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Abstract. Let X ( t )  ( t s  R,)  be an u-self-similar Markov process 
on Rd or Rd+. The Hausdorff dimension of the image, graph and zero 
set of X(t) are obtained under certain mild conditions. Similar results 
are also proved for a class of elliptic diffusions. 

I. Introduction. The class of cr-self-similar (or-s.s.) Markov processes on 
(0, co) and [0, co) were introduced and studied by Lamperti [9], who used the 
name "semi-stable". The a-s.s. Markov processes on Wd or Rd\{O) were inves- 
tigated by Graversen and Vuolle-Apiala 161. See also Kiu [8]. 

A very important and useful result in Lamperti [9] is Theorem 4.1, which 
relates, through random time change, a [0, m)-valued self-similar Markov pro- 
cess with a real-valued Lkvy process, and hence makes it possible to study sample 
path properties of a-S.S. Markov processes on [0, co) by using known resuIts for 
Uvy processes. By applying this argument, Liu [ll], Xiao and Liu [29] obtained 
the Hausdorff and packing dimension of the sample paths of [0, m)-valued a-S.S. 
Markov processes, and Li et al. [lo] studied the exact Hausdorff and packing 
measure of the image set. See Lamperti [9], Vuolle-Apiala [23] for other appli- 
cations. Graversen and Vuolle-Apiala [6] and Kiu [8] generalized some of 
Lamperti's results, including the above-mentioned Theorem 4.1, to Rd-valued 
isotropic a-S.S. Markov processes. Vuolle-Apiala and Graversen C251, based on 
the results in Graversen and Vuolle-ApiaIa [6], studied the duality of isotropic 
a-s.s. Markov processes on Rd \{O). However, it seems very difficult to apply the 
results of Graversen and Vuolle-Apiala [6] to study sample path properties such 
as the lower functions, the exact Hausdorff measure of the image, graph and leveI 
sets as well as the local times of (isotropic) Rd-valued a-s.s. Markov processes via 
corresponding results for Lkvy processes, because one has to deal with the 
angular process. Recently, Xiao [28] has studied the lower functions of certain 
Rd-valued a-s.s. Markov processes by applying general Markov arguments and 
has generalized many results about Brownian motion and stable Lkvy processes 
to more general a-S.S. Markov processes. 
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In this paper, we wiII continue the line of research of Xiao [28] and study 
the Hausdorff dimension of the image, graph and zero set of certain a-s.s. 
Markov processes on Rd or R$. The advantage of our arguments is that they 
make the role played by the self-similarity index explicit. Our methods can also 
be applied to a class of elliptic diffusions which are not necessarily self-similar. 
There has been a lot of work on the Hausdorff dimension and exact Hausdoff 
measure of the random sets associated with Brownian motion, stable G v y  
processes and Gaussian random fields, in which the methods often depend on 
special properties d the process that cannot be carried over to more general 
Markov processes. For surveys of recent developments on these and related 
topics, we refer to Taylor [21] and Xiao [27]. 

The rest of the paper is organized as follows. In Section 2 we recall briefly 
the definition of an u-s.s, Markov processes. In Section 3, we calculate the 
Hausdorff dimension of the image and graph of certain a-S.S. Markov processes 
including strictly stable LBvy processes. Our formula for the Hausdorff dimen- 
sion of the graph seems new even for strictly stable L6vy processes. In Section 4, 
we study the zero set of these a-S.S. Markov processes. In Section 5, we study 
analogous problems and escape rates for a class of elliptic dflusions which are 
not necessarily self-similar. 

We will use K to denote unspecific positive and finite constants whose 
value may be different in each appearance. Specific constants are denoted by 
Ktl J&¶... 

2. Preliminaries. Throughout this paper, (S, g) denotes Rd, Rd\{O) or 
Rd+ with the usual Bore1 a-algebra, and A a point attached to S as an isolated 
point. 112 denotes the space of all functions o from [0, m) to Sv{A) having the 
following properties : 

(i) w (t) = A for t 2 z, where z = inf (t 2 0; o (t) = A)  ; 
(ii) co is right continuous and has a left limit at every t~ [0, a). 
Let u > 0 be a given constant. A stochastic process X = (X(t), P") with 

state space Su{A) is called an a-seEf-similar (s.s.) Markov process if there exists 
a transition function Ptt, x, A) which satisf?es: 

(2.1) P(O,x,A)=lA(x) for all X E S , A E ~ ,  
and 
(2.2) P( t ,x ,A)=P(at ,aax ,aaA)  for all ~ > O , U > O , X E S , A E B ,  

such that (X(t), Px) is a time homogeneous Markov process with a transition 
function P(t,  x, A) and for every x E S, X(t) E I;1 F-almost surely. We wll call 
u the seEf-similarity index of X. 

