
PROBABILITY 
AND 

MATHEMATICAL STATISTICS 

VoL 19, Fa% 2 (1999). pp. 211-234 

I 
I INFINITE HORIZON REFLECTED BACKWARD 
I STOCHASTIC DIFFERENTIAL EQUATIONS AND 

APPLICATIONS IN MIXED CONTROL AND GAME PROBLEMS 
- 

S. HAIMADENE, J.-P. EEPELTIER (LE W s ,  FRANCE) AND 
Z m N  W U *  (JTNAN, CHINA) 

> 
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tion for infinite horizon reflected backward stochastic differential equa- 
tions with one or two barriers. We also apply these results to get the 
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situations, the horizon is infinite. 

AMS Classification. 60Hl0, 93B05, 93E20. 

Key words. Backward stochastic differential equation, Infinite 
horizon, Reflected barriers, Stochastic optimal control, Stochastic 
differential game. 

I. Introduction. Nonlinear backward stochastic daerential equations 
(BSDE's in short) have been independently introduced by Pardoux and Peng [18] 
and DdEe and Epstein [7]. It has already been discovered by Peng [20] that, 
coupled with a forward SDE, such BSDE's give a probabilistic interpretation 
for a large kind of second order quasilinear partial differential equations (PDE's). 
Then Pardoux and Peng [I91 obtained an existence result of the viscosity solution 
for this kind of PDE systems. These results generalize the well-known Feyn- 
man-Kac formula to the nonlinear case. El-Karoui et al. [13] gave some important 
properties such as a comparison theorem and applications in optimal control and 
financial mathematics. Using results on BSDE's, Hamadhe and Lepeltier ([14] 
and 1151) obtained the existence of a saddle-point strategy under the Isaacs 
condition for the zero-sum differential game problem and the existence of an 
optimal strategy for the optimal stochastic control problem. 
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Then El-Karoui et al. [I21 studied the reflected BSDE with one barrier. 
The solution of the reflected BSDE is forced to stay above one given con- 
tinuous stochastic process which is called obstacle. For this purpose they in- 
troduced one increasing process to push the solution upwards and also re- 
quired the push power to be minimum. They got the existence and uniqueness 
of the solution for this kind of reflected BSDE and also studied its relation with 
the obstacle problem for nonlinear parabolic PDE's within the Markov frame- 
work. Using two different methods, the Snell envelope theory connected with 
fixed point principle and the penalization method, Cvitanic and Karatzas 151 
extended the result to reflected BSDE's with two barriers, called upper and 
tower -barrjers, which are two given continuous processes. 

Recently Hamadtne and Lepeltier [I 61 generalized the results of El-Ka- 
roui et al. 1121 to one barrier which is right continuous and left upper semicon- 
tinuous. They used this model to solve the mixed optimal stochastic control 
problem when the terminal reward is only right continuous and left upper 
semicontinuous. In this kind of mixed control problem, the controller has two 
actions, one is of control and the other is of stopping his control strategy in 
view to maximize his payoff. Also in this paper Hamadtne and hpeltier gene- 
ralized the result of Cvitanic and Karatzas [5] to reflected BSDE's with two 
barriers to processes S (lower barrier) and - U (U is upper barrier) merely right 
continuous and left upper semicontinuous. They also used this result to obtain 
a saddle-point strategy for the mixed game problem, which means that two 
players have two actions, control and stopping their strategies in view to mini- 
mize (respectively, maximize) the payoff, when the Isaacs assumption is fuUed  
and the terminal payoffs S and U satisfy the above condition. The first result 
gives another very simple method, different from that of El-Karoui [Ill, who 
used martingale methods to get the existence of an optimal mixed control. 
The second result about the mixed stochastic game is to our knowledge 
new. 

We notice that the above results on reflected BSDE's, mixed control and 
game problems are all with finite time horizon. So our problem is how to 
generalize the reflected BSDE's to an infinite horizon. 

First we need to review some results on infinite horizon BSDE's. Peng 
[20] obtained an existence and uniqueness result under some monotone con- 
ditions. But the solution is in a special kind of square integrable space. Chen 
[4] gave an existence and uniqueness result under a kind of Lipschitz condition 
suitable for infinite horizon BSDE's. In Section 2, we give this result as prelimi- 
nary. We also prove the corresponding comparison theorem in that section. 

In Section 3, we study in6nite horizon reflected BSDE's with one barrier. 
Using the Snell envelope theory connected with the contraction method, we 
obtain the existence and uniqueness result. Then we use this result to deal with 
the mixed control problem with infinite horizon in Section 4. We obtain the 
existence of an optimal strategy for the controller. 
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In Section 5, we study the double barrier reflected BSDE with infinite 
horizon. We also use the Snell envelope theory connected with the contraction 
method to sohe our problem. Under some additional assumptions on the 
barriers, we obtain the existence and uniqueness result. 

