PROBABILITY AND MATHEMATICAL STATISTICS Vol. 18, Fasc. 2 (1998), pp. 219–245

UNE ÉTUDE ALGÉBRIQUE DE L'ADMISSIBILITÉ EN ESTIMATION LINÉAIRE DE LA MOYENNE SUR UN MODÈLE GÉNÉRAL DE GAUSS-MARKOV

Jean-Jacques Téchené

Abstract: It would appear useful to come back to the question of admissibility in linear estimation on a general Gauss-Markov model. We prove how a functional approach to this problem, based on a very important LaMotte theorem [11], clearly leads to characterization of all admissible linear estimators of mean vector or linear transformation of mean vector. Thus we have managed to modify significantly a Klonecki and Zontek theorem [9] allowing us to find in a different way an essential characterization shown by Baksalary and Markiewicz [4], based on the logic put forward by Rao (cf. [13] and [14]). We also give a variational characterization of admissibility in linear estimation and a geometrical proof of a Baksalary and Mathew theorem [7] relative to equality between the set of best linear unbiased estimators (or Gauss-Markov estimators) and the set of linear admissible estimators of mean vector. We finish by explaining more results on admissibility of linear estimators of vector parameters.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE