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CONSISmNCY OF STATISTICAL MODELS DESCRIBED 
BY FAMILIES OF REVERSED SlJBMlhRTmGlgkES 

Abstract. A large number of statistical models is described by 
a family of reversed submartingales converging to degenerated limits. 
The problem under consideration is to estimate the maximum points 
of the limit function. For this, various maximum functions are used and 
consequently ditferent concepts of consistency are introduced. In this 
paper we introduce and investigate a general reversed submartingale 
framework for these models. Our approaoh relies upon the i.i.d. case 
[6] .  We show that the best known sufficient conditions for consistency 
in this case remain valid for conditionally S-regular families of reversed 
submartingales introduced in [13], which are known to include all 
U-processes. Moreover, by using results on uniform convergence of 
families of reversed submartingales [15], we deduce new conditions for 
consistency. These conditions are expressed by means of Hardy's regu- 
lar convergence [4], and are of a total boundedness in the mean type. 
In this way the problem of consistency is naturally connected with the 
infmitely dimensional (uniform) reversed submartingale convergence 
theorem. Applications to a stochastic maximization of families of 
random processes over time sets are also given. 

1. INTRODUCTION 

1. Many statistical models from 111-[3], [5]-[12], [16]-[I81 can be 
recognized as a family of reversed submartingales 

defined on the probability space (SZ,9, P)  and indexed by a separable metric 
space 8,. From general theory of reversed submartingales we know that each 
hn (8) converges P-a.s. to a random variable h ,  (8) as n + oo . If the tail cr-algebra 

" is degenerated, that is P (A) E {0, 1) for all A E E ,  then h ,  (0) is z = n,=, 
also degenerated, that is P-a.s. equal to some constant which depends on 9 E 0,. 
In this case the information function associated with Z: 

I(6) = P-a.s. lim h,, (8) = fim Eh, ( B ) ,  
n+ m R' m 



may be well defined for all O E  8,. The main problem under consideration is 
to determine the maximum points of 1 on El, using only information available on 
h,(o, 0) for n 2 1. 

2. Two concepts of maximum functions are naturally introduced in this 
context as follows. Let {8n I n 2 1) be a sequence of functions from SZ into O, 
where (O, 6) is a compact metric space containing Qo. Then (f?,, I n 2 1) is 
called a sequence of empirical maximums associated with # if there exist a func- 
tion q: P + N and a P-null set N E S  satisfying: 

1 . 1  - ; d,, (a) E &IO for all w E O\N and all n 2 q (o); 

(1.2) h, (w , g,, (a)) = h,* (w , 8,) for all w E SZ\N and all n 2 q (w); 

where h: (a, 3) = supe,, hn (w , 0) for n 2 1, w E 62, and 3 c 8,. The sequence 
(6" I n 2 1) is called a sequence of approximating maximums associated with 
2 if there exist a function q: L? + N and a P-null set N E  d satisfying: 

(1.3) g,, (a) E a0 for all w E Q\N and all m 2 q (o); 

t 1.4) lim inf h, (w , (a)) 2 sup 1(0) for all w E Sd\N. 
n+ m BEQO 

3. ~ e s ~ i t e  the fact that h,(m, a )  does not need to attain its maximal value 
on G o ,  and (1.2) can fail to hold in this case, we can always find a sequence 
{on 1 a 3 1) satisfying (1.4). However, the statistical nature lying behind 
imposes on 6,, to be measurable with respect to for n 2 1. This requirement 
makes the existence of approximating maximums much harder to establish and 
calls for the assumption of analiticity on Oo in order to ensure the existence of 
suitable measurable selections (see [14]). Further, the main preliminary task 
towards the solution of the problem is to characterize the sets of all possible 
accumulation and limit points of all possible sequences of approximating maxi- 
mums associated with &? It turns out that a certain convergence uniforrnization 
is important to be established in this direction (see Lemma 3.2 and the proof 
of Theorem 4.1 in [14]). 

Both of these questions (existence and uniformization) are answered in [6] 
(see pp. 42-47). There the i.i.d. case is considered, and Oo is assumed to be an 
analytic metric space, It is shown in [14] that a little stronger version of these 
results remains valid in the general reversed submartingale case provided that 
O ,  is a second countable Hausdorff space satisfying the Blackwell property 
(a second countable analytic space). Actually, a closer look into the proofs 
shows that the same results hold without the submartingale property as well, 
and the only assumption which is essentially used is the x a(@,)-measura- 
bility of h,(w, 0). Finally, it is shown in [14] that for separable families of 
reversed submartingales (see [13]) the Blackwell property is not needed. 

4. Our purpose in this paper is to use the preliminary results just describ- 
ed and to present conditions for consistency in the reversed submartingale case. 

b 
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By consistency, roughly speaking, we mean that every sequence of approximat- 
ing maximums associated with a? approaches the set of all maximum points 
of the information function I on 8,. We think that this problem appears 
worthy of consideration, as in the context of statistical models recalled above, 
as well as in the context of more general processes (Zn(t) ] n 2 I),,, treated in 
Section 4 below. Classical results in this direction are established in [2], [3], 
[7]-[9], [17], [l8] (see [I] and 1161). A survey of these and related results is 
given in [lo] and [Ill .  The reader should note that our approach relies upon 
the fact that h,(w, 0) approaches I ( @ ,  so we believe that the maximum points 
of h, (w, 8) should' approach the maximum points of 1 (8) on (9,. This, of course, 
is not always the case, but it turns out to be satisfied under fairly general hypo- 
theses as described below. Although this principle seems very natural and 
useful for both theory and practice, we are unaware of a similar result in 
general theory of stochastic processes. 

5. The organization of the first part of the paper is as follows. First we 
introduce some additional information functions associated with the family of 
reversed submartingales 2, and present their basic properties (see Proposition 
2.1). Then we show that the uniformization over compact sets outside a single 
null set obtained in [6] carries over to the general reversed submartingale case 
(see (2.1 7) and Corollary 2.3). Together with the fundamental existence theorem 
mentioned above, this uniformization is crucial for the characterization of the 
sets of ail possible accumulation and limit points of all possible sequences of 
approximating maximums associated with 2 It makes it possible to describe 
more precisely the fact that all sequences of approximating maximums ap- 
proach the set of all maximum points of the information function I on O,. This is 
formally done by introducing a concept of consistency of 1X: which is expressed 
in terms of the information functions associated with A?' just mentioned (see 
Propositions 2.4 and 2.5, Corollary 2.6, and Remark 2.1). Finally, we complete 
the first part of the paper by showing that the conditions for consistency given 
in [6] remain valid for conditionally S-regular families of reversed submartin- 
gales introduced in [I31 (see Theorem 3.3). It is important to realize that all 
U-processes are known to be conditionally S-regular. In this way we obtain 
a variety of important examples covered by the result. 

6. Some facts in the first part of the paper are motivated by [6] with 

where (3 ( j > 1) is an i.i.d. sequence of random variables and h is a given 
function. Since the proofs in this context are similar to the proofs in 161, their 
details are either omitted or briefly sketched. However, note that in this process 
we do not assume that the tail g-algebra Ym = == 4 is degenerated, which is 
by the Hewitt-Savage 0-1 law automatically true m the setting of [6]. Con- 



292 . G. Pebkir 

sequently, the random functions which are Ym-measurable are not longer P-a.s. 
equal to constants. This is mainly done in order to show that the charac- 
terization of the sets of all possible accumulation and limit points of a11 possible 
sequences of approximating maximums (obtained in Remark 2.1) has nothing 
to do with this assumption, and without any particular application to the 
statistical background in mind. Yet another reason for this generality is of 
a technical nature. Namely, some of the desired statements concerning the 
functions under consideration are first proved pointwise, and then they are 
extended to their degenerated versions, This method can increase the clarity of 
relations between objects involved. As an illustration of this approach, the 
connection between Proposition 2.2 and Corollary 2.3, obtained by the unifor- 
mization from {2.17), may be served. Moreover, a closer look into the proofs 
shows that the same fact is also true for the submartingale property of families 
of the functions {h, ( a ,  8) 1 n 3 1) that form & for 8 E O0, and one can easily 
verify that the given characterization holds with no assumption imposed on 
these families, except that each hn (w, 8) is (5$ x ~%3 (@,))-measurable. 

7. In the second part of the paper we obtain conditions for consistency of 
2 by using a diEerent method. This approach relies upon the results on 
uniform convergence of families of reversed submartingales obtained in [15]. It 
turns out that these results can be successfully transformed into conditions for 
consistency, and in this way we obtain Theorems 3.4-3.8. We are unaware of 
similar results in the general reversed submartingale context. The conditions 
obtained are expressed in terms of Hardy's regular convergence [4], and are of 
a total boundedness in the mean type. The question of comparing these con- 
ditions with those obtained earlier appears worthy of consideration. We do not 
pursue this in more detail, but instead consider applications to a stochastic 
maximization over time sets of families of random processes (see Examples 4.1 
and 4.2). To the best of our knowledge, this sort of maximization has not been 
studied previously. 