At last, we use the result on double barrier reflected BSDE's with infinite 
horizon to study the mixed game problem in Section 6. When the Isaacs 
assumption on the Hamiltonian is satisfied, we obtain a saddle-point strategy 
for the two players. 

2. Preliminary: Infinite horizoa BSDE's. In this section, let us first give 
some preliminsiry results about infinite horizon BSDE's. 

Let (B,),,, be a standard rn-dimensional Brownian motion, defined on 
a probability space (D,  9, P); let (9Jt,, be the natural filtration of B,, where 
So contains all P-null sets of and Fm = V,,,%. , We introduce the fol- 
lowing notation: 

Y 2  = {vr, 0 < t 6 c a y  is an %-adapted process such that 

xZ = (v,, 0 4 t < m, is an %-adapted process such that 

I? = (5, 5 is an Sm-measurable random variable such that E15j2 < co). 

We consider the infinite horizon BSDE 

where 5 E I? and f is a map from D x [O, co) x R x R" onto R which satisfies the 
following: 

(H2.1) For all (y, z) E R1 ' d ,  f (., y, Z) is progressively measurable and 

(H2.2) There exist two positive deterministic functions ul ( t )  and u, (t)  such 
that, for all (yi, zi)€ R1 + d ,  i = 1, 2, 

I f  (t7 Yr ,  z1I-f tt, Y2, z2)I ~1 ( ~ ) I J ' I - Y ~ I + % ( ~ ) I ~ I  -z,l, ~ E C O Y  m ) ,  

and J,"u,(t)dt < co, j,"u$(t)dt < G O .  

Then we have 

THEOREM 2.1 (Chen [4]). There exists a unique solution (y, z) E Y 2  x S2 
satisfying the BSDE (2.1). 



Now, if we consider the following two BSDE's: 
00 m 

(2.2) * = t i +  1 f i (s ,  c , Z 3 d s -  j z ; d ~ , ,  taO, i =  1,2, 
t t 

where 5' E I?, f satisfy (H2.1) and (H2.21, by Theorem 2.1 there exist (yi, zi) 
which satisfy BSDE's (2.2), respectively. Further, if 

(W2.3) C1>tZ and f l ( s ,  y:,z:)>f2(s,y:,z,Z) a.s. for all s 2 0 ,  

then we have also a comparison theorem between the solutions of the infinite 
reflecJed- BSDFs, that is: 

THEOREM 2.2. For all t 2 0, y: 2 y: P-as. 

Proof, For the notational convenience, we assume that d = 1 and set 
j = (yl-yZ), i = (zl-2'). Then (9 ,  2) satisfies 

10 otherwise, 

otherwise. 

From (H2.2) it is easily seen that IB, (s)l < u, (s) and IS, (s)l < uz(s) a.s. Intro- 
duce the process x,, 0 < t < s < a, which satisfies 

dx, = fll ( s ) ~ , d s + ~ ~  (s)x,dB,, xt = 1 .  

Since x, = exp [ js (8, (r) -4 8: (r)) dr + 8, (r) dB,], we have 
m 

j , =  E9"t[(51-52)~m+ J(f1(s, Y:, z;)-f2(s, Y:?z~))x,~s] 2 0 -  
t 

If we consider the following two BSDE's: 

with the additional assumption: 

(H2.4) AS, i = 1, 2, t E [0, a], are continuous increasing processes satis- 
fying Ab = 0, A', E I?, A: -A: is also an increasing process, 
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then we have 

COROLLARY 2.3. Assume that the two BSDE's (2.3) satigy (H2.1HH2.4), 
and (y: ,  z:) a d  (y:, 2;) are their respective solutions. Then y: 2 y,2 a.s. 

3. Infinite horizon reflected BSDE with one barrier. In this section we 
discuss the following infinite horizon reflected BSDE with one barrier: 

03 m 

(3.1) Y , = ~ + J ~ ( s , ~ , Z $ ~ S + K , - K ~ - J Z , ~ B , ,  t~[O,co], 
t t 

which will be used in the next section to deal with the mixed control problem 
with intinite horizon, - 

Here 5 EL?, f is a map from A2 x [0, co) x R x Rm onto R satisfying (H2.1) 
and (H2.2). We consider a barrier ( S t ,  t 2 01, which is a continuous progres- 
sively measurable real-valued process satisfying 

(H3.1) E [supr,, (S:)2]" < Q and lim suptp + St < 5 as. 