For d > 1, X is called an isotropic a-s.s. Markou process if its transition 
function further satisfies the following condition: 

(2.3) . P ( t , x , A ) = P ( t , # ( x ) , 4 ( ~ ) )  for all ~ B O , ~ E S , A E ~ , ~ $ E O ( ~ ) ,  

where O(6) denotes the group of orthogonal transformations on Rd. 



Self-similar Markov processes 371 

Remark. Condition (2.2) is equivalent to the statement that for every 
a > 0 the Px-distribution of X( t )  (t 2 0) is equal to the Pa""-distribution of 
a-"X(at) (t 2 0). We write this self-similar property as 

12.4) (x(.), pX) (a-a ~ ( a - ) ,  paQx) for every a > 0, 

It is easy to see that a11 (l/ol)-strictly stable LPIvy processes in Rd are a-s.s. 
Markov processes and l/a symmetric stable L6vy processes are isotropic a-S.S. 
Markov processes. It is proved by Graversen and Vuolle-Apiala [6] that if X ( t )  
is an isotropic or-s.s. Markov .. process on S, then ({X(t)l, PIXI) is an a-s.s. 
Markov .process on ISI; and if X(t) is an a-s.s. Markov process on dPd, 
then for every y > 0 

(x(~)<Y), pxrliy> ) 
is also an (my)-s.s. Markov process on Wd, where O{?> = 0 and xcy> = x IxlY-l for 
x # O .  

The Bessel processes form exactly the class of (1/2)-s.s. diffusions on 
(0, a). We refer to Revuz and Yor [I51 for the definition and properties of 
Bessel processes. 

More examples of a-s.s. Markov processes can be found in Lamperti [9], 
Graversen and Vuolle-Apiala [6], Stone [18], Vuolle-Apiala and Graversen 
[25], and Vuolle-Apiala 1241, 

Throughout this paper, we will only consider a-s.s. Markov processes with 
the strong Markov property. It was shown by Lamperti [9] and Graversen and 
Vuolle-Apiala [63 that every self-similar Markov process on (0, co) and every 
isotropic self-similar Markov process on Rd\(0) is automaticalIy a strong Mar- 
kov process with respect to a right-continuous filter of a-algebras. 

We end this section by recalling briefly the definition of Hausdorff mea- 
sure and Hausdorff dimension. Let @ be the class of functions 4:  (0, 6) -+ (0, l) 
which are right continuous, monotone increasing with # (0+) = 0 and such 
that there exists a finite constant K > 0 for which 

' ( 2 s ) < ~  for 0 < s < f 6 .  
4 (4 

For $E@, the 4-Hausdorff measure of E G RN is defined by 
m 

#-m(E) = lim inf {z $(2ri): E c U B(xi, ri), ri < E ) ,  
E+O i i =  1 

where B(x, r) denotes the open (or closed) ball of radius r centered at x. It is 
known that #-na is a metric outer measure and every Bore1 set in RN is #-m 
measurable. The Hazrsdor$ dimension of E is defined by 

dim E = inf {a > 0: sa-m ( E )  = 0). 

We refer to Falconer [5] for more properties of Hausdorff measure and Haus- 
dorff dimension. 
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3. Hausdorff dimension of the image and graph. Let X ( t )  (t 2 0) be an a-s.s. 
Markov process on S. For the simplicity of notation, we will assume S = Rd. 
For any Bore1 set 10 E [0, co), we consider the Hausdorff dimension of the 
image X ( F )  and the graph set G r X ( F )  = ( ( t ,  X(t)):  t~ F ] .  We first note that it 
is impossible to have general formulae in terms of a and d for the Hausdorff 
dimension of the image and graph of a11 a-s.s. Markov processes, because for 
any y > 0 the Bausdorff dimension of the image and graph of X(t){Y> are the 
same as those of X( t ) .  So later we will restrict our attention to a certain class 
for ol-S.S. Markov processes. 