8. We would like to point out that our approach in some parts of Sections 
2 and 3 is very formal. The reader who wants to see these results in a less 
formal setting which is more suitable for straightforward applications is refer- 
red to Section 4. 

2. CHARACTERIZATION OF ACCUMULATION AND LIMIT POINTS 

1. Let X = ({h,(w, 8), 1 n n 11 j O E  00) be a family of reversed submar- 
tingales defined on a probability space (62, 9, P) and indexed by an analytic 
metric space @,, and let Bo denote the Bore1 o-algebra on 0,. Then according 
to [I31 the family X is said to be: 

(2.1) measurable if (w, 0) I+ h, (w, 8) is (% x %)-measurable for all n 2 1 ; 
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(2.2) degenerated if % = on"_ is degenerated, that is P (A) E (0, 1 )  for all 
A E  Ym; 

(2.3) separable relative to given families Y c 2"0 and % c 2R if for each 
B E 9 there exists a sequence {Oi [ i 2 1) in O, such that for all C E %' we 
have 

~"(6 ( h , ( w ~ C  1 e i ~ B ) \ ( h ( 6 ) ~ C  I 
n= 1 

(2.4) separable if it is separable relative to the family 9 (8,) of all open sets in 
0, and the family W(R) of all closed sets in R; 

(2.5) P-a.s.-upper (lower) sernicontinuous on a given set r c 0,  if there exists 
a P-null set N tz 9 such that the function 0 H h, (a, 8) is upper (lower) 
semicontinuous on r for all w~ B\N and all n >, 1; 

(2.6) conditionally S-regular relative to a given family A c 2"" if for each 
B E A there exist a P-null set N in F and versions (h: (B) I Yn+ (w) 
of the conditional expectations E {h,S(B) ) 9,,+1] satisfying 

for all o E O\N, all 0 E B ,  and a11 n 2 k for some k 2 1. Here we implicitly 
suppose that every set B in A satisfies the following two conditions: 
(i) the map LO H h," (a, B) is 9:-measurable, 
(ii) Eh: (B) < co 
for all n 2 k with the given k 2 1. For instance, condition (i) is by the 
projection theorem fulfilled whenever X is measurable and B is ana- 
lytic (see [6]). 

For more information on (2.1H2.6) we refer to [13]. We point out that all 
U-processes are known to be conditionally S-regular relative to all analytic 
(Borel) sets (see Example 4.4 in [13]). 

Let ( 8 , 4  be a compact metric space containing Boy let 3(8) denote the 
family of all open sets in 8, and let a denote the Bore1 a-algebra on O .  Then 
8 is an analytic metric space and we will always set f (0) = -a for all 
0 E O\OO, whenever f : 8, + R is a function. It is easily verified that definitions 
(2.1H2.6) extend with no change under the condition 

with O being a new parameter space. 

2. In the sequel we shall make use of the following auxiliary functions 
associated with X:  



(2.8) H ,  (o, 3) = Iim inf h,* (w , B), H* (w , 3) = lim sup h,* (w , B),  
n+ cc1 n+m 

Ro(o,B)= inf &*(o,G), 
GeB{B),G B 

~ ( 0 )  = inf E*K,(O), 
n 3 l  

V* (B) = inf E* h$ (B), 
n 2 l  

where WEQ,  OEO, B c 0, and n 2 1. Here Kn(O, 0) =lim,l,h,*(w, b(0, r)) 
denotes the upper  semic continuous envelope of hn (w, .) for w E IIZ, 0 E O and 
n 2 1, h d  E* denotes the upper P-integral. Note that @, (w, 0) = no (o, (0)) 
and fl (w , 0) = B (w , (0)) whenever w E !J and 0 E 8. According to [6], h,, (w , 0) 
is called the empirical information function, H ,  (w, 3) and E ( w ,  3) are called the 
outer mximalfunctions, & (w, 0) and R(o ,  8)  are called the upper information 
functions, and rj (0) and q*(B) are called the mean value information functions 
associated with 2. 

If 8 is degenerated, then we define the information function associated 
with X as follows: 

i(0) = P-a.s. lirn h, (0) = lim Eh,, (8) for all B E  8. 
n-+ rn n-cm 

Note that every Ym-measurable function is then P-a.s. equal to some constant, 
and thus if &' is measurable, then by the projection theorem the functions 
Hg (', B) and H* (., I?) are degenerated for every analytic subset B of 8. We will 
denote these constants by a* (B) and H* (B), respectively, and define the 
associated outer maximal functions as follows: 

&(B)= inf &*(G), fl(B)= inf H*(G) f o r a l l B c 8 .  
GEQ(B),G 3 B GEB(B),G 3 B 

If Af' is not degenerated, then respecting the statistical nature lying behind, we 
will define the information function associated with 2 by 

I(o,0)=liminfhn(w,8) for all O E ! ~  and B E @ .  
n+ m 

Basic properties of the objects just introduced are stated as follows: 

PROPO~ITION 2.1. Let 2 = ((h,(m, O), ( n 2 1) 1 0 E 8,) be a given fami- 
l y  of reversed subrnartingabs. Then: 

(2.12) &(a,  a )  and B(w, .) are upper semicontinuous functions on 8 for all 
w ~ S 2 ;  

(2.13) s u p , l ( o , O ) < & * ( w , B ) < H * ( m , B ) f o r  all ~ E O  and all B c O ;  

(2.14) i ( o , O ) < ~ , O ) < R o ( o , 0 ) < H ( m , O )  for all OEL? and all 8 ~ 8 ,  
where T(w,  .) denotes the upper semicontinuous envelope of I(o, a )  

on 8 ;  
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(2.15) supOEBofi(a,  8) < H*(w, B) < B(w,  3) < 8(0, = supsEB-R(w, 0) 
for all w E LJ and all 3 c 0, where BO = int (~u(8\8,)) and B = cl(B) 
in O;  

(2.16) supepe T(U, 0) G  SUP^,, R0(w, e)  G H; (w, o) G H* e) 
= sup,,n(o, 0) for all w ~ S d .  

Moreover, ij" .X is measurable and degenerated, then: 

(2.17) there exists a P-null set N E F  such that for wwy compact set K in 
8 we have: - -  .. - 

% i w , ~ ) = & ( ~ )  and B ( ~ , K ) = ~ ( K )  for a l l w ~ Q \ N ;  

(2.18) flo and H are upper smicuntinuous functions on 8; 

(2.19) supee, 1(0) < H$ (B) d H* (B)  for all B c 8;  

(2.20) I (8)  < T(8) < E& (0) G H (O), where r denotes the upper semicontinuous 
envelope of I on O; 

(2.21) supmo 8(0)  $ H* (B) < H ( B )  < H ( B )  = sup, R ( 0 )  for aEI 3 c O; 

(2.22) sup,, T(8) < sup,,, 4 (0) $ I$* (8) G H* (8) = supoE, 8 ( 8 ) .  

PI o of. (2.12H2.16): The last equality in (2.15) follows by the compact- 
ness of 3, and the remaining statements follow from definitions. 

(2.17): Let B be a countable basis for the topology on 8 which is closed 
under formations of finite unions. By our hypotheses on .X we can find 
a P-null set N E ~  such that 

lim inf hX (w , G) = &* (G) 
n-r m 

and lim sup h,* (a, G) = H* (G) 
n-r m 

for all GEL% and all w EQ\N. Hence by the compactness of K we find 

(w , K )  = inf &* (O , G) = inf &* (G) = Ho (K) ,  
GES~,G 3 K GEB,G>K 

B ( o , K ) =  inf H*(w,G)= inf H * ( G ) = R ( K )  
GEB,G 2 K G 4 , G  2 K 

for dl weQ\N, and (2.17) is proved. 
(2.18H2.22) are straightforward from (2.12H2.16) by using (2.17). w 

PROPOSITION 2.2. Let 2 = ((h, (a, B ) ,  1 n 2 1) 1 8 E 0,) be a given 
family of reversed subrnartingales, let {6,, I n 2 1 )  be a sequence of functions 
Porn C? into 8, and let B be a subset of 0. Then we have: 

lirn sup h,* (o, B) < B (w  , B), 
n+ m 

lirn inf h,*(w, B) < &(w,  B), 
n+ m 



lirn i d  h, (w , g,, (w)) $ min {& (w , %? (8, (o))), inf H ( o  , 8)) 
n-m ~ E W { O , ~ ) }  

for all o E 0, where V {g,, (w)] denotes the set of all accumulation points in 8 of 
the sequence (on {w) I n 2 1) for w E 62. 

