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Abstract. A refined estimate of the rate of convergence of 
one-dimensional distributions of nonrandomly centered generalized 
Cox processes to location mixtures of normal laws is presented. Asymp- . 
totic expansions for these distributions are constructed. Some esti- 
mates for the concentration functions of these distributions are proved. 

I. Introduction. This paper* is a continuation of our works [I]-[3] and 
[7] in which we considered generalized Poisson and generalized doubly stochas- 
tic Poisson processes (called also generalized COX processes). Some fragments of 
our research were described in 151. Here we consider the accuracy of the 
approximation of one-dimensional distributions of generalized Cox processes 
by location mixtures of normal laws. We deal with nonrandomly centered 
generalized Cox processes since the very problem of construction of approxi- 
mations assumes that the approximated random process should be nonran- 
domly centered. In 121 we gave necessary and sufficient conditions for the 
convergence of one-dimensional distributions of nonrandomly centered gene- 
ralized Cox processes, proved some convergence rate estimate and formulated 
two theorems on asymptotic expansions. Here we sharpen the convergence rate 
estimate given in [2], prove and discuss the results on asymptotic expansions 
announced in [2] and present some estimates for the concentration functions of 
generalized Cox processes. 

Let N, ( t ) ,  t 2 0, be a homogeneous Poisson process with unit intensity 
and let A(t) ,  t  2 0, be a process independent of Nl ( t)  and having the following 
properties: A(0) = 0, P(A(t) < m) = 1 for any t  > 0, the trajectories of A(t)  do 
not decrease and are right-continuous. A doubly stochastic Poisson process N (t), 
calIed also a Cox process, is defined as the superposition of Nl (t) and A(t):  

* This research was supported by the Russian Foundation for Fundamental Research, Grants 
96-01-01919, 97-01-00271, and by the Russian Humanitarian ScientZc Foundation, Grant 
97-02-02235. 
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In this case we shall say that the Cox process N(t) is controlled by the process 
A(t). The properties of Cox processes are described in rather full detail 
in [dl. 

Let XI, X,, . . . be identically distributed random variables (r.v.'s). Assume 
that for each t 2 0 the r.v.'s N(t), X,, X,, . . . are independent. The process 

will he called a generalized Cox process (for definiteness, we assume that x;=, =*O). The processes of the form (1.1) play important roles in many prac- 
tical problems. For example, if A(t) = At with 1 > 0, then S (t) turns into a clas- 
sical generalized Poisson process which is widely used as a model of many real 
phenomena in physics, reliability theory, financial and actuarial mathematics, 
etc. Many applied problems which can be reduced to the analysis of special 
generalized Poisson processes are described in [3] and [ 5 ] .  More general pro- 
cesses S (t) of type (1.1) with random intensity A' (t) are of course more adequate 
models for the processes of the payments of an insurance company or of the 
increments of stock prices where real intensity is essentially stochastic. It 
should be especially noted that the risk process, that is, the surplus of an 
insurance company, which plays the key role in actuarial mathematics is, by 
definition, a nonrandomly centered process (1.1) with N(t) being the number of 
claims up to time t .  In the classical definition of a risk process, N (t) is a Poisson 
process. Therefore the results presented below concern the generalization of 
some of the classical asymptotical results of the risk theory to generalized Cox 
processes. 

Throughout the paper, the symbols 3,s and will denote weak conver- 
gence, convergence in probability and coincidence of distributions, respectively. 
The standard normal distribution function (d.f.) and its density will be denoted 
by @ and #I, respectively. 

For the sake of convenience, without loss of generality everywhere in what 
follows we will assume that EA(t) = t, t 2 0. This relation can be interpreted 
both as the proportionality of the mathematical expectation of the controlling 
process to time and (which is most important for asymptotic inference) as the 
parametrization of the controlling process A(t) by its expectation. Since we 
consider one-dimensional distributions, we therefore will construct approxima- 
tions to generalized Cox processes with i&nitely increasing expectation of the 
controlling process. In addition to the above assumptions we will assume that 
there exists DX, = a2, 0 < a2 < ao. Let us write EX, = a. Then, as is easy to 
see, for t 20 we have ES(t)= at, DS(t)=a2t+a2DN(t), and hence 
DS(t) # a2t  if a # 0. Nevertheless, in the subsequent reasoning we will nor- 
malize? (t) by a ,,h instead of m, thus formally not assuming the exist- 
ence of the second moment of the controlling process A(t ) .  In [2] we proved 
the following result: 