Our problem is to look for a triple (Y;, Z,, KJ of St progressively measu- 
rable processes taking values in W x R" x R+,  satisfying the reflected BSDE 
(3.11, and 

(i) YEY', Z E X * ,  K m € C ;  

(ii) 2 St ,  t 2 0; 
(iii) Kt is continuous and increasing, K, = 0, and J ," (x -S , )dK ,  = 0. 

Remark. In fact, if we consider the following infinite horizon BSDE: 
m m 

X O = t + l f ( s , r , " , Z , O ) d s - S Z f d B , ,  t ~ [ O , m l ,  
t t 

where ~ E I ? ,  f satisfies (H2.1) and (H2.2), and (KO, 2:) is the solution of the 
BSDE, then from Corollary 2.3 we have I: 2 K O ,  0 < t < coy where I: is a solu- 
tion of (3.1). So we can replace S, by St v and, consequently, we may assume 
without loss of generality that E[supt,, . Sf J < GO. 

One approach to solve reflected BSDE's with infinite horizon is to use the 
Snell envelope theory connected with the contraction method. For this we 
consider first the following reflected BSDE: 

m m 

(3.2) I: = t+  l f (s)ds+~,-K,- j z , ~ B , ,  t E [o, m], 
t f 

where f does not depend on (y, z) and is an &-progressively measurable pro- 
cess satisfying 

Then we have 

PROPOSITION 3.1. Assume that t E L2, and (H3.1) and (H3.2) are satisfted. 
Then there exists a unique solution (Y, 2, K) of the reflected BSDE (3.2) 
associated with W; t, S) .  
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Proof. Let us introduce the process {E;; 0 < t < a) defined by 

where S is the set of all %-stopping times taking values in [0, a], and 
= (YE Y, v 3 t). The process x+So f (s)ds is the value function of an 

optimal stopping problem with payoff 

By the tlieory of Snell envelope (El-Karoui [I l l ) ,  it is also the smallest con- 
tinuous supermartingale which dominates H,.  Moreover, we have 

1x1 G E [ I ~ I + ~ I ~ ( ~ ) I ~ ~ + S U P ~ $ I I ~ I  fi 
tao 

Hence, by Doob's inequality, 

Denote by D, the stopping time 

inf {t < u < oo, Y, G S,), 

oo otherwise. 

Then D, is optimal in the sense that 

From the DoobMeyer decomposition of the continuous supermartingale 
l;+fo f (s)ds there exist an adapted increasing continuous process 
(Kt) (KO = 0) and a continuous uniformly integrable martingale {M, )  such that 

t 

E: = M,- j f (s)~s-K,. 
0 

By (3.2) and (3.3), we have E [KD,-Kt I = 0; hence KDt = K, or, equi- 
valently, J," (x-S,)dKt = 0. It remains to prove some integrability results. 

Since {Y ,+  jb j (s) ds, 0 < t 4 m] is a square integrable supermartingale, 
we have EK2, < oo, i.e. K, EL? (Dellacherie and Meyer [8]). Hence the mar- 
tingale 

m 

M ,  = E [ M , ~ & ]  = ~ [ t +  j f ( s ) ~ s  +K, I&] 
0 

is also square integrable. Finally, since Ft is a Brownian filtration, we obtain 
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where 6 j," ]Z,12 dt < rn , i.e. 2, E 8'. Therefore, the triple (Y, Z, K) satisfies the 
reflected BSDE (3.2) and properties (iHiii) above. 

Let us prove uniqueness. If (Y', Z', K') is another solution of the reflected 
BSDE (3.2) associated with If, c, S) satisfying properties (i)-(iii) above, define 
b= Y-Y', 2 = Z-Z',  and K = K-K'. Using ItB's formula to j$12, 

by the integrable conditions (i)-(iii) and Burkholder-Davis-Gundy's inequality, 
we have - . . . - 

So E 1 %J2 = 0 as. for all t E 10, m] and E j," )2!,JZ ds = 0. Then ]fJ2 = 0 a.s., so 
Y= Y' by the continuity of x .  

Finally, it is easy to get K ,  = K: a.s. for all t € [ O ,  GO]. 

Now we give the main result of this section. 

THEOREM 3.2. Assme that (H2.1), (H2.2) and (H3.1) and that T E I?. Then 
the one-barrier rdected BSDE (3.1) associated with (f, 5 ,  S) has a unique solu- 
tion (Y, Z, K ) .  