Proof.  (2.23) and (2.24) follow from the definitions of B(o, B) and 
Ho (w,  3). 

(2.25H2.26): If- G E 3 (8) with G = W (dn (o)) , then there exists no 2 1 such 
that ~, , (w)EG for all n 2 no. Hence we get 

lirn sup h, (a, g,, (w)) < lirn sup hz (a, G) = H* (w, G),  
n +  m n-r m 

lim inf hn (a, On (a)) < lirn inf h,* (w , G )  = Hd (my G). 
n+ m n+ m 

Taking the infimum over all G fQ(8)  with G 3 V ($,(o)) we find that (2.25) 
and the first part of (2.26) are satisfied. For the second part of (2.26) let 

(a}$ be a given point. Then there exist integers a (3) < cr (2) < . . . such 
(o) -) 0 for j -, m . Put a (0) = 0 and define 

#k(w)=Omcn(~) for all a ( j - l ) < k < c ( j 3  and a l l i B 1 -  

Let A, = {&(a) I k 2 p). Then 4 (m) + 0 for k + m, and hence A, = A,u(B) 
for all p 2 1. By (2.23) and the last equality from (2.15) we obtain 

lirn inf 
n+m 

< lim i d  
j+ m 

lim sup 
k+ a0 

< lim n~ sup m h,* (W A,) < B(w, A,) < A(o, 4) 
= max ( R  (a ,  0), sup R (o,  &(o))). 

k 3 p  

By (2.12) we know that the function 6 ~ R ( w ,  19) is upper semicontinuous 
on O. Thus letting p -, a and taking the infimum over all B E % (fin (a)], we get 

lirn inf h, (o , gn (o)) < inf R ( o  , 0). 
n+ m e~e{e,(w)) 

This fact proves (2.26) and completes the proof. H 

COROLLARY 2.3. Let S? = ((h, (w ,  0), I n 2 1) 1 I9 E Oo) be a given family 
of reversed submartingales. If & is measurable and degenerated, then there exists 
a P-nu11 set N E ~  such that for any sequence {$ I n 2 1 )  of functions fiom 
B into O and any subset B of 8 we have: 

lim n+ suph,8(0,3) m < A(@, 

lim n-rn infe (a ,  B) < Bo (B), 
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(2.30) lim inf h, (w , On (w)) < rnin ( H ,  (% (8, (o))), inf 17 (6)). 
n + m  W V n ( m ) 1  

P r o  of. Let N be the P-null set constructed in the proof of (2.17). Then 
(2.27) and (2.28) follow from (2.23), (2.24), and (2.17). Moreover, (2.29) and (2.30) 
follow from (2.25) and (2.26) in the same way. These facts complete the proof. B 

PROPOSI~ON 2.4. Let sEa = ((h,, (w, e), 1 n 3 I} I O E Od) be a given 
family of reversed submartingales, let {dn I n 2 1 )  be a sequence of functions 
from Q into- e, l=t F beeahnct ion from P into R, and let us defhe: 

QF = {o E i2 I lim inf h, (w , dn (w)) 3 F (a)], 
n+ m 

aF = {w E I lim sup h, (w, d,, (w)) 2 F (4]. 
n- m .. . 

Then we have: 

(2.3 1) 68 (8, (0)) c {O  E O I to, 8) 2 F (a)) for all w E QF , 

where V {on (w)} and 9 {d, (w)) denote the sets of all accumulation and limit 
points in O of the sequence {on (w) I n 2 I )  for ~ D E  Q, respectively. In particular, if 
S is measurable and degenerated and F is a constant in R, then there exists 
a P-null set N E B  such that: 

(2.34) % { d ~ w ) )  c { O  E O I (0) 2 F )  for all w E B,\N, 

(2.3 5) %' {8n (o)) n (8 E 8 1 R (0) 2 F) # 0 for all o E QF\N, 

(2.3 6) Y {on (w)) c { O  E O ] R, (6) 2 F )  for all o E Q,\N. 

P r o  of. (2.31) follows from (2.26). 
(2.32): Since the upper semicontinuous function R ( o ,  a )  attains its maxi- 

mal value on the compact set % {&(a)}, we see that (2.32) follows from (2.25) 
and the last equality in (2.15). 

(2.33): If O E 3 (w)) , then Y {8,, (w)) = V {On (o)) = (6) , and (2.3 3) 
follows from (2.26). 

(2.34H2.36) follow from (2.31H2.333, respectively, by using (2.17). 

3. Let X = ({h,(o, 8),  1 I n 1) I 0~63,) be a given family of reversed 
submartingales. A sequence of functions (8, In 2 1) from D into 8 is called: 

(2.37) a sequence of empirical maximums associated with sEa if there exist 
a function q: Q + N  and a P-null set N E B  satisfying 
(i) dn(w) E O,, for all n > q (a) and all o E Q\N, 
(ii) hn (w, 8, (0)) = h,* (a, 8,) for all n 2 q (w) and all w E Q\N; 



(2.38) a sequence of asymptotic maximums associated with X if there exist 
a function q: D -, N and a P-null set N E iF satisfying (i) in (2.37) and 

lim inf h, (w, 0, (01) 2 Ho* (w,  0,) for all w E Q\N; 
R'4) 

(2.39) a sequence of approximating maximums associated with a? if there exist 
a function q: D + IV and a P-null set N E F satisfying (i) in (2.37) and 

lim in€ h, (a, 8, (w)) 2 p (w) for all w E Q\N, 
n+ m 

where 8 (a) : = = supe,,, l ( 8 )  if X is degenerated, and 
a p  (a): = supoEB, l(w, 0) otherwise, for all w E a. 

It is easily verified that every sequence of empirical maximums is a se- 
quence of asymptotic maximums, and that every sequence of asymptotic 
maximums is a sequence of approximating maximums. Although h, (o, .) does 
not need to attain its maximal value on @,, and (ii) in (2.37) may fail in this 
case, we can always find a sequence of functions (6, I n 2 I} satisfying: 

for all w E P and all n 2 I, where E, + 0 as n --, a. Passing to the limit inferior 
above we see that sequences of approximating and asymptotic maximums always 
exist. We emphasize that this fact is by itself of theoretical and practical in- 
terest. 

4. In order to describe the sets of accumulation and limit points of the 
sequences of maximum functions just introduced we shall define the following sets: 

If 2 is measurable and degenerated, then from (2.17) and the definition of p we 
find 

& = M(#) = { 8 ~ 8 , 1  R ( 6 )  2 p ) ,  
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The next proposition and the existence Theorem 4.1 in [14] provide a com- 
plete description d the  sets of all accumulation and all limit points of the sequences 
of maximum functions introduced in (2.37H2.39) above (see Remark 2.1 below). 

PROPOSITION 2.5. Let 2' = ((h, (w , 0), I n 2 1 )  I B E so) be a given fami- 
ly of reversed submartingaks. 

(2.40) If (8" I n 2 1) is a sequence of empirical maximums associated with A?, 

.. then thers exists a P-null set N E 9 such that for all o E O\N we have: 
- (i) {dn ( 4 )  -%* (XI , 
-(ii)- {d; (a)] n M* (m # a, 
(iii) lim,, , d {& (a), i%$* (x)) = lim in&, , d {& (a), M* (A?)) = 0, 

(iv) 9 (8" (4) (= L*o 

(2.41) ~f {$ I n 2 1 )  is a sequence of asymptotic maximums associated with 3%', 
then there exists a P-null set N E S such that for aEE cc, E G\N we have: 

(i) (6, (4) M8 (m, 
(ii) lim,,,d(fl,,(w), ME(&')) = 0, 
(iii) 9 (w)) c L5 (2). 

(2.42) If (Qn I n 3 1)  is a sequence of approximating maximums associated 
with 2, then there exists a P-null set N E P such that for all w E O\N 
we have: 

(i) {& (41 A2 (XI, 
(ii) h,,,, d(@,,(m), ~(s) )  = 0, 
(iii) 9 {dn (w)} c (A?). 

The proposition follows by definitions and Proposition 2.4. cc 

C O ~ L L A R Y  2.6. Let X = ({h,  (a,  O), Sf$ 1 n 2 1) 1 8 E 8,) be a given family 
of reversed submartingales. 

(2.43) For every 0 E M (X) (&* (X))  there exist a sequence of approximating 
(asymptotic) maximums {on I n> 1) associated with X and a P-null set 
N E 9 satisfying: 
(i) 8,, is %-measurabIe for all n 2 1 ,  

(ii) 8 E V (on (a)) for all w E Q\N. 