. Let K, > 0 be a fixed constant. Following Pruitt and Taylor [14], a collection 
A(a) of cubes of side a in Rd is called Kl-nested if no ball of radius a in Wd can 
intersect more than K, cubes of A (a). Clearly, for each integer n 2- 1 the collection 
of dyadic (semi-dyadic) cubes of order n in is K,-nested with K1 = 3d. 

We first prove the following lemma which generalizes Lemma 6.1 of Pruitt 
and Taylor [I41 and is essential for our purpose. 

LEMMA 3.1. Let X t t )  ( t  2 0) be a time homogeneous strong Markov process 
in with transition function P( t ,  x ,  A) and let A(a) be a $xed Kl-nested 
colbction ofcubes ofside a (a < 1) in PPd. For any u 3 0 we denote by Mu(a,  s) 
the number of cubes in A(a)  hit by  X(t) at some time t ~ [ u ,  u+s]. Then 

3 

(3.1) E0 (Mu (4 4) G 2Kl s [inf EX (1 1,,,,,/3, ( X M )  at)]- 
X E R ~  ,, 

where 1, is the indicator function of the set B. 

Proof.  Let z, = u. For k 2 1, we define stopping times 

zk = inf(t 2 z ~ - ~ :  IX(t)-X(zj)l > a  for j = 0 ,  1 ,  ..., k-1).  

Then IX(.zk) - X(zj)l 2 a for k # j, and hence the balls B (X(zk) ,  a/3) (k 2 0) are 
disjoint. Let 

Z ~ + S  

Tk = J ' B ( x ( Z ~ ) , C T / ~ )  (X( t ) )  
7k 

be the sojourn time of X ( t )  in B(X(z&, a/3) between z, and zk+s. Put 
q = min(k: zk > u+s). Then 

rl- 1 

(3 -2) x(Cu3 26 +sI) U ( X ( . z k ) ,  
k=O 

Let I ,  be the indicator of the event 

Then, by the strong Markov property, we have 
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I Noticing that 
m m 

C I , T , < 2 s  and q =  C Ik 
k = 0  k = O  

and using (3.3), we have 
I 

Now it is clear that (3.1) follows from (3.2), (3.4) and the nested property of A (a). 
We will consider the class of all a-s.s. Markov processes on S satisfying the 

following two conditions: there exist positive constants K,, K, and ro ~ ( 0 ,  1/3) 
such that for every X E S  we have 

(3.5) P(1 ,  x, B ( x ,  r,)) aK,; 

and for every x E S and r 2 0 small 

(3-6) P(1, x, B(x ,  r)) < K,min{l, r"). 

We will see that the upper bounds for dim X(F) and dimGr X(F)  depend only 
on (3.5), while the lower bounds depend only on (3.6). 

Clearly, condition (3.6) is satisfied by every self-similar Markov process 
X ( t )  with bounded density for the Px-distribution of X(1). Conditions (3.5) and 
(3.6) are satisfied by a strictly stable LCvy process X(t) on Rd, because its 
transition function is translation invariant and X(1) has a bounded density 
function. It is easy to verify that if X(t) is a symmetric stable Levy process on 
Rd, then lX(t)l (as a self-similar Markov process on R,) satisfies (3.5) and 
(3.6). It should be noticed that the transition function of IX(t)l is not translation 
invariant. Condition (3.6) also holds for a Bessel process of dimension 6 (not 
necessarily an integer) with S 2 1. But it is not clear whether (3.5) is true 
for Bessel processes with non-integer 8. We conjecture that if X(t) (t 2 0) is 
a Bessel process with non-integer dimension 6, then for every Bore1 set 
F G [0, co) almost surely 

Applying Lemma 3.1 to the a-s.s. Markov processes satisfying (3.9, we 
obtain the following lemma: 

LEMMA 3.2. Let X(t) (t 2 0) be an a-s.s. Markov process in Rd with transi- 
tion function P(t, x, A) satisfying (3.5). Assume that A (a) and Mu (a, s) are as in 
Lemma 3.1. Then there exists a positive constant K such that for all u 2 0 and all 
O < a d s a  

13-71 E0 ( M ,  (a, s)) < K sa-lla. 