Proof ,  We first prove the existence. It is divided into two steps. 
S t ep  1. Assume (I," U, (s)ds)'f 1; u:(s) ds < &. 
Let 9 be the space of processes (Y, Z) with values in R1+" such that 

YE LsPZ, z E A?', and j((Y, z)((& = J J  Y J I $ ~  + )(z()$~. We define a mapping Y 
from 9 onto itself as follows: for any (U, V ) E ~ ,  (Y, Z) = Y(U, V) is the 
unique element of 9 such that if we define 

then the triple (I: 2 ,  K) solves the one-barrier reflected backward SDE as- 
sociated with (f (s, Us, VJ, <, s), 
- Let (U', V') be another element of 9 and define (Y', Z') = !P(U', V'), - 
U = U-U', V =  V-V', P= Y-Y', Z =  2-Z', l? = K - K ' ,  and J= 
f (s, Us, K)-f(s, U:, r). We want to prove that the mapping Y is a contrac- 
tion. From the proof of Proposition 3.1 we obtain 

v 

I;'= esssupE[Sf Is, K? ~ ) d s + S v l { v < m ~ + l l { v = m ~  161. 
ves t  t 

Then 
m m 
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which' implies 
m 

E [ sup 1 TI2] 6 E [ sup ( B Y  lf (s)~ ds I < 4E ( j If (31 d~) '  
O C t < w  O d t G m  0 0 

by Doob's inequality. Using It8s formula to (KI2, we get 

Then 
m 

E 7 IZJ2 ds < 2E 1 I XI IJ(s)l ds 

From (H2.2) we know that 

m m 

c 2 [( 1 u, (s) ds)'+ j u: (s) as] ll(fly V)111. 
0 0 

At last, we have 

From the inequality (I, u, (s)ds)'+ Jru:  (s) ds < we infer that Y is a strict 
contraction and has a unique fixed point, which is the unique solution of the 
reflected BSDE (3.1). 

S tep  2. For the general case, there exists To > 0 such that 
m m 1 

[( 1 ul (s) ds)'+ 1 U: (s)ds] < -. 
To To 18 

From Step 1 we know that the reflected BSDE 

has a unique solution (F, Zt,  RJ, satisfying the properties ( i w )  above. Then 
we consider the reflected BSDE 
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By the result of El-Karoui et al. 1121, there exists a unique solution (E, zr, I?,) 
satisfying the reflected BSDE (3.6) and the above properties (i)-(iii) on [O, T,]. 
Let us set 

t ~ C 0 ,  G I ,  t ~ C 0 ,  Tol, 

t ~ ( T 0 ,  001, t ~ ( ~ 3  ~01, 

When ts[TOL.co], , Z t  ) is the solution of (3.5), and then (x, ZI, 'RTo +Kt- KT,) also satisfies (3.5). Now, if t E [0, T,] , (E, zt, Kt) is the 
solution of (3.6) and f5ro = YTo, RTo = I?To+RTo-KTo. SO I: and K, are con- 
tinuous, and (Y, 2, K) is a solution of the reflected BSDE (3.1). 

At last, we prove the uniqueness of (3.1). Let (Y', Z', K') be another solu- 
tion of the reflected BSDE (3.1) associated with v? t, S). We use the same 
notation as in Proposition 3.1. Applying Itb's formula to I ? J Z ,  we have 

rn m 

lEl2+ 1 lgs12ds = 2 t(f  (3, Y,, 2,)-f (s, Y, ZL))ds 
t t 

Then t t 

1 m 

< - E  1 12,l2 ds+E J [2u1(s)+2u~(s)] 1x1~ ds. 
2 f  t 

- 2 - 0  From Gronwall's lemma we obtain E I ~ I '  = 0 for all t~ LO, a]. Then - 

as., so Y = Y' by the continuity of t. Now, going back to (3.7), we have 
00 m 

E ~ 1 ~ , 1 2 d s 6 4 E  sup 1~12~[u,(s)+u~(s)]ds ,  
0 ( O < t < m ]  0 

so ES," 1g,12 ds = 0. Then it is easy to get Kt = K:.  

4. Applications in the mixed control problem with infinite horizon. In this 
section, we use the result on infinite horizon reflected BSDE's with one barrier 
to deal with the mixed stochastic control problem. 

Let W be the space of continuous functions from [0, GO) to Rm endowed with 
the uniform convergence norm; B is the a-algebra of progressively measurable 
subsets of [0, oo) x 0. The (m x +matrix a = (aij)i,j= ,,, satisfies the following: 

(i) For any continuous and %measurable process with values in R", the 
process (aij (t, lJ)zBo is 9-mkasurable, 1 < i, j < m. 

(ii) For any (t, x) E [0, a] x %f, CT (t, X) is invertible and a -  (t, x) is bounded. 
(iii) For any t E[O, a ) ,  X, x ' E ~ ,  Ia(t, x)-a(t, x')] < KIx-x'I, K > 0. 
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Under these assumptions, the stochastic differential equation 

has a unique solution. 
Now we consider a compact metric space U and let us denote by Q the set 

of all 9-measurable processes with values in U; let # be a function from 
LO, m) x %? x U onto R" such that: 

(i) # (., X ( a ) ,  .) is P@&% (U)-measurable, 93 (U) is the Bore1 a-algebra 
on U.  