. Approximations to generalized Cox processes 249 

THEOREM 1. Assume that A (t) co (t + a). n e n  one-dimensional distri- 
butions of a nonrandornly cantered and normalized generalized Cox process (1.1) 
weakly converge to the distribution of some r.0. 2: 

S (t) -at 
(1.2) =z (t-+00) 

0 4  

if and only $ there exists an r.u. V such that 
(i) Z qm W + (a/o) V, with W and V independent and 

P(W < x) = @(x), XER; .. 
(ii) A ( t V (t 4 m) . 
From this theorem it follows, for example, that under conditions of Theo- 

rem 1 one-dimensional distributions of a nonrandomly centered and normal- 
ized generalized Cox process (1.1) are asymptotically normal: 

with some asymptotic variance a2 < coy if and only if a2 2- 1 and 

2. Convergence rate estimates for nonrandomly centered generalized Cox 
processes. In this section we shall give some estimates for the rate of conver- 
gence in Theorem 1. It  follows from Theorem i that the distribution of the r.v. 
( S  (t) - at)/(a ,,h) is close to the limit one if and only if the distribution of the r.v. 
(A (t) - t)/,,h is close to that of V or, which is in a certain sense the same, if the - 
distribution of the r.v. A (t) is close to that of ,/t v + t. However, in general, the 
latter r.v. can also take negative values while the controlling process of a Cox 
process has to be positive. Therefore, instead of $V + t we will deal with the 

- 

"accompanyingy~ process A* (t) = l f i ~  + tl, which, as t + m y  behaves more - 
and more like ,/tv+t, and hence like A(t) (in [5] we considered the accom- 
panying controlling process of the form A* (t) = max (0, $V + t)). 

Let N*(t) be a Cox process controlled by the process A*(t) and 

s* (t) = 4. 
j = O  

By F,(x) and F:(x) we will denote the d.f.'s of the r.v.'s (S(t)-at)/(s,,h) and 
(S* (t) - at)/(. $), respectively. Then from the identity 

it follows that given an appropriate estimate of the accuracy of the approxima- 
tion of the distribution of the generalized Cox process S(t) by the distribution 



250 V. E. Bening and V. Yu. Korolev 

of S* ( t )  and an estimate of the rate of convergence as t + co of the distributions 
of the process S* ( t )  to the limit one, we can obtain an appropriate estimate of 
the rate of convergence of the generalized Cox process S ( t ) .  

First give an estimate for 

A ( t )  = sup IF, (x) - F? ($1. 
X 

LEMMA 1. Let S ,  (t)  and S, (t) be two generalized Cox processes generated 
by one and the same sequence of r.u.'s (XJja and controlled by processes A,  (t) 
and A, (t), . respectively. Then 

sup'p (S, ( t )  < x) - P (S, ( t )  < x) 1 
x 

The proof of this statement can be found in [lj. 
From Lemma 1 it follows that 

The first summand in w ( t )  is the mean metric with the weight func- 
tion 

w ( t ,  u) = min{2&, ( u / J ; + l ) - ' ~ ' )  I ( u  > -$), 

which characterizes the distance between the pre-limit and limit d.f.'s of the 
controlling process (here and in what follows by 1 (A) we denote the indicator 
function of a set A). It is easily seen that for u < 0 the derivative of the function 
(u/$+ 1)-'t2 with respect to t is negative, and hence, at these u ,  w ( t ,  u) does 
not exceed its value at the point t at which 2 f i  = (u/$+ 1)-'I2. This value 
equals i ( l u l + , , h i )  < lul+ 1. It is obvious that with nonnegative u we 
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have w (t, u) < 1 so that w It, u) < Iul+ 1. Therefore the properties of the first 
summand in w (tj are similar to those of well-studied difference pseudomoments 
(see [12], pp. 33 and 113-126). At the same time, the second summand in w (t) 
does not depend on the pre-limit controlling process. It is easy to see that if, for 
example, V is the standard normal r.v., then 

that is, in this case the second summand decreases exponentially as t grows. 
Let us put 

where C, is an absolute constant in the Berry-Esseen inequality. It is well 
known that 

LEMMA 2. Assume that j3, < co. Let N, be a Poisson r.u. with parameter 
A > 0 independent of the sequence {4Ijal. Then 

For the proof see [3] with the constant refined in [8] (I). 