If a > 1, then for a = s < 1 we have 

(3.8) E0 (Mu (a, s)) < K. 
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Proof. For any x € R d ,  by Fubiniys theorem, (2.2) and (3.5), we have 

Hence (3.7) follows from (3.9) and Lemma 3.1 with K = 2K, KT The proof of 
(3.8) is similar and we omit it. 
. -Now we can-calculate the Hausdorff dimension of the image and graph of 

certain self-similar Markov processes. 

T ~ R B M  3.1. Let X(t) (t 2 0) be an a-s.s. Markov process in Rd with 
transition function P ( t ,  x, A) satisfying (3.5) and (3.6). Ttnen for every Bore1 set 
F E LO, 60) Po-almost surely 

(3.10) dim X ( e =  min d l  - dim F . I :  I 
If 0 < a < 1, then Po-almost surely 

(3.1 1) dim Gr X(F)  = min 

and if a > 1, then Po-almost surely 

(3.12) dimGrX(F) = dimF. 

Proof. We start by proving the upper bounds in (3.10). Clearly, 
dimX(F) < d. For any fixed y > dim F and every integer m 2 1 there exists 
a sequence of intervals Ii, (i = 1, 2, . . .) such that 

(3.13) F G U Iim and C IIimIY < 1. 
i=  1 i= 1 rn 

Take a = lIimla in Lemma 3.2; then we have 

(3.1 4) E0 (Mim) < K, 
where Mi, denotes the number of cubes in A (lIi,l")hat intersect X(Iim). Now 
by (3.13) and (3.14) we have 

m 

X(F)  u X(lim) 
i= 1 

and each X(Ii,) can be covered by Mi, cubes of side lIimla, and 

It follows that 
EO (syIa-m (xQ)) = 0, 
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which implies syla-m(X(F)) = 0 Po-almost surely. Hence dimX(F) < y/ct 
Po-almost surely. Finally, letting y + dimF along a sequence, we obtain the 
upper bound in (3.10). 

The proof of the upper bound in (3.11) is similar. If we cover Gr X(F) by 
cubes in W + x Rd of side IIi,la, we will obtain 

Since, for each i, Gr X(l,,) _can also be covered by KM,, lIimltail-lJd cubes in 
W + x dPd of side [li,~, we have dim Gr X(F) < dim F + (1 -a) d. The upper bound 
in (3.12) follows from (3.8) and by covering G r X ( F )  by cubes of side IIi,I. 

To prove the lower bounds in (3,10), we will use the usual capacity w- 
gument. See, e.g., Kahane [7]. If dimF = 0, there is nothing to prove. So we 
assume dim F > 0. For any fixed 0 < y < min ( d ,  (dim F)/u),  there exists 
a positive measure a on F with 

Standard capacity arguments imply that if 

then dim X(F)  2 y Po-almost surely. Since y < min i d ,  (dim F)/a) is arbitrary, 
this will prove the lower bound in (3.10). For every pair (s, t) with s < t ,  it 
follows from (2.2) and by change of variables that 

(3-17) EO(IX(s)-X(t)l-Y) = I ~ - y l - ~ P ( s ,  0, dx)P(t-s, x, dy) 
Rd a'' 

= I ~ - t t - ~ ~  1 1 l u - ~ I - ~ P ( s ,  0, Is-tladu)P(l, u, dv) 
Rd Rd 

Now it is clear that (3.16) follows from (3.15), (3.17) and the inequality 

SUP 5 I u - v I - ~ P ( ~ ,  U, dv) < Ky, 
aeRd Rd 

where K, is a positive finite constant. To prove (3.18), we fix u E Rd and consider 
the image measure p of P (1, u, a )  under the mapping T: v -+ lu -ul from Rd 
to R+. Then by using a change of variable we have 

m m 

(3.19) 1 l u -~ l -~P(1 ,  u, dv) = e - v p ( d e )  = r 1 Q - ' - ~ P { Q ) ~ @ .  
Rd 0 0 

Since y < d, (3.18) follows immediately from (3.6) and (3.19). 
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To prove the lower bound in (3.111, we notice that if dim F < ad, then 
dim Gr X(F)  = dim X(F) = (dim F)/a. So we only need to consider the case 
dimF > ad. Using an argument similar to the above, we can prove that, for 
every y with d < y < dim F + (I -or) d and every pair (s, t) E F x F with s < t, 

E0[(la- t lz+(X(s)-X(t)12)-yf2]  

= I [ (I~-t l '+Ix-yl~)-~/~ P ( S ,  0, dx)P(t-S? X, dy) 6 
Rd Rd 

Ther-efore,. there is -a positive measure a on F such that 

5 S Eo[([s-  t12 + +x (s) -x(t)I2)- y12] 0 (ds) 0 (at) < a. 
F F 

This proves the lower bound in (3.11). Finally, since we always have 
dim Gr X ( F )  2 dim F, the equality (3.12) holds. 

