continuous on 
(0, m) and strictly increasing on [O, a). Setting @ ( A )  := h-I (A)  we get a con- 
vex bijection @: [0 ,  a) -+ [0, a) satisfying 

To show that @ E gS/,, we choose A 2 1 such that infA3 $ (Ail)l$ ( A )  2 2 .  This 
implies for A,  p 2 1 

$ (A)  + Cu)_ 6 2$ (Ap) < $ ( ARp) and e*'" < e*(Adl.") + [e"" + +*(') - 21, 

which means that @J, (A) @, ( p )  < @,(AAp). Consequently, we can deduce that 
for A, p 2 1 

Moreover, assuming that 1 1  f l l L ,  G l/(c+ l), we get for A > 0 

AF (e*(lfI1 > A) g Ee@(lslr $ E@ ((c + l)[ f 1 )  + 1 6 2, 

so that B ( 1  f 1 > A) ,)d e1 -*(I) and 1 f  I,, < 1 .  Now let 1 f I M *  4 1 so that we have 
P (I f  1 > A) G el -$(I) for 1 2 0. Choosing some d > 1 with $ (dA) .) ((I + e) $ (A) 
for A2 0 ,  we get 

3. A martingale ineqaality. Assume a subset E of sequences f  = (dk)kN,,-, c 
LX, (a, P) adapted to (Fk) f=o  and 

If for all f = ( t ik);=,  E E ,  g = {e,)F= , E El and all stopping times a, z we 
have 

( A l )  - f  = ( - d s = , ~ E ,  do = 0, and "r := ( d k x I , , k s z l ) ~ = o ~ E ;  

(A2) S ( f  + g )  < y , [S f  + S g ]  a.s. for some y, 2 1 iff + g : =  (dk+ek)kN=o~E; 

(A3) Sf  = 0 a.s. on (0 = E(lldkll19k-1), k = 1, ..., n) and S f  = S ( - f ) a . s . ;  

(A4) S f k  < Sf a.s. for k = 0, . . ., N, where f k  : = (dl ~ ~ ~ ~ ) ) r = ~ ;  
(A5)  Sfk is 9, - l-measurable for k = 1, . . ., N ;  
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then we say that (E, S) satisfies (A). Moreover, we use 
k 

f k : = C d l ,  f * =  IlfkIlXY 

1=0 O < k B N  

S*f : = sup Sfk, and T* f : = sup 11 Tfkllr, where T E 2' ( X ,  Y ) .  
O C k G N  O C k Q N  

DEFINITION 3.1. Let E be a set of sequences f = (dk)t= "O c Lo (a, 8 P) 
with do = 0 adapted to the filtration (&)r=o and let X be a Banach space. 
A sequence F = (D$'= =, c L: (a, E P) adapted to (Fk)[=o belongs to EX if 
Do = 0 and if there is a sequence (ai)g r Bx. and a closed subspace X, c X 
such that 

P(D, E X,) = I and ( F ,  ai) : = ( ( D t ,  a,>):= o~ E 

for I = 1, . . ., N ,  i = 1,2, . . . , and Hxllx = supi= I,, ,... I(x, ai>l for x €XO. We 
say that (ai)iP",, is norming for F. 

THB~RBM 3.2. Assume that ( E ,  S) satisjies (A) and let $ E 3 and @ E q',,, 
with 1-IM, -,ll-llL, for some c > 0. If 

then for T E ~ , ( X ,  Y) ,  f E EX with a norrning sequence (aJi", r Bx,, and 
1 < r < co we have 

where c > 0 depends on y,, $, and c only. 

Proof. Fix (ai)i", c Bxr and a closed subspace Xo G X such that for 
all X E X ,  we have l l x l l = ~ u p ~ = ~ , ~  ,... I(x,ai)l.  Let & be the set of 
f = (dk)r=O c L$ (a, P) adapted to (Fa;= , with do = 0, 

P t d k ~ X ~ )  = 1, ( f ,  ai>€E, and sup S(< f ,  aj>) < ao as. 
j=1,2, ... 

for k = 0, . . ., N and i = 1,2, . . ., and let A,  B: & + Lf, (62, P) be given by 

Af := IJTfNlly and Bf: = sup S((f, a i ) ) ,  
i =  1,2. ... 

where Bf : = 0 on (sup,, ,,,,.. S (( f, a,))  = a). The triple (8, A ,  3) satisfies the 
assumptions of [13] (Proposition 7.3, C = 0). For example, " g ' ~  b if g~ d since 
S("gT) < a Sg as. for some a > 0 depending on y, only 191 (Lemma 2.1) (cf. 
[13], Lemma 7.1). Now, from the definition of R ~ ( T )  and Remark 1.5 (2) with 
f-l := 0 and Af - l  := 0 we get 



Operators on martingaIes 157 

Hence we can apply [13] (Theorem 1.7) and are done. 