(2.44) For every 0 EL (Z) (L5 (3%')) there exist a sequence of approximating 
(asymptotic) maximums (0, I n 2 1 )  associated with %' and a P-null set 
N E 2F satisfying : 
ti) @,, is %-measurable for all n 2 1 ,  

(ii) g n 3  (0) on $2, 
(iii) 8, ( a ,  0) = lim inf,,,, h, (w, 8, (w)) < lim sup,,, h, ( a ,  & (w)) 

= H(o, 8) for all ~ESZ\N.  

6 - PAMS 10.2 



P r o  of. The proof of the first part of (2.43) and (2.44) for non-degenerated 
families of reversed submartingales # is given in 1141 (see Corollary 4.2). It is 
easily verified that the same proof works for the second part of (2.43) and (2.44) 
as well. -If &' is degenerated, then the proof may be carried out in exactly the 
same way by using (2.17) above. 

Remark 2.1. (1) Combining (i) in (2.42) with the first part of (2.43) we see 
that M (X)  is exactly the set of all possible accumulation points of all possible 
sequences of approxirnating maximms associated with H. Similarly, combining 
(iii) in (2.42) with the first part of (2.44) we see that f, (2) is exactly the set of 
all possible Iirnit points of all possible sequences of approximating maximums 
associated with H. 

(2) Combining (i) in (2.41) with the second part of (2.43) we see that 
a*(&') is exactly the set of all possible accumulation points of a11 possible 
sequences of asymptotic maximetms associated with X. Similarly, combining (iii) 
in (2.41) with the second part of (2.44) we see that Lk, (8) is exactly the set of all 
possible limit points of all possible sequences of asymptotic maximums. 

3. CONSISTENCY THEOREMS 

1. Let X = ({h,(w,  O), 1 n 2 I} ) 0e  BOO) be a family of reversed sub- 
martingales defined on a probability space (12~5, P) and indexed by an analytic 
metric space 8,. Suppose that S? is degenerated and define the set 

where #I = sup,,, I ( 8 ) .  Let r c O .  Then H is said to be S-consistent on r if 
for every sequence of approximating maximums {on I n 2 1 )  associated with 
X we have 9? (on (o)) n r c M for all o E O\N, where N is a P-null set in K In 
particular, # is said to be S-consistent if it is S-consistent on O. Note that 2 is 
S-consistent on r if and only if every accumulation point of any sequence of 
approximating maximums (gn I n 2 1) associated with Z which belongs to 
r is a maximum point of the information function I on O,. 

2. By (1) in Remark 2.1 we know that M(X)  is exactly the set of 
all possible accumulation points of all possible sequences of approximating 
maximums associated with X.  Therefore the following statements are equiv- 
alent: 

(3.4) H (0) < ,9 for all 0 E r\M (X).  
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Suppose that (on I n 3 1 )  is a r-tight sequence of approximating maxi- 
mums associated with &'. This means that % ( ~ , , ( w ) )  c T for all w€B\N, 
where N is a P-null set in 9. If 2 is S-consistent on T, then 

(3.5) @ (4" (w)I C M ,  

(3.6) lim d (dm (w) , M )  = 0 
n+ m 

for all OEO\N, where N is a P-null set in 9. 

3. Our next aim is to show that the main conditions for consistency of 
&' given-in-[6] remain vdid for conditionally S-regular families of reversed 
submartingales introduced in [13]. In the next two propositions we collect 
some information of independent interest, which is motivated by [6] and offers 
more than really needed to complete our main aim. The main result on consis- 
tency is presented in Theorem 3.3 below. Although its proof in part follows by 
results of the next two propositions, we independently present a complete 
self-contained proof. 

In the following we will use d (8) to denote the family of all analytic sets 
in O. We further set 

B W ,  ro) = {W, l.1 I ~ E Q + ,  r < r*] 

for all 0 E 9 and all ro > 0. We finally recall that BQ = int ( B  u (@\@,)) for, any 
B c O. 

PROPOSITION 3.1. Let 2 = ({h,(w, B) ,  Yn ( n 2 1) I 8 E O,) be a given 
family of reversed submartingales, and let us suppose that for some B E @  
and B E  d ( O )  we have 

q(B)<oo and qd:(3)<co.  

I f  2 is measurable, then: 

(3.7) H* (w,  B) = Hg (a, B) P-a.s. if # is conditionally S-regular relative to 
; 

(3.8) H* (3) = fi* (B)  = q* (B) if% is conditionally S-regular relative to ( B )  
and degenerated; 

(3.9) R (a, 8) = Ro (a, 8) P-a.s. for any 8  E B0 such that 2 is conditionally 
S-regular relative to B(B, r,) for some re > 0; 

(3.10) R(8) = 8, (8) = q (8) for any 8~ BO such that Yf is conditionally S- 
-regular relative to B(8,  r,) for some r, > O and degenerated; 

(3.1 1) q (8) = P-a.s. limn,, Zn (8) if &' is conditionally S-regular relative to 
B(6,  r,) for some re > 0 and degenerated; 

(3.12) H* (w, U;=, A,) = man, ,,,. H* (a, A j )  P-a.s., where A,, . . ., A, c @ 
with m 2 1; 



(3.13) q* (UT=l Ad = man, ( jbn q* (Aj)  if2 is conditionally S-regular relative 
to the family {A,, . . ., A,} and degenerated, where A,, . . ., A, E d (0) 
with m 3 1. 

P r o  of. ( 3 . 7 ~ 3 . 1 1 )  follow by the definition of the conditional S-regularity 
and the reversed submartingale convergence theorems, using the monotone 
convergence theorem for (3.10), 

(3.12) follows from the fact that limit superior and maximum over a finite 
set commute. 

(3.13) .follows -from (3.8) and (3.12). EJ 

As in [6] we introduce two sets of points in 8 that play an important role 
towards consistency. Let SEa = ((h,  (a, 01, 9" 1 n 3 1 )  I 0 E OO) be a given family 
of reversed submartingales. We define the set of all C-dominated points 
of SP as follows: 

8, = ( O f 8  1 3 G ~ 9 ( 8 ) ,  BEG with q*(G) < m). . 

Note that is an open set in 8 and a point 0 E 8 belongs to 8, if and only if 
there exist m 3 1, $ E fi (P) and G E (@) with 0 E G satisfying h, (w , 0) < $ (co) 
for all o E i2 and all 0 E G n $. We define the set of all upper semicontinuous 
points of &' as follows: 

8, = ( 0  E 8 I h,(o, .) is P-a.s. upper semicontinuous 

at 9 for all n 2 k with some k 2 1 ) .  

PROPOSITION 3.2. Let 2' = ({h, (a, 8), 9, I n 2 1) 1 9 E 8,) be a given 
family of reversed submartingales. I f  iW is measurable, then: 

(3.14) I f @ ,  0) = R, ( a ,  9) P-a.s. for any 0 E Od such that &' is conditionally 
S-regular relative to B(6, re) for some re > 0; 

(3.15) IT (0) = H0 (8) = ~ ( 8 )  < oo for any 0 E O, such that &? is conditionally 
S-regular relative to B(8,  r,) for some r, > 0 and degenerated; 

(3.16) R ( 0 )  = Ho (0) = ~ ( 0 )  = I(9) < oo for any 0 E 8, n 8, such that &+ is 
conditionally S-regular relative to B(0, r,) for some r, > 0 and degene- 
rated; 

(3.17) q* ( K )  < oo for every compact set K c 8, if% is conditionally S-regu- 
lar relative to {b (0,  r) I 0 E K, r E Q+ , r < re) with some re > 0 and de- 
generated; 

(3.18) q* (B,) < ao i f  and only i f  Od = O ,  provided that S? is conditionally 
S-regular relative to {b (0,  r) I 0 E Go, r s Q+ , r < re) with some r, > 0 
and degenerated; 

(3.19) 0 E Q,, if and only i f  there exists an open neighborhood G of 0 satisfying 
?*(A) < co for every A c G n O o  such that A= A u { 8 ) .  
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P r o  of. The statement (3.14) follows from (3.9). The statement (3.15) 
follows from (3.10). The statement (3.16) follows from (3.15) by the definition of I. 
The statement (3.17) follows from (3.13) by using a compactness argument. 
The statement (3.18) follows from (3.17) by the definition of Qd, since 8 is 
compact. The proof of statement (3.19), which is not used in the sequel, is the 
same as the proof of the analogous fact given in [6] (see p. 40). Observe that the 
so-called general monotone convergence theorem is used for this purpose. 

THEOREM 3.3 (Consistency of Reversed Submartingale Models). Let 
X' = ({hn (o, 81, I n 3 13 I 0~ 8,) be a giuen family of reversed submartin- 
gales, and kt I: be a subset of O. Suppose that 2 is measurabie and degemrated. 