Remark. It  is clear that (3.1), (3.7) and (3.8) are still true if we replace the 
expectation Eo by Ex for all XES.  The proof of Theorem 3.1 can be slightly 
modified to show that (3.10)-(3.12) hold Px-almost surely for all X E S .  

4. Haasd~df dimension of the zero set. Let X(t) (t E R + )  be an a-s.s. Mar- 
kov process on S, where S is Rd or Rd+. In this section we consider the Haus- 
dorff dimension of the zero set X-'(O) = {t 2 0: X(t) = 0). We notice that the 
size of the zero set can be totally different from the size of other level sets 
X-'(x) (x ES\{O]). This is clear from the following example. Let X(t) = IY(t)l, 
where Y(t) is a Brownian motion in R2; then dimX-'(0) = 0, but for every 
x > 0 almost surely dimX-I (x) = 1/2 (see, e.g., Testard [22]). We will only 
consider a-s.s. Markov processes on S with transition functions satisfying the 

- 
following condition: there exist positive constants f i ,  K ,  and K, such that for 
every r 2 0 and X E S  with 1x1 < r  

(4.1) K ,  min (1, rB)  < P(1, x, B (0, r)) < Kg min (1, r a ) .  

It is easy to verify that (4.1) is satisfied by strictly stable Livy processes X(t) 
with #I = d; by X(t)(Y), where X(t) is a strictly stable Livy process, with #? = d/y 
and by a Bessel process of dimension S (not necessarily an integer) with P = 6. 

We need the following lemma which is proved in Xiao [28]. 

LEMMA 4.1. Let X(t) (t 2 0) be a time homogeneous strong Markov process 
on S with transition function P( t ,  x, A). Then for every c > b > 0 and r > 0 
we have 

1 j;p(t,O,B(o,r))dt (4.2) - < Po (IX(t)l < r  for some b < t < c)  
2 su~ly /<rS;~( t ,  Y ,  B(O, r))dt 
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As a consequence, we have 

LEMMA 4.2. Let X( t )  ( t  3 0) be an a-s.s. Markov process on S with transi- 
tionfidnction P i t ,  x ,  A) satisfying (4.1). Then for every E > 0, c > b 2 E and for 
r > 0 sml l  we have 

KrS-'I" i f u f l > l ,  
(4.3) Po (IX(t)l 6 r for some b < t < c) < 

KIogl/r i f a p = l ,  

and if orb < 1 ,  then 
. .. -c-b< 

14-41 X, - < Po (IX(t)l < P for some b 6 t < c) < K, (c - b)"p, 
C 

where K, and K, are positive andfinite constants depending on u, fl  and E only. 

Proof. The two inequalities in (4.3) have been proved in Xiao [28]. To 
prove the upper bound in (4.4), we see that by (2.2) and (4.1), for any y E R ~  with 
lyl G r ,  

c - b  c - b  

(4.5) P(t, Y ,  B (0,  r)) dt = { P(1,  y/ta, BCO, r/ta)) dt 
0 0 

where K > 0 is a constant depending on a and P only. By the second inequality 
in (4.1) we have 

where K > 0 is a finite constant depending on a, f l  and E only. The upper 
bound in (4.4) follows from Lemma 4.1, (4.5) and (4.6). The lower bound in (4.4) 
is proved similarly. 

NOW we are ready to prove the main theorem in this section. 

THEOREM 4.1. Let X ( t )  ( t  2 0)  be an a-s.s. Markov process on S with tran- 
sition function P( t ,  x ,  A) satisfying (4.1). Then Po-almost surely 

(4.7) dimX-I (0) < max (0, 1 -@). 