. {if) For any t t i  10, m) and X E  F, 4 (t, X, -) is continuous on U. 
(iii) 'l&(t7 x, u)l < c ( t )  as., where c(t) is a deterministic function such that 

j;cZ(t)dt < m. 

For each UE@, we define a probability P" on (52, F) by 

Under the assumptions on a and 4, according to Girsanov's theorem 
(Karatzas and Shreve [17] or Revuz and Yor [21]), the process 

is a Brownian motion on (8, 3$ Pu), and X is a weak solution of 

Suppose that we have a system whose evolution is described by the pro- 
cess X, which has an effect on the wealth of a controller. On the other hand, the 
controller has no influence on the system. The process X may represent, for 
example, the price of an asset on the market, and the controller be a small share- 
holder or a small investor. The controller acts to protect his advantages by 
means of UE@ via the probability Pu; here %! is the set of admissible controls. 
On the other hand, he has also the possibility at any time T E Y  to stop 
controlling. The control is not free. We define the payoff 

Z 

J(u7 = E[JC(s?  X, ~Jds+S,1{r<m)+<l{z=mJ, 
0 

where S and < are the same as in Section 3, and C(t, X, u) is from 
[0, m] x %? x U into R and satisfies the same hypotheses as 4. For the control- 
ler, C(t, X ,  u) is the instantaneous reward, S and < are, respectively, the re- 
wards if he decides to stop before or until infinite time. The problem is to look 
for an optimal strategy for the controller, i.e. a strategy (ti, t) such that 

J ( u , ) J ( )  for all ( u , z ) ~ 4 2 x X .  
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For ( t ,  x, p, u) E [O, a) x % x R'" x U we define the Warniltonian associ- 
ated with this mixed stochastic control problem by 

and denote by u*(t, X, p) the 9@B(Rm)-measurable process with values in 
U such that 

H ( t ,  X, p , u " ( t ,  X,p))=maxb4(t3  X, u)+C( t ,  X, 4 1 .  
UEU 

According to Benes's result (Benes [Z]), such a process u* (t, X ,  p) exists. B y  the 
assumption (iii) on +, H ( t ,  X, p ,  u) satisfies the Lipschitz assumption (H2.2) 
in p. Then-it is easy to see that the function H ( t ,  X, p, u*( t ,  X ,  p)) also satisfies 
the ~ i ~ s c h i i z  condition (H2.2) on p. 

Now we give the main result of this section. 

THEOREM 4.1. Let (Y* ,  Z*,  K*)  be the solution of the one-barrier infinite 
horizon reflected BSDE associated with (H ( t ,  X ,  z ,  u* ( t ,  X, z)), 5 ,  s), 
u* = U* It, X ,  Zf), t~ [O, m), and 

Lao otherwise. 

Then Y$ = J(u*, f), land (u*, f) is an optimal strategy for the controller. 

Proof. We consider the following one-barrier infinite horizon reflected 
BSDE associated with ( ~ ( t ,  X, z ,  u* ( t ,  X, z)), 5 ,  s): 

m m 

r,* = t + J  H(S ,  X ,  z:, u*(s, X ,  z , * ) ) ~ s + K : - K : - J  z , * ~ B , .  
t t 

By Theorem 3.2, this BSDE has a unique solution (Y*, Z*,  K*). Now, since 
Y$ is a deterministic constant, we have 

5 7- 

= F * [ J H ( s ,  X ,  Z,*, u*(s, X ,  Z , * ) ) ~ S + K T - J Z , * ~ B , + & * ]  
0 0 
T 7- 

= F * [ ~ c ( s ,  X, u*(s, X ,  z , * ) ) ~ s + K ~ - ~ z , * ~ B : * + K * * ] .  
0 0 

From the definition of z" and the properties of reflected BSDE's we know that 
the process K: does not increase between 0 and z^, and then K," = 0. On the 
other hand, using the Burkholder-Davis-GundyYs inequality and the assump- 
tions on 4, we know that (f,~: dB:, t e  [ O ,  m]) is a Pu*-martingale, and then 

2 

Yo* = I q - J  C ( s ,  X ,  u*(s, X ,  ~ t ) ) d s + & * ] .  
0 

From the equality K* = St lfi< + 5 le= m) Puf-a.~. we get Y,* = J (u*, Q) . 