Let us write 

THEOREM 2. Let p3 < a, E IVI < co. Then for all t > 0 such that 
P(V = -4) = 0 we hiaue 

(2.4) 

with o(t) defined in (2.3) and 

(I) After the paper [8] had appeared its authors learned about the paper [lo] published 
much earlier with exactly the same estimates which were independently obtained in [8]. 

3 - PAMS 18.2 
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Proof. Using (2.2) and (2.3) it suffices to estimate 

a@) = sup I FF(x)-Ea (7S)l. 
With y > 0, by N, we will denote a Poisson r.v. with parameter y assuming it to 
be independent of the sequence (X,)j,, . Then for any EE(O,  1) 

G I l + 1 2 .  

By the Markov inequality we have 

At the same time we obtain 

m 1 NvJI+t  (OX - L ~ v )  $ 
sup P z x , - a ( v ~ + t ) )  < 

12= ~i x 1 (. JG( j=l . JQG ) 

Estimate 12, with the help of Lemma 6.3.2 in [9], according to which 

[@(x)-@@)I < x+(rnin(l, p)x)Ip-11 for p > 0. 
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Then 

Moreover, 

Therefore, with regard to (2.5) we obtain 

since the third term under the max sign is always less than the second one. 
Estimating I , ,  with the help of Lemma 2 we obtain 

By unifying (2.6) with (2.7), we arrive at the desired estimate. The theorem is 
proved. 

COROLLARY 1. Under the conditions of Theorem 2, 

To prove Corollary 1 it sf ices to calculate the right-hand side of (2.4) 
with q being the solution of the equation Q(q)& = 0.7655. 
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Remark 1. In many applied problems the data is represented by obser- 
vations registered at equidistant time instants (time series). And if a seasonal 
component can be assumed pronounced in this series with a seasonality period 
t coinciding with the length of the time intervals between observations, then it 
is quite reasonable to assume from the very beginning that we deal not with 
A(t)  but with the c4aocornpanying" controlling process ~$v+tI. This assump- 
tion results in w (t)  = 0. 

Re mark 2. The condition P (V = -3 = 0 guarantees the positiveness 
of the ,"accompanying" controlling process, and hence the correctness of the 
definition of all the Poisson r.v.'s considered in the proof of Theorem 2. 

3. Asymptotic expansions for the distlribuaians of generalized COX processes. 
Relation (2.2) allows us to obtain an appropriate asymptotic expansion for F ,  (x) 
from the asymptotic expansion for F,8 (x) and an estimate for the difference 
F, (x ) -F: (x ) ,  e.g., given in Lemma 1. 

We shall say that an r.v. Y satisfies the Cramdr condition (see, e.g., [Ill, 
Section W.3) if 

(3.1) lim sup I E exp (is Y) I < I. 
l ~ l - ' ~  

The following statement is weU known (see [Il l ,  Section V1.3). Let us put 
s, = X I +  ... +x,. 

PROPOSITION. Let in addition to the above assumptions the r.v.'s (Xj) j2 , 
satisfy the Cramkr condition (3.1) and E]x,Jk < a, where k 2 3 is integer. Then 

where z = n-'I2 and the functions Qj(x) are defined by 

Here the summation is carried out ouer all nonnegative solutions (k,, . . ., kj) of 
the equation k ,  + 2k2 $ . . . + j k j  = j, E = k, + . . . + k j ;  ym+, is the semi-invariant 
of order m + 2 of the r.v. XI, and H,(x) are the Chebyshev-Hermite polynomials 
of degree in, i.e., 

H,(~)#(x) = I -  1)" +'"'(x). 

In particular, if we put a, = EX:, 1 = 1,2, ..., then 
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Now we shall give two analogs of this statement for generalized Cox 
processes. In the case a = 0 the asymptotic expansion for the d.f.'s of generalized 
Cox processes was constructed in [2]. Here we shall concentrate our attention 
on the situation EX, = ra # 0. In this case the limit distribution of nonrandomly 
centered generalized Cox processes is determined by Theorem 1 and is of the 
form 

where V is the limit r.v. for the standardized controlling process ( A  (t)- t)/,,h. 
(As before, we assume that E A{t)  = t.) At first we shall present a statement on 
the asymptotic expansion for the generalized Cox process with a rather pecu- 
liar structure of the limit r.v. K However, as we shall see below, this situation 
turns out to be quite natural. 