If a/l < 1 ,  then for every interval T = [0, b] with positive Po-probability 

P r o  of. We prove (4.7) first. By the a-stability of Hausdorff dimension, 
it is sufficient to prove that for every interval [E, MI 5 R+ Po-almost 
surely 



378 Luqin L i u  and Yimin Xiao 

We only prove (4.7) for the case 1 > ap and the other cases can be proved 
similarly by using (4.3). For any integer n 2 1, we divide [ E ,  MI into n subinter- 
vals inVi (1 < i < n) of length (6-M)/n. The collection of those subintervals 
Inpi satisfMg inf,,,,,, lX(t)I = 0 constitutes a covering for X-I (O)n[&, MI. 
Since 

by (4.4), this implies {4.9), and hence (4.7). 
In order to prove the lower bound for dimX-'(O)nT, it is sufficient to 

show that for every 0 < y < 1 -orb we can construct a positive measure p on 
X u  '(0) n T such that 

which implies dimX-I (0)nT 2 y on (p > 0). This capacity argument, which 
goes back to the early work of Kahane (see [7j), has been applied by many 
authors including Adler [I], Marcus [12], Shieh [16], Testard 1221, Xiao [26], 
to cite a few, to study the existence and Hausdorff dimension of the level sets 
and multiple points. 

Let d: be the space of all non-negative measures on R+ with finite 
y-energy. It is known (see, e.g., Adler [I]) that Af,f is a complete metric space 
under the metric 

For every n 2 1, we define a random positive measure p,, on a @ + )  by 

where cp is a normalizing constant. 
By a lemma of Testard 1221, which simplifies the arguments of Kahane [7] 

and Marcus [12], if there are constants K, > 0 and Kg > 0 such that 

where llpJ = pn(T)? then there is a subsequence of (pn), say {ht), such that 
p -+ p in A and p is strictly positive with probability at least Ki/(2Kg). If 

.? 

X ( t )  has continuous sample paths, then p is supported on XP1(O)nT (cf. 
Marcus [12], p. 282). As noted by Shieh ([16], p. 557), this is also true if the 
sample path X (- , w )  is right continuous and has left limit. This will imply (4.8). 
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Now we verify (4.12) and (4.13). It follows from (2.2) and (4.1) that 

at least. for a 2 pa,, where K ,  and no depend on a, d and T only. We have 

1 .. 
Po (I;rr'(s)l l/n, IX(t)l < I/n) ds dt. (4.151 . E @ ( I l ~ " l l ~ ) ' = ~ ~ ~  

For every fixed pair ( s ,  t )  E T x Twith s < t ,  it follows from (2.2) and the second 
inequality in (4.1) that 

Putting (4.16) into (4.15) we see that 

where K, depends on a, d and T only. Similarly, for every 0 < y < 1 -up  we 
have 

1 

E0(II&ll7) I $ . l t - s i E ~ + Y  d tds  < co. 

Hence we have proved that with Po-probability at least Ki/(2K,) (independent 
of Y )  

d imX- ' (0 )n~  1: 1 -up. 

This proves (4.8). 
With one more assumption, which is satisfied by a large class of 

self-similar Markov processes including strictly stable LCvy processes and 
the self-similar Markov processes considered by Stone [18], we can prove the 
following probability 1 result. 

THEOREM 4.2. Let X ( t )  (t 2 0) be an a-S.S. Markov process on S with tran- 
sitionfunction P ( t ,  x ,  A) satisfying (4.1) with alp < 1. If we further assume that 

(4.17) PO(sup{t:X(t) = 0) = co) = 1, 

then PO-almost surely 

11 - PAMS 182 
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Proof .  We define a sequence of stopping times as follows. Let z, = 0 and 
for n 3 l define 

~ , = i n f ( t > z , - ~ + l :  X(t)=O). 
Then, by (4.17), (z,) is well defined and, for every n, Po-almost surely X(z,) = 0. 
By the strong Markov property and (4.8), for every n 2 1 

PO (dim X- l (O)nCO, %+I] 3 1 -@ I u(X(s), 0 6 < 2,)) 

2 p X ( T m )  (dim X- ' (x) n [O, 11 3 1 - up) 3 Kg/@K9) 

~herefore, 'b~ the cdnditional Borel-Cantelli lemma (see, e.g., Neveu [13]), we 
have 

Po (dim X- "0) n [O, z,j 2 1 -ad for infinitely many n) = 1. 

This completes the proof of Theorem 4.2. 