Now, let u be ariadmissible control and T be a stopping time. Since P and 
P"' are equivalent probabilities on (8, F), we obtain 

r 5 

= F [ ~ c ( s ,  X, u)dr+j(H(s, X, Zf ,  u*(s, X, ZF))-H(s, X, ZF, u,))ds 
- 0 .  .. - 0 

and (so Z: d ~ ; ) , ,  is a Pu-martingale. Then 

It follows that the control (ii, f )  is optimal. rn 

5. Double-barrier reflected BSDEYs with infinite horizon. In this section we 
discuss the double-barrier reflected BSDE's with infinite horizon, which will be 
used to solve the mixed game problem in the next section. 

Let f, 5: and St be the same as in Section 3, and U,, t E [0, co), be a con- 
? tinuous progressively measurable process valued in R such that: 

(H5.1) ~[sup, ,~(U;)~] < ao and St < U,, t € [o ,  a ) ,  lh inf t2+m U, 2 5 
Our problem is to look for a solution (x ,  Z,, K:, K;) of the reflected 

BSDE with values in R x Rm x Rf x R+ such that 
m m 

Moreover: 
(i) Y is continuous and YE Y2,  Z E SZ. 

(ii) S, < x < U,, 0 < t < a. 
(iii) K: and K; are continuous and increasing processes satisfying 

K,f = KG = 0, K: E P ,  K ,  E C and 1," (E;-s~)~K: = 0, j," (u,- Q ~ K ;  = 0. 

For t 2 0, we set S: = St l,c,l+ tl{,=,], UF = U, lUcT)+tlU= ,) and de- 
note by n: the space of continuous real-valued nonnegative st-supermartin- 
gales M, such that E [sup ,,,,, M:] < co. 
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Similarly to the one-barrier problem in Section 3, we first consider the 
following reflected BSDE with two barriers: 

We assume that the following hypotheses are fulfilled. 

(H5.2) There exist two supermartingales h and B of n: such that, for all 

(H5.3) For all t 3 0, St < U,  a.s. 
- 

Then we have 

PROPOSI~ON 5.1. Let {EL?, let f satisfy (H3.21, and assume that 
(H5.1HH5.3) hoM true. Then there exists a unique solution (K 2, K' , K-) for 
t ? ~  double-barrier reflected BSDE (5.2) associated with (f, 5 ,  S, U). 

Proof. The sketch of the proof is the same as that one of Cvitanic and 
Karatzas [ S ]  in LO, T3. 

We first prove the existence of two continuous supermartingales X+ and 
X- such that 

(5.3) x + = R ( x - + Q ,  X-=R(x+-O) ,  
where 

S = S ~ - N ( ~ ) ,  O.=U;-N(L), N ( ~ ) = E [ ~ + ~ ~ ( s ) ~ s I % ] ,  
t 

and R is the Snell envelope operator, that is R(q)* = ess supYES;E[q,, I 3 1 ,  
~EY' ,  is the same as in Section 3. 

First we notice that S" and - 0 are right continuous and left upper semi- 
continuous. Moreover, f € Y 2  and (- O)EY'.  

For ~E[O, a], let 

where f + (u) = f (u)vO and f-(u) = (-f (u))vO.   hen H E $ ,  @ ~ n f  and, for 
all t 2 0 ,  St<  Ht-O, Q 0,. 

In the following part, we prove the existence of a solution to (5.3) by 
considering the iterative scheme 

X , ~ , ~ = R ( X , + Q ,  X ~ + l = ~ ( X ~ - ~ ,  n20, and X;=X;=O. 

(a) For all n 2 0, Xi and X,- are defined and 

0 Q x,' (t) Q H,, 0 Q X, (t) Q 0,, t 2 0. 

We do the proof by recurrence. For n = 0, the property holds. Suppose it 
also holds for some n and let us show that it still holds for n+ 1 .  



Since 0 < X,(t) < O,, we have 

ft~x;(t)+g<@,+s",<~, ,  X ; ( ~ O ) + ~ ~ > O .  

So X A  is dehed and 0 G XL,  (t) < H,. 
In the same way, working with X; instead of X i  , we can see that X> is 

defined and 0 6 X> , (t) < @,. 

(b) For all n 2 0, X: < X,f+ and Xi < X;+ 
We also do the proof by recurrence. For n = 0, it is obvious to get X:  2 0 

and X; 3 0. Suppose that for some n we have X& < X; and X,, < X i .  It 
follows-that .X:- - 0 < X: - 0 and X; , + f < X i  + f, which yields 

(c) For any n 2 0, X; and X i  are continuous processes. 
We do the proof by recurrence again. For n = 0, the property holds. 

Suppose now that for some n the processes X: and Xi are continuous. Since 
St and U, are continuous, by the theory of Snell envelope (Cvitanic and Kara- 
tzas [ 5 ] ) ,  X,, and Xh, are also continuous. 