Combining Theorem 3.2 with [13] (Theorem 4.6 (23)) we obtain 

COROLLARY 3.3. Asstune that (E, S) satisfies (A) and let 0 < s < $ be such 
t h t  

SUP SUP P,(If,-fk- 11 > llSf l l ~ , )  G s for f E E ,  
O<k<IQN C E F ~  

F(C) > 0 

T h e n  for T E  17, ( X ,  Y )  with @(A) = e" 1 , f f~ EX with a norrning sequence 
(a,)i",, c BxJ,  and 1 < r < a, we have 

where c > 0 depends on y, and s only. 

For some further applications we need 

DEFINITION 3.4. (1) For martingale difference sequences 

f = ( d ~ k N , O ~ L l ( Q r ~ P )  and F = ( D , ) ~ N , ~ C L < ( A - ~ , % P )  

we let 
N 

S f : = ( ) and Sy F : = sup S ,  (Q, a ) ) ,  
k = O  a ~ B x ,  

s p , m f : =  sup fid;dt, and S ; , , F : =  s u p S P , , ( { F , a ) ) ,  
I d k S N  aeBx, 

where 1 < p < 2 and (dt(w));=,  is a non-inneasing rearrangement of 
N 

(Idk ( ~ ) l ) ~ =  1 ' 

(2) The set of all martingale difference sequences f = (dk)F=o c 
L, (Q, % P)  with respect to (9,):=,, such that do = 0 and Idkl is gk- ,-measu- 
rable for k = I ,  . . ., N is denoted by 9 (IFk):= o)  ( I ) .  

Note that for example (hkxb;= E BX ((Ti):= 0 ) ,  where (xk)f= c X with 
x, = 0. For S E  {S , ,  S,,,) the function Sw F is measurable as a composition of 
!2 + I$ (X) with w + (Dl  (w ) ,  . . . , D ,  (o)) and a continuous map from 1% (X) 

(I) We will write fl((&):= o) instead of (~((&)f='=,))~. 
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into R. Moreover, given (u , )g l  c Bxt,  norrning for X, by duality we get 

SUP S ( ( F ,  a,>) (w) d Sw F (a) < c sup S ((F, a,}) (w)  
i=1.2, ... i =  1,2, ... 

with c = 1 if S = S ,  and c = c i  if S = S,, , , where c, > 1 is a constant such that 

for an equivalent norm ) I ) )  on i,,. In order to describe tail estimates for 
S,,, we use the notion of the K-functional, which is defined for a compatible 
couple of Banach spaces (X,, X I )  and XEX,+X, as 

LEMMA 3.5. Let 1 < p d 2 < q <  co with 1 = I / p + l / q , S = S ,  i f p = 2 ,  
and S = S,,, if 1 < p < 2. Then there is a constant c > 0, depending on p only, 
such that 

I I ( ~ ~ ) ? = Y I I ~ ~ ~ + ~  G c IISf ! I L ,  for f E 9 ((Fk)LO). 
Proof.  According to a result of Hitczenko [16] (Theorem 4.11, for jZ > 0 

and f = (ak);= E B ((9,)k ,) we have 

where c > 0 is an absolute constant. Hitczenko proved this inequality for 
a transform (vk ck);= of a Rademacher sequence (E,):= by some predictable 
sequence (vk)f= '=, . I f  we consider ( d k ) k O  E 9 ( (FJ f=  ,), then d, = Id,l sgn d,, 
where sgn d, (w )  : = d, (w)/(dk (w)( if d, (w) # 0 and sgn dk (a) : = 0 if d, (w) = 0, 
Since (sgn tik);=, E B ((sk);=,,) and (Id,l);= =, is predictable, we replace 9,  by 
sgnd,, and v, by Id,l. Now looking at Hitczenko's proof we realize that this 
proof works as well without any changes. In particular, we can also use for 
a predictable sequence (w,),N= the inequality 

which follows from [lo] or [I51 (Lemma 4.3) and an approximation argument 
with respect to the w,. It is known that there is an absolute constant c, > 0, 
depending on q only, such that 