(3.20) If /3 = -a), then iW is S-consistent on r if and only if 

r c s,u(s\@,) = e\(~~\s,) .  
(3.21) If f l >  - m, t h m  A@ is S-consistent on r if and only if 

r c M U ( @ \ M ( X ) ) U ( @ ~ ~ Q J  

provided that X is coplditionally S-regular relative to B(8 ,  r,) for all 
0 ~ r n @ , n @ ,  with some r, > 0. 

(3.22) I fX is S-consistent on r and r n  M (S) = (8,) for some 8, E BO, then 
d,, 4 8, P-a.s. for every r-tight sequence of approximating maximums 
(on I n 2 1) associated with S. 

Proof, (3.20): In this case M ( X )  = 0, and M (Z) = $, so the statement 
is obvious. 

(3.21): I f  d' is S-consistent on r, then by (2.43) we have 

, r c M (x) U(O\M (x)). 
Conversely, suppose that 

then it is enough to show that B (0) < 8 for all 0 E r\M (X) .  For this, first note that 

and since R (0) < for all 8 E @\M (d'), it is enough to show that R (8) < P for 
all 0 E r n {(@, n @)\M (S)) . Hence we see that the proof will be completed by 
showing that 8 (8) = 1 (8) for dl 8 E T n  8, n 8,. For this, since Z is degene- 
rated, we have 

s (0) = inf E* gn(8) 2 inf Ehn (8) = 1(0) for all 8~ 8. 
513 1 a 3  1 

For any 8 E B, there exists k 2 1 such that = h,(B) P-a.s. for all n 2 k. 
Hence we obtain 

I (0)  = inf Eh,, (8) = inf Eli;, (0) 2 inf Ek, (0) = q (0) for a11 8 E 0,. 
n 3  1 n 3 k  n B  1 



Thus we may conclude that I(0) = q (6) for all 0 E 0,. Since, by our hypotheses, 
S' is conditionally S-regular relative to B(0, r,) for all 8~ ~ I I  8, n Bd with some 
re > 0, there exist n,, j, >, 1 large enough to satisfy 

~ h , * ( b ( B , 2 - ~ ) < c a  for all n a n ,  and a l l j > j e  

and such that by (i) and (ii) in Corollary 4.2 in [13] and the monotone conver- 
gence theorem we may conclude that 

t f (0)=  inf ET;,(B)= in€ inf I3h:(b(B,Z7q)= in€ inf ~h:(6(0,2-3) 
- Bane - nBne jaje i 3 j e  nBae 

= inf I&* (b (0, 2-j)) = inf H* (b (0, 2-91 = H, (0) = ir (0) 
I a j e  j z i e  

for all 0 ~ T n @ , n 8 , .  Thus l(0) = q(8) = B(9) for all 8 ~ r n @ , n @ , ,  and the 
proof of (3.21) is complete. 

(3.22) follows by the definition of S-consistency of &' on r. 
4. We continue to examine conditions for consistency by using a different 

method. As before, we assume that a?' = ({h, (w , 01, Yn I n 3 1) I fl E O,) is 
a measurable and degenerated family of reversed submartingales. Our main 
idea is based upon the fact that the set of all possible accumulation points of a 1  
possible sequences of approximating maximums fi(* is described in terms of 
the upper information function H which is given by 

i7 (0) = inf lim sup h,* (a, b (8, r)) 
r>O n+m 

for all w E O outside some P-null set N, €9. Hence we see that conditions 
implying 

lirn sup h: (a, b (0, r)) = sup 1(5) 
n + m  S E ~ ( B , ~ )  

for all. w E B outside N, and all r E  Q+ , r < r,, have as a consequence 

where O E  O is a given point and r, > 0 is a given number. Since the set 

is closed and contains M (X),  we obtain cl (M (Z)) c a ( % ) .  Conversely, if 
0 E (X) ,  then there exists a sequence (8, I n 2 1) in O satisfag 

d(Bn,0)<2-" and 1 ( 0 , J & ( P ~ n ) - 2 - ~  for all n 2 1 .  

Thus, if 0, + 0 with I(0,) + fl implies I(8) = 8 for all 0 E A? (X), then 
&? (X)  = M (2') = cl(M (Z)). This is for instance true if I has a closed graph, 
or if I is upper semicontinuous on a(#). It is instructive to observe that I 
is always upper semicontinuous on M (At), as well as that for every 8 E i@ (2) 
we actually have T(0) = p, 
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5. Our next approach is based upon the basic idea just described. First we 
consider the separable case in Theorems 3.4, 3.5 and 3.6. Then we examine the 
non-separable case in Theorems 3.7 and 3.8. All these results are based upon 
conditions for uniform convergence of families of reversed submartingales 
established in [15]. In this context we find it convenient to recall some definitions 
needed in the sequel. 

Let X' = ((h, (w,  %), 1 I n 11) I 0 E @,) be a given family of reversed 
submartingales defined on a probability space (9, P) and indexed by an 
analytic metric space @,,-let D = {a j  1 j 2 1) be a countable subset of Go, and 
let D, = .(a;, . . . , '6,) for all n >, 1. For a given set A c @, let us put 

MA (h,) = sup h, (6) for all n 2 1. 
BeA 

Then 2 is called totally bounded in P-mean relative to D if any of the following 
five equivalent conditions is satisfied (see [15]): 

(3.23) The double sequence {E(M,,(~J) 1 n, k 2 1 )  is regularly convergent 
(in Hardy's sense). 

(3.24) The double sequence ( E  (MDk (h)) I n, k 3 1) is convergent (in Prings- 
heim's sense). 

(3.25) - ai < lim E (MDk (ha)) = lim E (MD (4)) < + co . 
k+ m n+m 

(3.26) For all E > 0 there exists p, 2 1 such that for all n, rn, k, 12 p, we 
have 

(3.27) For all E > 0 there exists p, 3 1 such that 

IMD (hpb)-  (MDps (hm)) < 
where h, (6) denotes the P-a.s. limit of h,(8) as n -r co for all 6~ 0,. 
In this case the limit of ( E  (MDk (h,J) 1 n, k 2 1) from (3.23) and (3.24) is 
equal to E(MD(h,)), and we have 

lim lim E (M,, (h,)) = E (MD (h,)) = lim lim E (M', (h,)). 
k + m  n-rm n-tm k + m  

Moreover, by Theorem 3.1 in [15], then we have 

MD (h,) -, MD (k,) P-as. and in C (P)  

as n + co. For more information in this direction we refer to 1151. 
We recall that Tdenotes the upper semicontinuous envelope of I on O. 

The graph of I is defined by 

A finite cover of the set T is any family of non-empty subsets A,, . . ., A, of 
T satisfying T = U;=, Aj.  The class of all finite covers of Tis denoted by r (T). 



Finally, according to [13], we set 

THEORXM 3.4. Let 2 = ({h,(o, 0),  9, [ n 2 1) I 0~ @,) be a given family 
of reversed submartingaies, and let r be a subset of 84. Suppose that S is 
degenerated a d  that any of the following three conditions is satisfied: 

(3.28) &' is separable; 

(3.29) 2 is separable relative to 3 (8, r,) and %-, (R) for all 0 ~ r n  a(%) 
- with some r, > 0; 

(3.30) &' is P-a.s.-tower semicontinuous on ~nl@(&'). 

I f  the family of reversed submartingales ({h,  (a, 0, 9, I n 2 1)  I g G b (0,  r)) is 
totally bounded in P-mean relative to b (8 ,  r ) n  D, for all 8 E T n M (q and all 
~ E Q + ,  r =S re with re > 0,  where D, is a countable subset of B, sati$ying the 
conditions of the separability definition of A? relative to B(6 ,  re), then: 

(3.3 1) I7 (0) = T(0) for all 0 E r n M (a?); 

If I in addition satisfies any of the following two equivalent conditions: 

(3.33) I is upper senaicontinuous on rna(w, 
(3.34) cl (gr (I)) n((r n ni (s)) 5 { B ) )  c gr ( I )  or. equioalently, if 0, -r 0 mui 

I(0,) + f l  with 8 ~ r n M ( 2 ) ,  then 1(8) = fi, 
then 2' is S-consistent on r. 