THEOREM 3. Let the r.0. V have the form V = Vo - E Vo, where Vo is a non- 
negative r.v. satisfying the condition: there exist y > 0 and a polynomial P (h) 
such that for any h 2 0 

(3.5) E exp {h  Vo} < P (hl exp ( y k2). 

Assume that E IX, l k  < co for some integer k 2 3 and that Xi satisfies the CrclmLr 
condition (3.1). Then for any t 2 (E &I2 we have 

S ( t )  - at ax-aV k-2 wj lX)  
X s u p i p  ( g$ < ' ) - E ' ( ~ ~ ) - ; ~  E ( t ) y  

where 

D, is the operator of formal dlflerentiation with respect to y ,  the polynomials Fl (-) 
are defined by the relation 

j 1 (it)rn+2arn+2 
Fl (it) = C n - [ Ikm, j = 1 ,  ..., k-2,  

,=, k,! (m+2)! d"+' 

in which the surnmtion is carried over all nonnegative solutions k,, . . ., k j  of the 
equation k, + 2k, + . . . +jkj = j, am+ = EX;"' 2, Fo (x) = 1, the po1ynomiaIs 
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Pmd(-) are defined by the formal equality 

Remark 3. It is easy to see that 
P o 0 ( x ) = 1 ,  P j o = O ,  j = l ,  ..., k-2, 

- x3 ixJ x4a4 x6a; 
PI (x) = - 

603 ' P2b) = =+-- 
Remark 4. The first two functions w, and w, have the form 

where H ,  c) are the Chebyshev-Hermite polynomials. 

Remark 5. Condition (3.5) holds if Vo = ll1, where ( is a bounded r.v. It 
also holds if 5 is a normal r.v. This condition does not hold for an exponential 
or Poisson r.v. Vo. The r.v. Vo must have all moments. 

Proof of Theorem 3. Using the relations (4.2), (4.4), (5.8)-(5.11) of the 
paper [ I ]  to prove Theorem 3  it suffices to show that 

where 
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. I  P,(x) = 1 and the polynomials pl (-) are defmed by formulas (3.3) with a2 and 

i the semi-invafiants y,+, replaced by a, and the moments am+ ,, respectively, 

l 
and the polynomials Pmdc) are defined by relation (3.6). 

Estimate the integrals J,, i = 1, 2, 3. Note that the characteristic function 
I (ch.f.1 f,* (s) can be represented as 

where 
v(s) = exp(fxl(s)-1-isml), fx,(s) = ~ e x p { i s ~ , ) .  

Here v (s) is the ch.f. of the r.v. 
N 

Y = C Xi-al, 
i =  1 

where N is a Poisson r.v. with unit parameter independent of XI, X2, . . . so 
that E Y = 0, D Y = a, > 0, E I YIk < m. Note also that the semi-invariants 
yj, j = 1, 2, . . ., k, satisfy the relations 

To the function v(s/(c~$))' we can apply Theorem 9.12 from [lo] with n re- 
placed by t. From this theorem it follows that for any E > 0 there exists a S > 0 
such that for Is1 < 6 4  we have 

i with polynomials P"(-) of degrees 3j defined in (3.10). 
Consider J,. Let us put 

2 i (3.13) V ( S ,  t) = exp {-=z} - (1 + *i2 t - j 1 2  (is G)), 
2a2 j=  1 



258 V, E. Bening and V. Yu. Korolev 

Using the representation 

with 

and relations (3.11) and (3.121, for Is1 6 6 4  we obtain 

where PI (.) is some polynomial. The last inequality in (3.15) was obtained with 
the help of condition (3.5). Since 6 is small enough, there is a function integrable 
with respect to s on the right-hand side of (3.15). Thus we have proved the 
inequality (see (3.7)) 

(3.16) J1 < 4 + ~ ( t - ( ~ - * . ) / ~ ) ,  

where (see (3.13) and (3.14)) 

Prove that 4 = ~ ( t - ( ~ - ~ ) / ~ ) .  Let us write (see (3.13) and (3.2)) 

Then since 
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with 
lslk ak 

Irk(s, t)l 4 p7 
by virtue of (3.15) we have 

(3.21) If (8, t)-f1 (s, 01 

where P2(.) is some polynomial and the last inequality is again due to 
condition (3.5). From this inequality it follows that for 6 > 0 small enough we 
have 