(7) K(x, 11q/2; l y ,  1;) < A cCq IIxIIgF for A 2 0, 

where 8; : = 1: if p = 2 and 8; : = Z:,, if 1 < p  < 2. Inequalities (6) and (7) 
imply, for A 2 0 and f = (dk)f= , E 9 ((Fk)F= 0)1 



Operators on martingales 159 

Considering 0 d k < I d N and C E Fk with P (Q > 0 we obtain 
1 1 

1 i=k dilM,@C,F'c) ' [ I  i = k + l  z dilM$a(C,Pc) + [lsf IlL,] q cb' I I S f  I L ,  . 

COROLLARY 3.6. Let 1 < p < 2 < q < CQ with 1 = l/p + l /q ,  S = S2 if 
p = 2, and S = S,,, if 1 < p < 2. Then there is n constant c > 0, depending on 
p only, such that for T E I;I,# (X, Y), f E BX ((Fk).& =,I, and 1 < r < rn 

IIT'f IIL, G c ~ ~ A @ ~ ( T )  lPWf llLr. 

Proof.  We take E = B((F~)E,) and use Theorem 3.2 and Lemma 3.5. 

COROLLARY 3.7. Let 1 < p < 2 < q < co be such that 1 = lip + l/q, 
T E  Gq (X, Y ) ,  and f = (dk)F=o E PX ((F,);=,). Then, for some c > 0, depending 
on p only, 

N 

(8) IIT*f 1 1 ~ ~  d c nm, (T)  (I I I ~ ~ I ;  dp)liPw 
bZ k = l  

Proof. Use Corollary 3.6 and Swf =G (z:=, lld,ll$"'. H 

Remark  3.8. ( 1 )  Pisier has shown in [29] that for T = I, inequality (8) is 
equivalent to a renorming of the Banach space X such that the modulus of 
smoothness is of power type p. The same arguments apply in the operator case 
(see e.g. the forthcoming book [28]), so that Corollary 3.7 implies smoothness 
properties of the absolutely @,-summing operators. 

(2) Inequality (8) fails to be true for the absolutely @,-summing operators 
whenever 2 < q < r < CO. In fact, for the embedding 

inequality (8) would imply type p ,  which means 

for all x,, . . ., x , ~  C [0, 1) and independent Rademacher variables E , ,  . . ., 6,. 
2k-1 

Approximating rk (t) = z, =,k- 1 h, ( t)  E L, [0, 1) by x, E C [0, 1) in an appropriate 
way we obtain a contradiction to the type p property of I,. 

X r N  COROLLARY 3.9. For TE n,, ( X ,  Y )  and f = (dk)z=o E 9 ((&+,Ik= D) we have 
N 

where . . ., E~ are independent Rademacher variables and c > 0 is an absolute 
constant. 

Proof.  Use Corollary 3.6 and ST f < l l ~ p ,  ck dk)ILF (M,n l .  . 
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Note that we have only used that the Rademacher variables form an 
orthonormal system. To explain another application let us consider for t 2 1 
and 2 4 q < co the weight w;: COY 11 -P [0, 11, 

1 
for l / t  < s 6 1, 

w! (3) : = 

I 1  for 0 < s < l/t, 
so that 

and for 1 < r < c~ and h~ L,(O, fi P) the weighted K-functional 

~ ~ ~ ( h ,  t ;  L,, L,) : = K (wf (s) h (w), t; L, (a), L, (627) with SZ' = [ O ,  11 x P. 

The next corollary is contained and motivated for p = 2 in [13]. 

COROLLARY 3.10. Let 1 < p < 2 < q < m with 1 = l ip  + l/q and 
f E 9 (IFk):= O) . Then 

KW'Cf*, tiV; L,, L.) C C ~ K  (s,, f ,  tl/'; L,, LJ 

for t 2 1 and 1 < r < co, where c > 0 depends on p only. 

Proof. We can easily see that it is enough to prove the statement for 
t E {1,2, . . .). Consider 

[a*, F*, PI : = X: [Q, g PI 
and the product filtration 

(Fkqf==D := ( X ~ F A ~ = ~ .  

Fix f = (ak):= E 8 ((Fk)r= ,) and let f j : = (d@= E 8 ((Si):= O) be given by 

d{(ml, ..., wJ := dk(mj). 