Proof. Suppose that 2 is degenerated and that any of the conditions 
(3.28H3.30) is satisfied. Then, by (ii) in Proposition 4.3 in 1131, it is no restric- 
tion to assume that (3.29) holds. Hence, by (i) in Proposition 3.3 in [13], for 
given 0 E T  n M(%) there exists a P-null set 4 E f such that 

for all  LIE O\Ne, all r E Q, , r < re and all n 2 1, where D, is a given countable 
subset on 8, satisfying the conditions of the separability definition of 2 rela- 
tive to B (8,  r,) with r, > 0. Since by our hypotheses the family of reversed 
submartingales ((h, (m, 5) ,  I n 2 1) 1 5 E b (0 ,  r))  is totally bounded in P- 
-mean relative to b (0,  r) n D,, b y  Theorem 3.1 in [I31 we have 

sup ( , )  sup I (5 )  a s n + a  
Ecb(e,rlnDe t ~ b ( 8 , r ) n D e  

for a11 w E Q\NO and all P E &+ , r < re, where No E 9 is a P-null set. Hence by 
(2.20) we find 

R (0) = inf lim sup h,* (w , b (8,  r)) = inf lim h,* (w , b (8 ,  r )  n De) 
r > O  n-'m r > O  n+ao 

= i d  sup I(t) < r(8)  < fl(@- 
r >  0 c~b(B.r)nDe 
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These facts imply H(0) = T(0) 2 and complete the proof of (3.31) 
and (3.32). 

In addition, given 0 E r n & ( H )  there exists a sequence (0, I n 2 1) in O, 
satisfying 

d(8,, 0)<2-" and 1(8,J>(Bnn)-2-" for all n 3 1. 

Hence we see that 8, + 8 and I(6,) -, 8. Thus if (3.34) is satisfied, we obtain 
r n M (X )  c M (At'). Moreover, it is straightforward to verify that (3.33) is 
equivalent to (3.34) under _(3.32). These facts complete the proof. r 

Reniarka 3.1. If any the conditions (3.28H3.30) in Theorem 3.4 is satis- 
fied, then by Remark 3.2 in [I31 and (ii) in Proposition 4.3 in [I31 we see that 
there exists a countable set D in Go satisfying the conditions of the separability 
dehitian relative to all open sets $(@*) in 0, and %-, (8). Moreover, if (3.30) 
is satisfied, then D can be taken as an arbitrary countable dense subset 
of Oo. Consequently, it might be possible in these cases that in the assumption 
of total boundedness in P-mean in Theorem 3.4 we actually have D, = D for all 
e ~ r n ~ ( # ) .  

Remark 3.2. Under the hypotheses of Theorem 3.4, let us suppose that 
8 ~ 6 3 ~ .  Then there exists re > 0 such that Eh,* (b(0, r,)nD,) < a~ for some 
k 3 1, where D, = {aj I j 2 1) is a countable subset d B0 satisfying the con- 
ditions of the separability definition of A@ relative to B(6, r,). Since D, is 
countable, the family (h? (b (0, r) n Do), 9" 1 n 2 k) forms a reversed submartin- 
gale for all O <  r < re. Hence we easily find that the family of reversed submar- 
tingales 

is totally bounded in P-mean relative to b (8, r)n Do if and only if the following 
condition is satisfied: 

where Desk = (al, . . ., ak} for all k 2 1 and 0 < r < re. In this case we have 

= inf EhX (b (0, r) n$) = sup 1 (aj) 
nb 1 j b l  

for all 0 < r < re. Note also that we have 

= lim Eh,* (b (0, r) n Do,k) = sup I (aj) 
n+m l < j G k  

for all 0 < r < re and all k 2 1. 



6. We continue by examining conditions for consistency of 2' that are 
expressed in terms of an internal (Lipschitz) property of the sequence 
{h,(O) I n 3 1 )  when B runs over 8. Our next result in this direction is based 
upon Theorem 4.7 in [I51 and the following simple inequality: 

(3.38) sup (a, - b,) + 2 sup an -sup b,, 
n 3  1 R >  1 n 3  1 

where a,, b, E R for n 3 1, with the convention rn - co = 0. 

THEOREM 3.5. Let 2 = ((h,  (a, 0), 9, I n 2 1 )  1 OE 0,) be a given family 
of reversed submartingalea, and k t  r be a subset of 0,. Suppose that 2 is 
degenePated and that any of the following three conditions is satisfied: 

(3.39) 2 is separable; 

(3.40) 2 is separable relatiue to B (0, r,) and W- , (R) for all 0 ~ r n  M (8') 
with some r ,  > 0; 

Suppose that for all 0 ern M there exists re > 0 such that the following condition 
is satisfied: 

(3,42) for all E > 0 there exists ll = {A, ,  . . . , A,&) E r (b (0 ,  r,) n 4) and there 
exist 6 , ~  dl ,  .. ., d , ~  A,= such that for aII N 2 1 ,  thew exist n, B N 
and 'Y, , . . ., !PC,. E L? (P) satisfying : 
(i) ( I (a j ) - I (0 )+ < E for all <E A j  and all j = 1 ,  . . ., me, 

(ii) (hn,(5)-hE(6j))+ < for all [ € A j  and all j = 1 ,  ..., m,, 
(ii) max E (5) < E ,  

IS j S m .  

where D, is a countable subset of O, satisfying the conditions of the separability 
de$nition of &' relative to B (0, re). n e n :  

(3.43) (8) = T(0) for all 0 E r n M (Z); 

If I in addition satisfies any of the following two equivalent conditions: 

(3.45) 1 is upper semicontinuous on rn M (2), 

(3.46) cl (gr (I)) n ((r n M (2)) 5 {/I]) c gr (I) a, equivalently, if 13. + 8 and 
I(O,,)+/I with f ? ~ r n M ( S ) ,  then I (0)  = /I, 

then &' is S-consistent on r. 
Proof.  We have shown in the proof of Theorem 3.4 that under the hypo- 

theses (3.39)-(3.41) for every O E r n M (m there exists a P-null set No €9 such 
that 



Families of reversed submartinoales 309 

for all w E O\N,, all r E Q+ , r r r,, and all n 2 1 ,  where D, is a given countable 
subset of 8, satisfying the conditions of the separability definition of JP relative 
to B (0, re) and re > 0 is a given number. Let B E  T n  a (8') be a given point. 
Since for given points 5 E b (9, re) and B j  E b (0, re) nD, with j 2 1 we have 

by (3.42) and Theorem 4.7 in ClS] we may conclude that the family of reversed 
submartingales 

(((h.(q-~tn)+,  Y: I n g  1) l t ~ b ( 6 7  r.)) 
is totally bounded in P-mean relative to b(0, re)nDe. Thus, by Theorem 3.1 in 
[I 51, we have 

sup (la,,(() - 1(5))+ -+ 0 P-as. and in I! ( P )  
P~b(B.re)nDe 

as n -+ a ,  for all r E Q+ , r G r,. Note that by (ii) in (3.42) for given 
rE Q+ , r r e  we have Ek: (b (0, r) n~,) < GO. Thus the family 
{h,* (b (9, r) n ~ , ) ,  9, I n 2 n,) forms a reversed submartingale. Moreover, it is 
clea; that 

sup I ( e )  < lim sup h, (5) P-ads. 
&b{B,rInDe n+m &b[B,r)nDg 

Hence by (3.38) we obtain 
sup h a ,  sup I(6) as n + a  

&b(B.rInDe S~b(e,r)nDe 

for all o E where No E 4" is a P-null set. The remaining part of the proof is 
the same as the last part of the proof of Theorem 3.4. 

The next theorem concerns the martingale case and is based upon Propo- 
sition 4.9 in [15]. 

THEOREM 3.6. Let S = ((hn(w, 9), Yn I n > 1) I 8~ O,) be a given family 
of reversed martingales, and let r be a subset of 0,. Suppose that 2' is degene- 
rated and that any of the following three conditions is satisfied: 

(3.47) S is separable; 

(3.48) 2' is separable relative to B (9, r,) and %?-, (R) for all 9 E r n  M (2) 
with some re > 0; 

(3.49) 3f i s  P-as.-lower semicontinuous. 

Suppose that for all 9 E r n  M (S) there exists r, > 0 mch that the following 
condition is satisJied: 

(3.50) for all E > 0 there exist n, 2 1, I7 = ( A , ,  . . ., dm=) E T (b (9, re) n D,) and 
MI, . . . , Ym, E I.? (P) satisfying 

(i) lh,(W)-hn8(B")I < for all O', 13"€Aj and all j = 1, ..., mE, 
(ii) max E (h) < E ,  

I b jbnt. 



where D, is a countable subset of 8, satisfying the conditions of the separability 
definition of 2 relative to B(8,  r,). n e n :  

(3.51) sup Ih, (t) - 1 (c)1 -t 0 P-a.s. and in 2 (P), as n -, c~ , for all 
&b(e,re)nD_e 

B € r n M ( X ) ;  

(3.52) (0) = T(0) for all O E  T n  (m; 

If I in addition satisfies any of the foiIuwing two equivalent conditions: 

(3.54) ' I is upper semicontinuous on r n  M I%), 
(3.55) cl (gr (4) n ((rn M (XI) x {PI) c gr ( I )  or, equivalently, f 0. + 0 and 

I(e3+fl with e ~ r n M ( X ) ,  then I(@) = fl, 
then fl is S-consistent on r. 