Now consider the difference fl (s, t) -f2 (s, t) (see (3.18) and (3.1 9)). We have 

Lf, (s 7 -f2 ls 9 t)l 

s2 a, k - l & j C I  1j2 < t-(k-1~/2 p3 (lsl) { - - a2 ( v 2 ( k - l ) ) l p  exp 2 1 Vl s z 21) , ( { j = 2  

where P3(.) is some polynomial. In the same way as (3.21), it follows that for 
S > 0 small enough we have 
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It is easy to see that 

where the sum over j contains a finite number of summands and Rj(*) and 4 (.) 
are some polynomials. Hence it also follows that for 6 > 0 small enough we 
have 

Now consider the difference f, (sy t) - h (s, t) (see (3.10)). For this difference the 
inequality similar to (3.24) holds, and therefore 

Therefore from (3.221, (3.23), (3.25) and (3.26) it follows that 7, = o(t-(k-2)12) 
(see (3.17)), and hence by virtue of (3.16) we obtain J, = o ( t - (kp2)12) .  

The relation J2 = ~ ( t - ( ~ - ~ ) / ~ )  (see (3.8)) follows directly from the form of 
the function h (s, t) (see (3.10)). 

Prove that J, = ~ ( t - ( ~ - ~ ) / ~ )  (see (3.9)). Note that since the r.v. XI satisfies 
the CramCr condition, we have 

lim sup Iv (s)l < lim sup exp (If,, ($1 - 1) < q2  < 1.  
14- m IslPm 

Therefore for d$ i Is( < At(k-2)i"e have 

and (see (3.11)) 

Here the right-hand side tends to zero faster than any power of t. Hence it 
follows that 5 = ~ ( t - ( ~ - ~ ) / ~ )  (see (3.9)). 

Now, the assertion of the theorem follows from (3.10) and the inversion 
formula for the Fourier transform. The theorem is proved. 
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Now consider the discrete-time case t = n = 1 ,  2, . . . and assume that the 
controlling process A (n) has the form 

n 

(3.27) A(n) = z zi, 
i =  1 

where ( Z , }  are independent identically distributed r.v.'s, Z ,  2 0 ,  i 2 1. This 
representation occurs in the situation where A( t )  is a homogeneous stochastic 
process with independent increments, and the generalized Cox process is ob- 
served at equidistant time instants so that Zi are the increments of the control- 
ling process A ( t)  on the time intervals between observations. We shall assume 
that E Z ;  = 1. so that E A(n) = n. Let us put 

Define the formal "semi-invariants" aj by the equality 

@.l log E exp - 1) (fx, (s) - 1)) = z 7 [isy. 
j = 2  3 .  

In particular, 

a, = v, a:, a, = 3v, a2 a1 + v3 CI;, 

THEOREM 4. Assume that there exist y > 0 and a polynomial P(h) such that 
for any h 2 0 the r.v. 2, satisfies the inequality 

(3.28) E exp {hZ,) < P (h) exp - 
Let E IX,lk < oo for some integer k > 3. Assume that X, satisfies the Cramir 
condition (3.1). Then 

where 

D, is the operator of formal differentiation with respect to y, P,* (x) = 6 (x )  = 1 ,  
the polynomials Ef) are de$ned in Theorem 3, and Pz (-) are deJined in the 
same way as &(-) but with the moments a,+Z replaced with semi-invariants 
%+2- 

Remark  6. We do not assume that the r.v.'s Zi should satisfy the CramCr 
condition (3.1). Therefore they may be lattice. 
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Remark  7. Condition (3.28) is stronger than (3.5). This condition holds 
for any bounded r.v. Z , ,  e.g., binomial, but it does not hold for exponential or 
Poisson r.v.'s. Note also that the r.v. 2, must have all moments. 

Remark  8. The first functions q* (x) and v j ( x )  have the form 

x3 B~ x4m4 x6 1ei 
P;" (x) = - Pz* (x) = - 6a3 ' 

+- 
24a4 72a" 

where H ,  (-1 are Chebyshev-Hermits polynomials. 

Remark  9. The functions vj(x) can be calculated by the formulas 

where the functions Qj(x) are defined by (3.2) with semi-invariants re- 
placed by s, + + a, + z. In particular, 

P roo f  o f The  o re  m 4. We wiU prove Theorem 4 using the same scheme 
as was used to prove Theorem 3. Here we have 

For any E > 0 there exists a 6 > 0 such that 
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where y,  > 0, and P,(-) is some polynomial. The last inequality is due to 
condition (3.28). 