Then [13] (Theorem 1.8 and the proof of Theorem 1.7) gives 

where c > 0 depends on q only. Now Theorem 3.2 (X = F,, (a& is the unit vector 
basis of PI), Lemma 3.5, Corolfary 1.4, and once more 1131 (Theorem 1.8) yield 

G ~(3.2) $%Pq ( ~ ~ 1 4 9 . 5 )  ~ ( s p , ~  f, t1Ir; L,, 

where we have used the notation of Corollary 1.4. FA 
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For T E  9 (1% Y) we set l (T) : = IIzy=, gi ~ t l ~ l l ~ ~ ,  where (viF= is the unit 
vector basis of I", From Talagrand's majorizing measure theorem it should be 
folklore that na2(-) - E ( - ) .  NOW we easily extend this equivalence to 

COROLLARY 3.1 1. For some absolute c > 0 we have, for all T e  9 (ZLY) 
( n =  1 , 2 ,  .*.), 

Proof. Let us denote the last item in the assertion by CT (T).  The estimate 
c (T )  < cx,,(T) follows . from Corollary 3.6. To get 1 (T) 4 a(T) take 
x , ,  . . ., xN E I",, and martingale differences d ,  : = E, xk, where E, are independent 
Rademacher variables. We obtain 

By the consideration of blocks s - l j2  (q,- ,,,,, + , . . + ~ ~ , ) x ,  in the above in- 
equality and by letting s + a3 the central limit theorem (cf. [31], p. 90) implies 
that we can replace in (9) the Rademacher variables by independent standard 
Gaussian variables so that 1 (T) d a(T). To deduce TC,, (T )  < cl (T) we can as- 
sume that Y = I,. It is known that the majorizing measure theorem for Gaus- 
sian variables [30] (1231, Theorem 12.10) implies the existence of lluflllT G 3. 
( t  = 1, 2 ,  ...) such that 

IlTall G c i (T)  SUP 
I(a, %>I for a E I" ,  

,= 1.2, ... JW 
where c > 0 is an absolute constant (cf. the arguments of the proof of 
Lemma 3.3 in [14]).  Hence we can conclude with Corollary 1.4 in the case 
p = 2 .  El 

Finally, for UMD-transforms (2), from Corollary 3.3 we get 

COROLLARY 3.12. For T E  17,(X, Y )  with @(A) = eel, ( xJ f=  c X ,  and 
8, = + 1 we have 

N N 

where c > 0 is an absolute constant. 

Proof. Consider E : = 9 and the operator S: E + L; [O, I) 
given by 

k 

S ( ( d k ) f = ' = o ) : =  sup [I 8ZdZl+ldk+ll]. 
O Q k < N  1=0 

(') UMD stands for 'unconditional martingale differences.' 
11 - PAMS 18.1 
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The pair ( E ,  S) satisfies condition (A). For f = (dk$=o~E,  0 4 k 6 1 4 N ,  
C E 9; of positive measure, and the Lebesgue measure A we get (we can assume 
that IISfll, > 0) 

Hence Corollary 3.3 applies for s = 1/4 so that: for F = (Q) ,N=~EE~ with 
a .  ntrrming sequence (ai)i",, we obtain 

It'' J ' l l ~ ,  6 8 ~ ( 3 . 3 )  na (T) 1 1  SUP S((f', ag))llLz 
i= 1,2,... 

k 

where we have used Doob's maximal inequality. rn 

4. The solatraction principle and Gaussian variables. For a symmetric ran- 
dom vector (dl, . . ., d,), where d,, . . ., d, E L2 (Q, 9, P) ,  a Banach space X, and 
x,, .. ., x,EX, the contraction principle states that 

For basic information the reader is referred to [21], [I71 and [18]. As we wil l  see 
in Theorem 5.1 inequality (10) remains true with some additional multiplicative 
constant if (di)r= is a martingale difference sequence. Now we ask for a similar 
inequality for the Gaussian variables instead of the Rademacher variables. Since 

for independent standard Gaussian variables g,, . . ., g,, from Theorem 5.1 for 
a martingale difference sequence (di)y= we also get 

Analyzing (1 1) we observe that Irsup, G i  <, ldilllL2 is far from being an optimal 
factor since for di  = gi 

In Corollary 4.2 we remove this defect in (12). The corollary will follow from 
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THEOREM 4.1. Let g,, .. ., g,  be independent standard Gaussian random 
variables, X be a Banach space, and x,, , . ., xn EX. If (vi)l= is the unit vector 
basis of 14 and if we have (d$=o c L1 (a, P)  such that 

where A-(wj :,= (di ( w ) ) ~ ~ ~ ~ , , = ,  and c > 0 is an absolute constant. 