P r o  of. We have shown in the proof of Theorem 3.4 that under the hypo- 
theses (3.47)-(3.49) for every 0 ~ r n  (#) there exists a P-null set No E 9 such 
that 

sup h , ( o , O =  sup h n ( w , t )  
C E Y ~ , ~ )  teb:Eb(e,r)nDo 

for all cu E @$I,,, all r = Q+ , r < re and all n 2 1 ,  where D, is a given countable 
subset of 0,  satisfying the conditions of the separability definition of X relative 
to B(0,  r,), and r, > 0 is a given number. Take a point 8 E T n M (m; then by 
(3.50) and Proposition 4.9 in [I51 we may conclude that the family of reversed 
submartingales 

is totally bounded in P-mean relative to b(8,  re)nD, with r, > 0. Thus, by 
Theorem 3.1 in [15], we have 

sup lhn (t) - I ( ( ) )  + 0 P-a.s. and in I? (P)  as n -P m 
S~b(@,r)nDe 

for all r E Q,, r < r,. Hence we find 

sup h a ,  sup I(c)  as n + m  
<~b(O,r)nDe E~b(9,r)nDe 

for all o E P\No and all r E Q+ , r < re,  where N, E 9 is a P-null set. These facts 
complete the proof of (3.51)-(3.53) and of the last statement of the theorem in 
exactly the same way as in the last part of the proof of Theorem 3.4. m 

7. We proceed by studying the conditions for consistency of not neces- 
sarily separable families of reversed submartingales. First we consider the sub- 
martingale case in Theorem 3.7. Then we present its martingale version in 
Theorem 3.8. We find it convenient to recall some definitions from [15]. 
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Let O, be an analytic metric space, let (8,d) be a compact metric space 
containing BO, and let f be a real-valued function defined on O. Then we 
define the lower, upper and absolute jump o f f ,  respectively, at a given point 
8 6 8 as follows: 

a+(e, f )= inf SUP ~f te ) - f ( t )~ ,  a - w , f ) = i n f  SUP ~ f t e ) - f ( 011 ,  
r>o t ~ b ( 8 , r )  r'O hb(f3,r) 

a(e , f l=max{a+(B , f l ,  8 - ( 0 , f ) }  = inf sup V(0)-f161. 
'>* SEb(B.rl 

In addition, we introduce the fallowing notation: 
-. . - 

T H E D ~ M  3.7. Let JY = ({h,(m, 81, L( 4a, n 2 11) I 06 Oo) be a given family of 
reversed submartingales, and let r be a subset of 6. Suppose that X is degene- 
rated and for all 0 ern&(&') there exists r, > 0 such that the foilowing con- 
dition is satisfied: 

(3.56) for all E > 0 there exist L! = (A , ,  . . ., Arne} ~ r ( b  (0, r , ) n ~ )  and there 
exist dl E dl ,  . . ., S,,E A,. such t h t  for all N 2 1 there exist n, 2 N 
and !PI, . . ., !Pms EL' (P)  satisfying 

(i) ( I  ( d j )  - 1(5))+ < E for all [ E A j  and all j = 1 ,  . . ., m,, 
(ii) (h,,(<)-h,,51.(6j))+ < for all { € A j  and all j = I ,  ..., m,, 

(iii) max E ( q )  < E ,  
16j<nr. 

where D is a countable subset of 0,. m e n  we have: 

(3.57) If (3.56) is satisfied for each countable subset D of 0, and A+(h,J * 0 
P-as. as n + ao, then: 
(i) 8 (8) = T(B) for all 0 E r  n M (Z), 

(ii) I ' n M ( Z )  = { O E ~  1 170) = 8). 
If I in iaddition satisfies any of the following two equivalent conditions: 
(iii) I is upper semicontinuous on r n M (s), 
(iv) cl (gr ( I ) )  n ((r n M (2)) x {#I]) c gr ( I )  or, equivalently, if 8, + 0 

and I(9,) + P with 9 E r n M (X) ,  then I(8)  = P ,  
then Z is S-consistent on r. 

(3.58) If (3.56) is satisfied for some countable dense subset D of Boy I is upper 
semicontinuous on U b (6, r,), and A + (h,) + 0 P-a.s. as n -, co , 
then: 
(i) H(8) = I (6)  for all B E ~ ~ M ( # ) ,  

(ii) rn M(%) = { O E ~  I I (8)  = f i ) ,  
and JP is S-consistent on r. 



Proof. By Theorem 4.7 in [15] we see that condition (3.56) is equivalent 
to the fact that the family of reversed submartingales 

is totally bounded in P-mean relative to b(8 ,  r,)nD, where r,  > 0 is a given 
number. Hence, by the first hypothesis in (3.57), or the first two hypotheses in 
(3.58), and by Theorem 4.1 in [15], there exists a sequence of random variables 
{K ', n 2 1) satisfying I/, -+ 0 P-a.s. as n -, cn such that 

-sup (hn Im, 5) - 1 (t)) + < A + (h, (w)) + [ (w) 
€~b(O,rel 

for all w EB and all n 3 1. Thus the assumption A +  (h,) -, 0 P-a.s. for n -, co 
implies 

sup (h, (t) -1 (())+ -, 0 P-as. as n 4 co 
bb(@.*) 

for all rE Q+, r < rg. Since the following two inequalities are satisfied: 

lim sup sup h, (5 )  2 sup I ( r )  P-as. 
n4 m E~b(0.r) <sb(e,r) 

whenever w E a, we may conclude that 

sup hn(w,()+ sup I ( 0  as n-oo 
< ~ b ( ~ , r )  r~b(e , r )  

for all ca E B\N, and all r E Q+ , r < r,, where No is a P-null set in S. The remaining 
part of the proof is the same as the last part of the proof of Theorem 3.4. H 

THEOREM 3.8, Let %' = ( (hn(o ,  O),  Q, n 2 1) ) OE @o) be a given family of 
reversed martingales, and let r be a subset of 0*. Suppose that &' is degenerated 
and that for all 8 E T n  M(X) there exists r, > 0 such that the following con- 
dition is satisfied: 

(3.59) f o r a E I ~ > O t h e r e e x i s t n , ~ 1 , l 7 = { A  ,,..., A,)~T(b(B,r,)nD),and 
'P; , . . ., YmE E I.? (P)  satisfying 

(i) Ih,= (8') - h,, (8'')I < for all Or,  8" E A j  and all j = 1,  . . . , m,, 
(ii) max E ( q )  < E ,  

1 < j < m .  

where D is a countable subset of 8,. Then we have: 

(3.60) If (3.59) is satisfied for each countable subset D of 0, and A@,) -P 0 
P-as. as n -t GO, then: 
(i) H(8) = r(8) for all O E T ~ M ( % ) ,  
(ii) r n ~ ( 2 )  = ( Q E ~  1 T(O) = /I]. 

i f  I in addition satisfies any of the following two equivalent conditions: 



(iii) I is upper semicontinuous on r n ~ ( d f ) ,  
(iv) cl (gr (0) n ((r n M (2)) x {j}) c gr (0 or, equivalently, if 8, -+ 0 

and 1(0,) + fi  with 0 ~ T n  M(X), then I(8) = P ,  
then &' 13 S-consistent on r. 

(3.61) If (3.59) is satis$edfor some countable dense subset D of O,, I is con- 
tinuous on U,ErnP(21b(0, r,), and A (h,) + 0 P-a.s. as n -, m, then: 
ti) R(0) = l ( e )  for a11  BET^ M(x), 

(ii) I ' ~ M ( s )  = ( 8 ~ r  I I ( 8 )  = P ) ,  
can& &' is S-consistent on r. 

Proof. The proof can be carried out as the proof of Theorem 3.7 upon 
using Proposition 4.9 in El51 instead of Theorem 4.7 in [15], and Theorem 4.3 
in [15] instead of Theorem 4.1 in [15]. rn 

4. EXAMPLES OF APPLICATION AND CONCEUMNG REMARKS 

There is a large number of statistical models that are covered by the 
preceding results. We cannot review them all here, but will instead refer the 
reader to [I]-[3], [5]-[12], [16]-[18]. Of course, there are various examples 
of statistical models which stay out of this scope, but they usually require 
individual treatments. Our main aim, however, was to unify as many exampIes 
as possible, under common and simple conditions. 