Further, since the r.v. XI satisfies the CramCr condition and 2, is not 
degenerate at zero (because EZ, = I), we have 

with q,, &E(O, 1). NOW the assertion of the theorem follows from the formulas 
similar to (3.7j43.9, (3.12). The theorem is proved. 

The structure of the controlling process of the form (3.27) is typical in 
many applications. At the same time it helps us to understand better what goes 
on in the situation described by Theorem 3. Now we return to Theorem 3 and 
assume that A (n) can be represented similarly to (3.27) but with not necessarily 
positive Zi and consider some examples. 

EXAMPLE 1. Let E Zi = 0 and D Zi  = SZ. Set - 

Then Ell" (n) w n and 

where W is a standard normal r.v. 

EXAMPLE 2. Put ZO = 0. Then under the same conditions on {Zi)i$l as 
above, setting 

we also obtain E ji"(n) x n and 

d(n)-n 
*IWl-EIWI (n-m). 

J;; 
EXAMPLE 3. Under the conditions of Example 1 let us set 
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Then E A(n) = n and - 
A'"-n+ W ~ - E W Z  (n+ m). 
J;; 

In all the three examples we observed the same structure of the limit r.v. as 
in Theorem 3 (the first two examples correspond to Vo = I WI while in the third 
example we have Vo = W2). These examples are nothing more than the illus- 
trations of the invariance principle. So we can conclude that Theorem 3 corre- 
sponds to the situation similar to that in which A(t) is a function of a Wiener 
process. As'this is a, rather an unexpected structure of the r.v. Vin Theorem 3 
is due to the requirement that the controlling process should be positive. 

Note that, in Examples 1 and 2, ,,h& is the asymptotic expectation of 
the r.v.'s 

C ~ - ~ I Z , +  ... +Z,(  and 6 - I  max ( Z , + Z , +  ...+ 23. 
O < i $ n  

By subtracting exact expectations instead of their asymptotic values in the 
definitions of /?(n), we can provide the equality I€A(n) z n. 

Remark  10. By virtue of the representation (3.29) we can represent S* (n) 
as a sum of independent identically distributed r.v.'s and use well-known results 
to construct asymptotic expansions for its distribution (see, e.g., Ell]). How- 
ever, in this case the representation of the functions uj(x) turns out to be less 
convenient. By reducing the proof of Theorem 4 to that of Theorem 3 we 
express trj(x) in terms of the r.v.'s Xi and which are "atomic" for the problem 
under consideration. 

4. Estimates for the concentration functions of generalized Cox processes. 
In this section we shall present some estimates for the concentration functions 
of one-dimensional distributions of generalized Cox processes S (t). Recall that 
the concentration function of an r.v. Y is the function 

see, e.g., [Il l ,  Section 111.1. 
It is well known that if XI, X,, .. . are independent and have identical 

nondegenerate distributions, then there exist E > 0 and 6 > 0 such that 

where f;,.(s) is the ch.f. of the r.v. Xi (see, e.g., [ll], Section 1.2) and the 
concentration function of their partial sum S, = XI + . . . +Y, satisfies the in- 
equality 
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I with 

I 
where E and 6 are the same as in (4.1). 

I 

Here we shall present three analogs of (4.2) for generalized Cox processes 
S ( t ) .  Let us put 

I 

First consider the most general case. Let V be the limit r.v. for the standard- 
ized controlling process A@):  

Set A*(t) = ~t +&vI. 
I THEOREM 5.  Assume that (4.4) holds. 

I .  Let the r.v. XI be nondegenerate. Then 

11. Let the r.v. XI be degenerate at a point u # 0. Then 

Here C ( E ,  6 )  and w ( t )  are de$ned in (4.3) and (2.3), respectively. 