Proof.  We have to combine Corollary 3.1 1 for the operator TE 9 (g, X) 
defined by Tv, : = x i  with S; f = IIAll,l,;,~l. . 

To discuss some special cases we use the following. If (&)f='=, c 1; and 
(yJf=l c I: are vectors having pairwise disjoint supports, respectively, and if 

L 
T =  z:=, C;@gi E P (9, 8) is given by Tx : = xi_, (x, K}yi, then 

Moreover, for an adapted sequence f = (dk)c=o c Lo (62, P)  and stopping 
times a, z we write 

COROLLARY 4.2. Let g;, . . . , g,, be independent standard Gaussian random 
variables. Then for all Banach spaces X ,  x, , . . . , x, E X, f = (d$'= E 9 ((gk);= o ) ,  
all sequences of stopping times 0 = to d z, < . .. < z, = N ,  and 1 6 r < co, we 
have 

n 

(14) (E sup I I ~ ~ d q h k f ] x i I M 1 "  
1 6 k < N  i = l  

where c > 0 is an absolute constant. 

Proof.  The matrix A (w) of Theorem 4.1 can be written as 

where yi = (0, . . ., 0 ,  dZi- +l , . . . , d,,, 0, . . ., 0) and d,,-, + is the (ti- + 1)-st 
coordinate and where (vi)7=, is the unit vector basis of 1;. Moreover, the mar- 
tingale difference sequence generated by x:=l C"-lAri f] v i  belongs clearly to 
9; ((Sk)II 0). . 
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If we approximate the Gaussian variables by 

then, by using the central limit theorem (see [31], p. 901, (14) turns into the 
KhintchineKahane inequality for the Gaussian variables: 

Consequenfly, a defect like in (12) does not appear. In this sense, 
I I S U P ; ~ ~ ~ , ,  S2 ("'-I f " ) l I L r  is an optimal factor in (14). The argument for inequali- 
ty (15) shows more. We cannot replace in (14) the Gaussian variables by the 
Rademacher variables. If this were possible, then (14) and again the central 
limit theorem would imply 

which uniformly in n holds for Banach spaces of finite cotype only (see [26]). 
Considering X = R and n = 1 in (14) gives the following Burkholder-Davis- 
Gundy type inequality: 

(see [ lo] ,  [4], [15], and [32]). Another consequence of Theorem 4.1 is 

COROLLARY 4,3. Let (gij)l G i ,  j G ,  be independent standard Gaussian random 
variables, f = (d&f=o E 9' ((sk)& o), and 0 = z, < 7, < . . . < zn = N be a se- 
quence of stopping times. Then for all Banach spaces X ,  all ( x ~ ~ ) ~  i <  j s n  c X ,  and 
all 1 < r < oo we have 

i- 1 

c J I (  sup (Z  1~ -1~~ f12 )~~s~p -1 f " i ) 1 l~~1  
2<i<n 1=1 1 4 i < j < n  gijxi jI lLF,  

where c > 0 is an absolute constant. 

Pr  o of. Define random vectors V, , . . ., v n ~ N R -  2 by 

where 'OAr' f is the (1 + [ I  + . . . + (i- 2)])-nd coordinate, and determine ran- 
dom vectors y,, ..., ~ ~ € 1 ;  b y  

where d,,-l+l is the ( z i - l  + 1)-st coordinate. If we arrange the elements 
( x ~ ~ ) ~  G i c  jdn in the linear order x,,, X I , ,  xz3, . . ., xln, . . ., x,- then the 
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matrix A (m) from Theorem 4.1 takes the form A(w) = z;=, (w)@yi (w) .  
Again, we can easily check that the martingale difference sequence gene- 
rated by 

where (uij),, is the unit vector basis of 1 ; [ n - 1 y 2  arranged for example in the 
linear order of the xu, belongs to ~ ~ ~ ' " ~ " " ( ( & # = d .  Hence we can apply 
Theorem 4.1 and (13). rn 

Finally, let us mention the classical setting behind Corollary 4.3. 