1. To obtain a better feeling for applications in general, we find it convenient 
to restate and c l a m  the result of Theorem 3.3 in a less formal setting. Let 
X = ({h,(o, 0), I n 2 1) 1 BE@,) be a family of reversed submartingales 
defined on the probability space (9, E P) and indexed by the analytic metric 
space 8, (with the Bore1 n-algebra&?,). Let O be a compact metric space containing 
00, and set h,(w, 0) = - ao for n 2 1, o E Q and 0 E @\@,. Suppose that 

(4.1) (a, 8) H h, (o,  0) is x go-measurable for all n 2 1, 

(4.2) = Yn is degenerated. 

Let T c O be given. Then A? is S-consistent on r as soon as the following 
conditions are fulfilled: 

(4.3) 1 SUP&b(~,ra) h, (o,  l)  P (dm) < oo for all 0 E T with some r, > 0; 

(4.4) hn(w, .) is P-a.s. upper semicontinuous at 8 for all n 2 1 and all 0 E T ;  

(4.5) JP is conditionally S-regular relative to 

B ( 0 , r , ) = { b ( 0 , r ) I r ~ Q + , r < r , }  for all O ~ r w i t h s o m e r , > O .  

In other words, whenever (4.3H4.5) are satisfied, every accumulation point of 
any sequence of approximating (asymptotic, empirical) maximums (9, I n 3 1) 



associated with &' which belongs to r is a maximum point on e0 of the 
information function I associated with &', 

2. We find it useful to explain condition (4.5) in more detail. For this, first 
recall the definition (2.6). Note that if (4.1) and (4.3) above are fulfilled, then (i) 
and (ii) from this definition are satisfied with B = b(0 ,  r) whenever OET and 
r E  Q+,  r < r,. By the definition of a reversed submartingale and the mono- 
tonicity a of conditional expectation, we can clearly select a P-null set No€ F 
depending on the given BEB such that 

for all w E Q\N,. However, B might be uncountable, and therefore we cannot 
generally pass to the supremum in (4.6) over all OEB (see [13] for a coun- 
terexample). This is a crucial fact to be understood about the property of the 
conditional S-regularity of X relative to {B). Note that this property states 
that such a passage to the supremum is possible. 

Generally, the condition (4.5) is fulfilled in any of the following cases: 

(4.7) The process (%(a, B ) ) ~ ~ ,  is separable for n 2 1 (see Proposition 4.1 in 
C131). 

(4.8) The trajectory h,(a, -) is lower semiconGnuous (on the neighborhood 
of r )  for P-a.s. w E O and n >, 1 (see Proposition 4.3 in 1131). 

(4.9) Any U-process: 

satisfies (4.5) whenever X = (XI, X, , . . .) is exchangeable and 
Eh (X, 8) < for all 8 E Q, (see Example 4.4 in [13]). We recall that 9, 
denotes the set of all permutations of { I ,  2, ..., n), and that 
X, = (Xu*, . . ., X,,, X,+ . . .), where Xj takes values in any measurable 
space. The map h (-, 8) is real valued for all d E O,. 

We think that (4.9) is of theoretical and practical interest. In this way we 
see that the preceding results cover a variety of important examples. Note also 
that Theorems 3.4-3.8 offer a different type of conditions for S-consistency of 
&'. These results are particularly useful when condition (4.4) fails, but the 
information function I associated with X is still upper semicontinuous. 

3. In the remainder we explain the role of the preceding results in the area 
of stochastic processes. In this context the following problem appears worthy of 
consideration. 

Let 3 = ((Z,,(t)),, I n 2 1) be a sequence of stochastic processes defined 
on the probability space (a, F, P) with the common time set T. Let tn(w) be 
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a maximum point of Z , (w ,  .) on T: 

(4.10) Z,(w,i,(o))=supZ,(w,t) for w ~ i 2  and n 2 1 .  
~ E T  

The problem is to describe the asymptotic behavior of f (w) for n + cc. 
Under the hypotheses in this paper we have 

(4.1 1) Z ,  (-, t) -, L ( t )  P-a.s. as n -, oo , 

where L ( t )  is degenerated (a constant) for all t E T It indicates that maximums 
in (a) could approach the set M c T of all maximum points of the limit L on T 
Since it may happen that-the supremum in (4.10) is not attainable, we weaken 
this condition by requiring that 

for o E 0 and n 2 1 with E, (a) + 0 as n + a. We assume that the time set T is 
an analytic metric space, and for any compact metric space pwhich contains 
T we set 2, (a, 0) = - co for n >, 1, w E 62, and t E f\ T. We moreover suppose 
that 

(4.13) (a, t) + 2, (o, t) is measurable 

as a map from $2 x T into R for all n 2 1. Observe that, by passing to the limit 
in (4.12), we get 

(4.14) lim inf Z,  (w , f,, (w)) 2 sup L (t) P-as. 
n+m ~ E T  

In this way a sequence of approximating maximums {f,, ] n 2 1) associated 
with 9 is obtained. We may then ask when the consistency statement is sat- 
isfied : 

(4.15) Every accumulation point of any sequence of approximating maximums 
{i,, 1 n 2 1) associated with 9, which belongs to the given set r c 2 is 
a maximum point on T of the limit process L of 9'. 

4. In this paper we find a solution of this problem under the additional 
hypothesis: 

(4.16) (Z ,  ( t ) ,  I n 2 1) is a reversed submartingale for all t E T. 

The following conditions (see Theorem 3.3) are then sufficient for (4.15): 

(4.17) j sup ,,,, ,,, 2, (w, S )  P (dm) < m for all t E T with some rt > 0; 

(4.18) Z,,(o, .) is P-as. upper semicontinuous at t for all n 2 1 and all t ~ r ;  
(4.19) 3 is conditionalIy S-regular relative to { b  (t, r) I r E Q,, r < r,} for all 

t E r with some r, > 0. 

7 - PAMS 18.2 



It is moreover known (see [13]) that any of the following conditions is 
sufficient for (4.19): 

(4.20) The process (~ , ( t ) ) ,~  is separable for n 2 1. 

(4.21) The trajectory 2, (a, .) is lower semicontinuous (on the neighborhood 
of r )  for P-a.s. WEB and n 2 1. 

(4.22) Any U-process : 

satisfies (4.19) whenever X = (X,, X,, . . .) is exchangeable and 
Ez(X, t) < ao for all ~ E T  

Finally, note that Theorems 3.4-3.8 offer a different type of conditions for 
(4.15). These results are useful when condition (4.18) fails, but the limiting 
process L is still upper semicontinuous. 

5. We conclude the paper by giving two examples of application which 
follow the same pattern and can easily be modified to treat new cases. We are 
unaware of similar results. 

Throughout (Xj I j 2 1) denotes an i.i.d. sequence of random variables, 
and the processes Z,(o, t) are of the form (4.22). 

EXAMPLE 4.1. Let XI - N ( 0 ,  1) be from the standard Gaussian distribu- 
tion with density function 

f (x) = exp ( - x2/2)/,/% for x e R . 
Let T be a compact set in R and let u = min(T) and /I = max(T). If fn(u) 
maximizes the process 

over t~ T (in the sense of (4.12) or (4.14) above), then we have 
lo (la1 > [PI) =sf,, -+ a P-as., 
2" (la1 < 181) =s in -+ /3 P-as., 
3" (loll'= 1/31) - fn -+ {a, /I) P-a.s. 

as pa -+ a. We clarify that f,, + (a, 8)  P-a.s. means that every accumulation 
point of (in (a) I n 2 1) is either u or /3 for P-a.s. w E a. 

These facts readily follow from (4.17H4.19) by putting 

z (x, t) = (COS (txl) - COS (tx2))=/2 

in (4.22) and using the identity 
m 

I exp (- x2/2) cos (tx) dx = &exP(- t2/2) for t E R .  
-00 
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It should be noted that L from (4.11) takes the form 

L (t) = Var (cos (tX,)) = 1 + + exp (- 2t2) - exp (- t2)  for t E T 

EXAMPLE 4.2. Let XI - U (0, 1) be from the uniform distribution on 
[0, 11. Let T = [ -a,  B] for o: 2 0 and 2 x. If $(w) maximizes the process 

" n 

over t~ T (in the sense of (4.12) or (4.14) above), then f,, -, 1 P-a.s. as n + a. 
The given 5 is a uIjlique number from 10, IE[ that satisfies 5 sin (0 + cos (0 = 1. 

This fact feadily follows from (4.17)4.19) by putting z(x, t )  = x, sin(tx,) 
in (4.22). It should be noted that L from (4.11) takes the form 

1 
L (t) = E (XI sin (tX,)) = - (1 - cos (t)) for t E T, 

2t 

as well as that is a unique maximum point of L on R. 

6. The problem of asymptotic normality in these and similar examples 
appears worthy of consideration. 

Acknowledgment. The author thanks J. Hoffmann-J~rgensen for stimu- 
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