Proof. I. Let S* (t) be the generalized Cox grocess generated by the se- 
quence XI, X2, ... and controlled by the process A*@). Let us write 
Qf (I) = Qpw(l), 1 0. Using the inequality (6.3) of [I] and the estimate (2.3) 
we have 

Apply Lemma 3 from [Il l ,  Section 111.1, according to which for any r.v. Y and 
any 62 0, a > 0 we have the inequality 

I 
I 

where f,(s) is the ch.f. of Ii: It is easy to see that the ch.f. f,* (s) of the r.v. S* (t) 
I has the form 

(4.7) X* (4 = E exp {I& + Vtl (fx, (4 - 1)). 
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I 

Let q ~ ( 0 ,  1). Since XI is nondegenerate, using (4.1) we therefore obtain 

6 exP{-C1-q)t(1-lfxr (s)l))+P(V< -g&l 
I 

< e x p { - ~ s ' ( 1 - q ) t } + p ( V ~ - ~ & ) ,  IsIG8. 

If I >  1, then set a = 6/1. Then applying (4.8) we obtain 

(4.91 Q: ( I )  

I If 0 < l <  1,  then we set a = 6 in (4.6) and again use (4.8) to obtain 

(4.10) Q: (0 

Now the first statement of the theorem follows from (4.3, (4.9) and (4.10). 
To prove part I1 fnst assume that GI = 1. Then we obviously have 

J*(s) = E exp(- l t+J i~~( l -e~?}.  

Thus repeating the argument similar to that which was used to prove (4.8) we 
obtain the estimate 

(4.1 1) /L* (s)I d E exp {- I ~ + ~ V I  (1 -cos s)) 
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But 

Now, by putting a = 1 in (4.6) and using (4.10) a d  (4.11), we obtain 

(4.13) Q: (4 

and the desired result for the case a = 1 follows from the relation (6.3) in [I] 
and (2.3). To prove part I1 for the case of an arbitrary a # 0 note that, in (4.12), 
Q: (I) = QNYz, (0, where N* ( t )  = N, (A* (t)) . Now the desired result follows from 
(4.13) and the obvious relation 

which holds for an arbitrary u # 0. The theorem is proved. 

COROLLARY 2. Lee, in addition to the conditions of Theorem 5,  E lVl < a. 
I, If the r.v. XI is nondegenerate, then 

11. If the r.v. XI is degenerate at a point a + 0, then 

Proof. This statement easily follows from Theorem 5 with the help of the 
Markov inequality and the elementary fact: for any c , ,  c ,  > 0 

Now we proceed to two special cases in which it is possible to simplify the 
estimates for the concentration functions of generalized Cox processes. 

4 - PAMS 182 



268 ' V. E. Bening and V. Yu. Korolev 

THEOREM 6. Let (4.4) hoid with V = Vo - % G, where Vo is a nonnegative 
r.u., E Vo < m. Thea for t > (E V0',)' the following statements hold: 

I. If the r.v. XI is nondegenemte, then 

11. If the r,u. XI is degenerate at a point a # 0, then 

Here A, (t) = sup, IF, (x) - FP (x)l, F: (x) = P (So (t) < x) iand Sa (t) is the general- 
ized Cox process generated by the sequence XI, X, , . . . and controlled by the 
process 4'(t) = f i ( & - ~ ~ , ) + t .  

I 

The proof of this theorem follows the same scheme as that of Theorem 5. 
The only distinction is that instead of (4.8) we should use the following estimate 
for the ch.f. fP(s) of the r.v. So(t): 

which holds for t > (E Vo j2. 

Remark  11. To estimate A,@) one can use Lemma 1. 

Finally Iet us consider the discrete-time case t = n = 1, 2, . . . and assume 
that 

n 

A(n) = C zi, 
i = l  

where Zi are independent nonnegative identically distributed r.v.'s. Let us put 
Qn (0 = Qs!~) (0. 

THEOREM 7. Assume that s E 2; ' I 2  < a. 
I. If the r.v. XI is nondegenerate, then 

11. If the r.v. XI is degenerate at a point a # 0, then 

Proof.  In the case under consideration .we have 
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and therefore if XI is nondegenerate, then, by (4.1) and Holder's inequality, for 
Is1 < 6 we have 

lfm(s)l G (E exp(-Z,~s~])"  < E exp(-ms2Zl}. 

~ n d  if a(x, = 1) = .l, then 

fn(4 = (E exP {Zl (eiS- 1)3)", 

so that by (4.10) .for Is1 < I we have 

d ( Eexp { -- s2Zl])" = I exp{-g  ns2Zl}. 

Now it remains to use the inequalities similar to (4.61, (4.7), (4.8) and (4.13). The 
theorem is proved. 

Remark 12. Condition (4.4) is actually used only as a hint on that o ( t )  
and A,@)  in the above estimates should tend to zero as t + a. 
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