COROLLARY 4.4. Let X be a Banach space and ( x ~ ~ ) ~  d i < j Q n  c X. Then for 
all 1 ,< r < GO we have 

where (gi)?= and bijIl $,< jdn  are mutually independent standard Gaussian varia- 
bles and c > 0 is an absolute constant: 

P r  o of. We apply Corollary 4.3 to the sequence of independent Radema- 
cher variables f = {~d&);"=, and q = is such that the central limit theorem 
(6. 1311, p. 90) and the inequality 11(zi: 1g112)1121(Lp 6 e Jm imply our 
assertion. 

Remark 4.5. The factor 6 (for fored r)  in Corollary 4.4 is optimal up 
to a multiplicative factor. To see this consider xi j  := v i @ v j € X  := 2 ' ( 1 ; ,  13, 
where (vi) l=,  is the standard basis of 1% Then, on the one hand, we 
obtain 

Since E C;=, lgi12 = n and llsupl sic.  1gi12[1~, < (1 +log n) we continue to 

where c, > 0 is an absolute constant. On the other hand, we have according to 
Chevet's inequality [ I l l  (or [23], Theorem 3.20) 
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5. The contraction principle and Rademacher variables, In this last section 
we prove a version of Corollary 4.2 for the Rademacher variables. 

THEOREM 5.1. Let (d,)f=, c L, (a, P) be e martingale dlyerence sequence 
with respect to(Sk)AN,,. Then for all Banach spaces X, all x,, . . ., x,EX, and all 
1 < r < we have 

where cl, . . . , eN is a sequence of independent Rademacher variables and c > 0 is 
an absolute constant; 

F& the proof the following direct consequence of [22] (Theorem 5.1.2) is 
needed: 

LEMMA 5.2. Let X be a Banack space, x,, ..., x ~ E X ,  and (d,)[=, c 
L, (a, 9, P) be a martingale di#erence sequence with respect to (93,)r= Then 
for independent Rademacher variables s,, . . ., E, we have 

N N 

E I I  dkxkl l  SUP IldkllLmEll 'kxklI' 
k = l  l d k $ N  k =  1 

P roo f  of Theorem 5.1. We can assume that d, = 0. First we apply the 
Davis decomposition ([12]; see also [ 5 ] ,  Chapter 111) to (dk)f=o and obtain 
martingale difference sequences (ak$=, and (bJ&o with respect to the same 
filtration satisfying a, = b, = 0, 

(1) dk = ak+bk a.s. for k = 1, ..., N, 
(2) ]akl < 4d,*-, a.s. for k = 1, ..., N ,  

N 
0)  c:= lbkl -G x:=l I Z ~ I  E (lzkl I F~- I) a.s., where z k ' -  . - d k x (ldk1>2&-1]~ 

(4) x;=, tzkl < 2 9  
where we make use of the notation df : = sup, ,, ,, Id,(. We get 

k k 

(16) ( E  SUP I C ) ( sup 11 ar  X~IL)"~ 
l , k < N  1 = 1  l S k < N  1=1 

The second term on the right-hand side can be estimated as follows: 
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where we have used the convexity lemma [8] (cf. [5] (Lemma 16.1), and for the 
constant e.g. [25] (I.9.6.)). Let us turn to the first term on the right-hand side of 

- - 

(16). Define 
v k : = 4 d t - ,  for k =  1, ..., N ,  v, :-0, 

and the set E of sequences adapted to (Pk):=o: 
n 

E := ( h ( ( a k ,  v ~ ) x ~ ~ < ~ ~ ~ ~ ) ~ = ~  c L?@=~(SZ,  8 B) I 0 ,  -T stopping times). 

Moreover, we consider operators A, B: E -+ L; (2, 9, P) given by 

The triple (E,' A ,  B) satisfies the conditions of [I31 (Proposition 7.3, C = 0). 
N 

Now let 0 < k 6 1 < N and C E ~ ~  with P ( C )  > 0. For f = ((ol,, B,)),=,EE we 
get 1 1 

where we have used Lemma 5.2. Consequently, 
1 

Applying [13] (Theorem 1.7) with ylt (A) = 1 +log R we obtain 

Summarizing the estimates of the first and second terms on the right-hand side 
of (16) we can conclude the proof with 

COROLLARY 5.3. Let f = (dk)F= , c L1 (a, 9, P)  be a martingale diflerence 
sequence, 0 = to < t ,  < . . . < t ,  = N ,  and (ak)kN, be a sequence of positive reals 

ti 
such that xk +, $ = 1 for i = 1,  . . ., n.  Then for all Banach spaces X ,  
x,, ..., x , E X ,  and all 1 < r  <cr, we have 

where g,, . . ., g, is a sequence of independent standard Gaussian variables and 
c > 0 is an absolute constant. 
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Before proving the corollary let us note that 

< sup 
1 G k S N  'k 

Hence Corollary 5.3 is closely related to Corollary 4.2. 