Remark. With a little more effort, we can apply the methods of this 
paper, combined with the methods in Pruitt and Taylor [14] and Xiao [26], to 
prove similar results for the Mausdorff dimension of the image, graph and zero 
set of the sample paths of the process X(t) (t 2 0) on P defined by 

where XI, .. ., Xd are independent a,-s.s. Markov processes (i = 1, . . ., d ) .  

5. Applications to elliptic diffusion processes. In this section, we apply the 
methods in Sections 2 and 3 and in Xiao [28] to study the Hausdorff dimen- 
sion of the image, graph and level sets, and the escape rates for a class of elliptic 
diffusion processes which are not necessarily self-similar. 

For any given number 1 ~ ( 0 ,  11, let &(A) denote the class of all mea- 
surable, symmetric matrix-valued functions a: Rd 4 Rd@lpd which satisfy the 
ellipticity condition 

d 1 
A15I2 < aij& tj < - 1512 for all x, 5 EP. 

i , j = l  A 

For each a E &(A), let L = P . (aP) be the corresponding second order partial 
differential operator. By Theorem 11.3.1 of Stroock [19], we know that L is the 
infinitesimal generator of a d-dimensional diffusion process X = ( X ( t ) ,  t 2 O), 
which is strongly Feller continuous. Moreover, its transition density function 
p ( t ,  x,  y) E C ((0, a) x Rd x Rd) satisfies the following inequality: 

for all (t, x, y)€(O, co) x Rd x Rd, where M = M (a, d) 2 1 is a constant. The 
estimate in (5.1) is due to Aronson [2]. 

Even though X( t )  (t 2 0) is, in general, not self-similar, the estimate (5.1) 
makes it possible for us to apply the arguments in Sections 3 and 4, as well as 
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those in Xiao [28] to prove results on the Hausdorff dimension of the image, 
graph, level sets and escape rates for such X. It turns out that these results are 
very similar to those of d-dimensional Brownian motion. 

THEOREM 5.1. Let X( t )  (t 2 0) be an elliptic dzfision process in Rd as given 
above. Then for every Bore1 set F E [O, m) Po-almost surely 

(5-2) dim X(F)  = min ( d  , 2 dim F )  , 

I f d  = 1 ,  then for ev'ery xER and T = [a,  b]  c R , ,  with positive Po-probability 

Proof.  It is easy to verify that Lemma 3.2 and a variant of Lemma 4.2 
(with IX(t)l replaced by IX(t)-xl in (4.3) and (4.4)) still hold with f i  = d and 
or = 1/2. Hence the right-hand sides of (5.2), (5.3) and (5.4) serve as the upper 
bounds for dim X(F) ,  dim GrX(F) and dim X-I (x),  respectively. The proof of 
the lower bounds in (5.2) and (5.3) is almost the same as that of Theorem 3.1. 
The proof of the lower bound in (5.4) is similar to that of Theorem 4.1, we only 
need to modify the definition of the random measure pn(.) in (4.11), and then 
apply (5.1) to prove inequalities in (4.12) and (4.13). 

Using (5.1) and Lemma 3.1 in Xiao [28], and going through the proof of 
Theorem 3.1 in Xiao [28] ,  we obtain the following results on the escape rates 
for X. Similar results for Brownian motion were proved by Dvoretsky and 
Erdos [4]  and Spitzer [17]. See Xiao [28] for more information on escape rates 
for other processes. 

THEOREM 5.2. Let X ( t )  ( t  2 0) be a difusion process in Rd as given above. If 
d = 2, then singletons are polar, but (X( t ) ,  P O )  is neighborhood recurrent. 
If d 2 3 ,  then X( t )  is transient in the sense that for every x E Rd 

FOP any positive non-increasing function #: R+ + R+ , set 

x ( ~ ) I  { m  r x u ) < m ,  
lim inf - 

t-m t1l24(t)= o if = m. 

We end this section with the following problem. By using the results in 
Sznitman [20], Chaleyat-Maurel and LeGall 131 have obtained some partial 
results for the HausdorfT measure of the image of elliptic diffusion processes. 
But the problem of finding exact Hausdorff measure of the image and graph 
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remains open. We believe that the exact Hausdorff measure functions fur the 
image and graph of X ( t ]  considered above are the same as those of Brownian 
motion. See Taylor [21] for the related results on Brownian motion. In order 
to prove this, some general Markov arguments have to be developed. 
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