(d) For all n>O, X;E~:, X;E$ and X,f(m)=O, X;(m)=O. 
Clearly, X: = X; = 0 and X: E w:, Xi EZ:. By recurrence we easily get 

the conclusion. 

(e) Now, let X +  (respectively, X-) be the pointwise increasing limit of 
X,f (respectively, Xi ) ,  i.e. for all t 2 0, 

X: = lim r X,f (t) (respectively, X; = lim r X, (t)). 

Then X+ and X- are potentials, which are nonnegative supermartingales with 
RCLL paths, Xi (a) = X- (m) = 0 and satisfy X+ €Y2, X- E 9''; Xi and 
X- solve the equation (5.3). 

Let us show that X+ and X- are continuous processes. We notice that, for 
t ,a 0, St < U,, Then the set {S = g)  vanishes, where 

St = lim sup S, , E, = lim inf Us. 
S P t  S P t  

It follows from the result of Alario-Nazaret [I] that the processes X+ and X- 
are also upper semicontinuous. Hence X- + f and X +  - 0 are right continu- 
ous and left upper semicontinuous &-adapted processes. 

Then we need the following lemma: 

LEMMA 5.2. If q, is a right continuous and left upper semicontinzlous process 
and q E Y2, then its SneEE envelope 

R , ( r ) = e s s s u p E [ r Y I ~ 1 ,  t ~ C o , ~ l ,  
= s t  

is continuous when the jiltration is Brownian. 
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Proof. By the theory of Snell envelope, Rt is the smallest RCLL super- 
martingale which dominates q,. Since q€Y2, Rt is a supemartingale of class 
[Dl, i.e. the set (R, ,  VEF) is uniformly integrable. So according to the 
Doob-Meyer decomposition, there exist a unique martingale M ,  and a non- 
decreasing predictable process K, ( K O  = 0) such that R, = M , - K t .  Moreover, 
the jumping times of K, are included in {R- = q ) ,  where R- is the left con- - 
tinuous version of R and 

q t  = limsupq,, t ~ [ 0 ,  m]. - 
s r t  

Let us show that R is continuous. The martingale M is obviously con- 
tinuous since ( a a o  is a Brownian filtration. On the other hand, if t is a pre- 
dictable stopping time, then 

where Pq is the predictable projection of q .  The first inequality is true since q, is 
left upper semicontinuous. It follows that ER,- = ER, for any predictable stop- 
ping time T since R, is a supermartingale. 

Therefore, R is a regular supermartingale (Dellacherie [7]), which implies 
that K is continuous, and so is R. 

We go back to the proof of Proposition 5.1. 

From Lernma 5.2 we infer that X- +f and X' - 0 are right continuous 
and left upper semicontinuous *-adapted processes, their envelopes are con- 
tinuous processes, so X' and X- are continuous. 

We know that the process X+ (respectively, X-) is a continuous e- 
supermartingale of class [Dl which satisfies Xf  (a) = 0 (respectively, 
X-(a )  = 0). Hence there exists a unique continuous q-adapted increasing 
process K' (respectively, K-) such that K; = 0, E(K2)' < oo and 
X;' = E [K: ) $33 - K: (respectively, KG = 0, E(K;)' < c~ and X; = 
ELK; 1 93-K;). Moreover, we have 

4) m 

1 (x;' -x; - g ) d ~ :  = j (x; -x;t + O t ) d ~ ;  = o 
0 0 

(see El-Karoui [11] and Cvitanic and Karatzas [5]) .  
Now, let = Nt + X: - X ;  and define Z E H 2  by 

m t 

E [ 5 +  j f (s)ds+K&-K, I 61 = N~+E[K:-K~]+SZ,~B, .  
0 0 

For all t 2 0, 
t w t 

Then 
w m 

q = t+  1 f (s)~s+K:-K&-(K;-K;)- 1 ZsdBsy ~ E C O ,  4. 
I t 
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It is easy to check that (Y, 2, K', K-) satisfies properties (iHiii) in this sec- 
tion. Consequently, (Y, Z, K' , Kp) is a solution of the double-barrier reflected 
BSDE (5.2) associated with Cf, c ,  S, U). 

Let us prove the uniqueness. If (x Z, K+, R-)  is another solution of the 
reflected BSDE (5.2) associated with (f, (, S, U), define 9= Y- 2 = Z - Z ,  
K = K-K, where K = K'-K-, K = R+ -R- .  Using ItB's formula to 1t)2, 
we obtain 

rn m m 

1Q2+JlZs12ds=2j  t d R , - 2 J  X & ~ B , .  
t I t 

But (I6 ~ i ! ; d ~ ~ ) ~ , ~ - - i s  a martingale and 

Consequently, E I ~ I ~  = 0 a.s. for all t~ [O, m] and EI," 12,12 ds = 0. Then 
1Zl2 = 0 as., so Y = Y' by the continuity of t. It is easy to get K, = K,, 
Finally, let us show that K+ = K+ and K -  = R p .  

