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A CENTRAL LIMIT THEOREM FOR STRICTLY 
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Abstract. For strictly stationary random sequences satisfying the 
"minimal" dependence condition, necessary and sufficient conditions 
for the weak convergence to the normal law in terms of slow variation 
in the limit are found. 

1. Introduction a d  results. Let {X,}, be a strictly stationary sequence of 
random variables defined on a probability space (a, 9, P). Let S, = z;=, Xk 
and let v, + + ao be a sequence of positive numbers. Let Jf denote a standard 
normally distributed random variable. 

Bernstein in [I] introduced a method for proving limit theorems for 
dependent variables known as "big blocks by small blocks separation". This 
method requires the following "dependence" Condition B(vn) (see [5 ] ) :  

(1. 1, l $ k + l S n  max I E (exp { i t  %}) - I3 
{i t  :I) I3 (ex p {it :})I 0 

for some sequence vn + + ao of nonnegative reds. 
Following [2] we s h d  say that the sequence of measurable nonnegative 

functions f, is (- y)-regularly varying in the limit if there exists a "rate" sequence 
r,, r ,  + + CQ, such that for any sequence x,, dominated by the rate sequence 
(i.e., such that x, = o (r,)) and x, L + ao, we have 

In the case where y = 0 we say that fn is slowly varying in the limit. If L is slowly 
varying in the sense of Karamata, then the sequence of functions 

is slowly varying in the limit. 
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A strictly stationary random sequence {Xk} with symmetric partial sums 
S, is in the domain of attraction of the symmetric strictly p-stable law, p ~ ( 0 ,  2), 
if and only if the sequence of functions 

is slowly varying in the limit ([2], Theorem 1). For p = 2 the corresponding 
result is stated in the following theorem: 

THEOREM 1. Let {X,} be a strictly stationary sequence with symmetric sums 
S, which satii$es (1.1) for some v, + +a. Then CLT for {X,) holds ifand only if 

is slowly varying in the limit sequence of functions. 

If {x,) is an i.i.d, sequence such that EX, = 0, EX: = 1, and the Cramkr 
condition 

Eiexp ( h  IXII)) < +a 
holds for some h > 0, then the sequence of functions: 

is slowly varying in the limit with the "rate" r,, = n1I6 ([4], XVI, § 7, Theorem 1). 
On the other hand, Nagaev in [8] (Theorem 1) proved that if x, 2 logn, then 
for laws such that 

x ~ + ~ P ( X ~  > X )  = L(x), 

where E > 0 and L(x) is slowly varying in the sense of Karamata, the following 
relation holds: 

Hence in the general case (such as the absence of variance) one cannot expect 
better than a logarithmic rate sequence in (1.2). However, the existence of any 
rate sequence is equivalent to CLT (for a similar result when 0 < p < 2 see [6]). 

THEOREM 2. Let {Xk) be a strictly stationary random sequence satisfying 
(1.1) for un -, +a. Then 

9 (0; s.1;;) Jv (0, 11, 
if and only $ 

is slowly varying in the limit for m = 1,2. 
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2 Roofs. Condition (1.1) depends on a normalizing sequence un. Some- 
times the information is required whether the sequence such that qn > v, also 
satisfies (1.1). It turns out that this is the case where the sequence {v; 'Sn)  is 
stochastically compact [3], i.e., that every subsequence has a further subse- 
quence which converges weakly to a nondegenerate limit. 

LEMMA 1. For a stochastically compact sequence ( v ,  S,)  the convergence 
in (1.1) is un$orrn on every [O, 73, T < + coy and 

(2.1) 
vt 

.. . 
lim max - < +co. 

n 1 9 1 9 n v n  

P r  o of of Lemma 1. Let {2k} be an independent copy of { X k }  and 
% = 8,. Assume that for some E ,  $ n the sequence (v,' (Sin- $J) is not 
tight. For any symmetric and independent random variables we have 

P ( X + Y  > x) 2 P ( X  > x ) . P ( Y  2 0 )  = + P ( X  > x). 
Hence 

is not tight, which together with (1.1) contradicts that { u i l  Sn) is tight. Now by 
the tightness of (v,I1 ( S I , - ~ l m ) }  we have 

Vl  lirn max - < + co. 
n l<l<nVn 

Assume that this is not the case. Then there exists a subsequence n' such that 

l i r n ~ ~ ~ v ~ ~ ,  = +m 
A' 

and 

which is not possible since any weak limit {v~,' SI,,) is nondegerate *and the 
left-hand side is tight. 

Now, let us assume that there exists T > 0 such that (1.1) does not hold 
uniformly on 10, TI. Hence there exists a subsequence n' such that tn, + to < T 
and 

while by (2.1) and the tightness there exist random variables 2 ,  Z , ,  2, such that 
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Hence 

= IE (exp {juto 2)) - E (exp {iecto 21)) E ( ~ X P  { iuh Za))l, 

but, by (1.1), Y (Z)  = 2' (Z1) * 9 (Z2). Thus the right-hand side equals 0, which 
is not possible. This completes the proof. 