P roo f  of Coro l l a ry  5.3. We apply Theorem 5.1 for the martingale 
N  

difference sequence ((dJaS yk), = where y, : = or, x, for tl- < k < t, and 
observe that 

N N 

k =  1 1=1 

R em a r k  5.4. Assume the martingale difference sequence from Lem- 
ma 5.2 to be a Walsh-Paley martingale difference sequence (dk) f=  E= Ll (D,) 
so that d, = ck vk (1 4 k < N) for some predictable sequence (v,)kN, c L1 IDN), 
where DN = (-1, llN is the Cantor group equipped with the Haar measure 

N 
and the fltration generated by the coordinates. Then zr= ek x, -+ Zk=, d, xk 

N 
f u n s  into a UMD-transform x:=, D, + Ek=, U, Dk, where 4 : = E, x,. Uslng 
this interpretation Lemma 5.2 states the following: Among all transforms 

N N x,=, Dk -+ Zk=, uk Dk with supl S k 4 N  IIvk(lLm = 1 the deterministic transforms 
vk = 8, (&E (- 1, 1)) are the extreme ones. This is closely related to a general 
fact about UMD-transforms, proved by Burkholder in [7] (Lemma A.l) and 
[6] (Lemma 2.1). 

The example below shows that it is not sufficient to consider a symmet- 
rized inequality 

k N 

(EE I SUP 11 &tdl(m) x~l~:d~(~)) ' "  C C. I( sup Kl llr. 11 z % xklL 
R l b k S N  l = 1  I S k b N  k =  1 

to get the assertion of Theorem 5.1. 
EXAMPLE 5.5. There is a constant c > 0 such that for all N = 2"- 1 

(m= 1, 2, 3, ...) there is a Banach space X, (x,):=~ c B,, and 
(d,),N, E 9 ((S,);= o) with 

(I) l l d k ~ 1 L ~  

(2) I (z:= dk X, 1 lr = A a-s-~ 

(3) (E. 1, IIz:=, Ek dk (01 x~IL dp (w))lC < c f i  for 1 < r < m, 

(4) 11zr= gk ~kfl , :  $ 

where ( E , J ~ =  is a sequence of independent Rademacher variables. Consequently, 



Proof. Let (Hk)F= ',, c lim be the sequence of 'discrete' Haar-func- 
tions normalized with respect to lLm and starting with H ,  ~ ~ ( 1 ,  . .., 1) and 
Hi = 1 . . . 1 - 1 . . , - 1 Furthermore, let X : = Em , xk : = Hk,  
L! := 11, . .., 2") equipped with the measure P('w)) : = 2-*, and let dk := Hk. 
Finally, let (Fk);==, be the filtration on B generated by (Hk)f=,. Now ( 1 )  is 
evident. (2) follows from 

To prove (3) let 0,: i f m  + I$m be the operator of summation and let x i  E E f m  be 
such that gmxf = xk and (Ix:((~;- < 4. Now it is known that the operator of 
summation c: I, 4 1, has type 2 (according to [19] and [20], u even factors 
through a Banach space which is of type 2), which means that there is a con- 
stant c, > 0 such that for all finite sequences (yi), c I, we have 

We get, for all w ED, by the KhintchineKahane inequality for the Radema- 
cher averages (see [23], Theorem 4.7), 

Integrating with respect to w we obtain assertion (3). Finally, let us show (4). 
From [24] we get 

N N 

Ell X gkxkll c c2 J;;; sup (x ~(x,, a)1yit2 
k=l ~EB$" k =  1 

N 

= c sup ( l(xk, e,)13"" c, rn, 
, = I , .  ..,Zm k=l 

where (ei):z2=", is the unit vector basis of E;". Concerning the - part of (17), the 
relation < follows for example from Theorem 5.1 whereas > is a consequence 
of (I), (2), and (4). 

Acknowledgment. I would like to thank S. Kwapieh, who proposed the 
usage of Theorem 5.1.2 from [22] to prove Theorem 5.1. 
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