We m a r  k 1. The Levy metric satisfies the following inequality ([9], Theo- 
rem 1.5.2):. . . .. 

Hence, if { v i l  S,) is stochastically compact, then condition (1.1) is equivalent to 

(2.2) max dL (9 iPiSk + ,/u,), 2 Isdun) * 9 (SJvn>) sr, 0. 
l B k - C l 6 n  

Proof of Theorem 1. Assume that 

Let y, = o (x,) ,  y, -, co. Then 

I 

Hence 

x. (1 - ~ n / ~ n )  p (IS1 > & 0.) 

Jx, G 
= P(lsnl > f i  d . 2  J Y ~ Y  G 2 1 yP(ISnI > Y U ~ ) ~ Y  + 0- 

4 G  G 
Thus 

On the other hand, 

Taking x, = o(&), xn + m in the above, we get 

Since ISk)  are symmetric, Theorem 1 follows by Theorem 1 in [7] or by 
Theorem 9.5 in 151. H 
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Proof of Theorem 2. It is enough to show that (1.3) implies CLT. 
Observe that if for any K 2 1 we have 

lim, P (Snk > Kv,J = 0,  

then for any 2 2 1 

holds. Hdnce, for fik = &K, yk = O ( S ; A  s 3  and yk 4 +my we obtain 

I 
which contradicts (1.3). Thus further we may assume that 

hold for any K 2 1 .  
Let us write 2, = S,-gn, td, = S, v,2 and 5; = E(z,' A u,), where g,, is an 

independent copy of S,. Now 

Hence, by (2.3), 

liminf,P(Z, > 20,) > 0 ,  

and 

Consequently, 

Since 
P (Z." > yu,) d 2P (S: > 4- yu,) ;;+ 0, 

so by the Lebesgue theorem we have 

10 - PAMS 182 
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Let x, 4 +GO be a sequence such that x, = o(u,,/q;). Then 

5n 2P(S; > 4-I ~ J S ~ V : )  

( 1 p ( ~ ' > y ) d y ) -  sup 
54 ~xn+n~/un ($pY~l pI;Jr2 > ~ s n )  

V d n  

Hence 

if x, + oo and x, = O(IJ Jq;). By (1.3) and (2.3) we observe that (v; '2,) is 
a stochastically compact sequence. It is easy to see that (2,) satisfies Condition 
3 (v,). Hence, by Lemma 1 and by the relation lirn sup, 5; u." = C-I < + co it 
follows that {Z,) satisfies Condition B(c,,). Now, by Theorem 1, for random 
variables (2,) we have 

Now we shall establish that symmetricity can be dropped. Let us write 

for some fixed x, -, a, xn = o(sn). By (1.3) we have 

and hence 
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We shall prove that 

For this, note that 

Z J -  

4 4E (2: A x, u:) + 8P (1S.I > 6 3 * run ydy 
0 

Since l ims~p ,5 ;~  v,2 = C-I < + CQ, so by the relations 

we have 

lim sup,, 5; E (u. - E (u.))' = 2- ' lim sup,, 5- E ((u. - E u.) - (0. - Eon))' 

Now, by (2.4) and the CramCr theorem, we know that any weak limit of 
(5; ' (Un- EUn)In is of the form JV (a, 2-I). The sequence (S;'E(U, - EU,J2), 
is bounded, so the only possibility is a = 0. On the other hand, {S,(U,-EU,)) 
is a tight sequence, and hence 

By (1.3) we obtain 

P (1s. 1 (1s.I > J;;vn)l > y n )  t 0, 
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whence 

Taking An = ES.I(IS,J < &v,J and B,, = 4~ .  in Theorem 10.3 in [ 5 ] ,  we 
see that the limit lim,, n-' A, = A exists and 

I 

hdlds. also for the sequence {A,) we have 

and hence In7'A,I 4 0 by the slow variation of the sequence n-'5,2 ( [ 5 ] ,  
Theorem 3.1). Consequently, we get 

I The proof will be completed if we show that EL1 v,, 4 1. We know that 

xnB: x . 4 ~ :  -- - + + m  for X , = O ( ~ ; ~ U , ) .  
cv," cv," 

Hence by (1.3) we obtain 

Now, since C - ' x ,  = O ( ~ ; ~ U , ) ,  by what has been proved we have 

and, consequently, 

P (J" >xn B:)/(Cv,")) -r 1. 
P ( N 2  > x J C )  

Observe that 

whence 



Thus 
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Since 

by (2.6) we obtain 

3: 
2 u, limsup,,<l and liminfn-31. 

0, 3,' 

By (2.5) we have 
B: lim 2 1 
un 

(if this is not true, then we have along the subsequence n,: 

which contradicts (2.5)). Finally, 3, - v,, and hence 

This completes the proof of Theorem 2. H 
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