For any t $0, fo (Y,-Ss)dKs = To (Y,-Ss)dKs. On the other hand, 
t t 

j(Y,-SS)d~, = -~(Y,-s,)~K; = - ~ ( u ~ - S ~ ~ K ; .  
0 0 0 

In the same way we have (Y, - Ss) dKs = - 1: (Us - SJ dK; , and then 
t t 

~ ( u s - ~ s ) d ~ ~ = j ( ~ , - ~ s ) d K ;  for all t ~ [ ~ , c o l ,  
0 0 

which implies (Ut - St) dK; = (U, - St) dR; . Consequently, K, = K; since 
Kg = Kg = 0 and St < U, for all t > 0. Similarly, from the equality 
So (Us - Y,) dKs = So (Us- YJ dKs we obtain Ki  = R+ . So we get the unique- 
ness of the solution to the infinite horizon reflected BSDE (5.2) with two 
barriers. 

Now we give the main result of this section. 

THEOREM 5.3. Let CEC, let f satisfy (H2.1) and (H2.2), and assume that 
(H5.1HH5.3) hold true. Then the doubk-barrier reflected BSDE (5.1) associated 
with Cf, t ,  S, U) has a unique solution (Y, Z ,  K+,  K-). 

Proof.  We first prove the existence. It is also divided into two steps. 
S t e p  1. Assume [(J," u, (s)ds)'+j," u: ( ~ ) d s ] ' ~ ~  < *. 
Let 9 be the space of the process (I: Z) with values in R1+" such that 

Y E Y ~ ,  ZE X 2  and I[(Y, Z)ll$ = 11Y11$2+11~11$~. We define a mapping '1P from 
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9 onto itself as follows: for my (%, f )  E 9, (Y, 2) = Y (49, F )  is the unique 
element of 3 such that (Y, 2, K + ,  K-) solves the double-barrier reflected 
BSDE associated with (f(s, q, "y,)), 5 ,  S ,  U). 

I Let (a, 7) be an element of 9 and define (F Z )  = P(4, P), 4 = $2-42, 
I - - @ = Y - F ,  y= y- r2 = z - Z , R  = K - K , K  = Kf  - K - , R  = R + - R -  
! and f = f (s, q, %)-f(s, g, c). We want to prove that the mapping 'P is 

a contraction. 
Using Its's formula to ll?J2, we have 

m  m m m 

(5.4) - 1  El2 + 1~,12ds = 2 f (s) ds + 2 j q d ~ , -  2 J Zs dBs 
i t t  t 

m m  

G 2 f (s)ds-2 j E z , ~ B , .  
t t  

Then 
m 00 

E sup 1 g12 < 2E sup (RI  j lf(s)l ds + 2E sup ( j Z ,  ~ B , J  
O i t G m  O d t d m  0 O Q t G m  t 

m m 

< &E sup l X l 2 + 6 ~ ( J  1 f (s)l d s ) ' + 4 ~ [ ~  1fi.l' 1~~v12ds~"2 
O d t S w  0 0 

m Q3 

< &E sup (f;12 + 6 E ( j  i f ( $ ) )  d s ) ' + f ~ [  sup ]El2] + 8 ~  I lzt12dt. 
O S t C m  0 OGtBm 0  

Consequently, 
m 

(5.5) E SUP It12 < 18E(j  13 (s)l ds)' + 2 4 ~  7 I ~ t 1 2  dt. 
O d t B m  0  0 

Going back to (5.4), we have 

m  

< &E sup 1%12 +48E (J  I) (s)l d ~ ) ~ .  
O < t d m  0  

From (5.5) and (5.6) we get 
m  

E sup 1x1' < )E sup 1 Xl2+(18 +24 x 48) E( j I) ($1 ds)', 
OGtCm OGtCm 0  

SO 

E sup 1 el2 < 2340E(T (f (s)l ds)'. 
OGtGm 0 

Going back to (5.6) again, we have 
m 2340 m w 

E I lgt12 dt < - E  sup 14' + 48E ( j ] f (s)l ds)' < 100E(j (f(s)l dd2. 
0 48 OQtGm 0  0 

2 - PAMS 19.2 
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Similarly to Theorem 3.2, we have 

From the inequality [(I: u,(s) ds)' + 1; u$ (3) ds] l i2  < we deduce that 'P is 
a strict contraction and has a unique fixed point, which is the unique solution 
of the double-barrier reflected BSDE (5.1). 

s t e p  2. For the general case, there exists To > 0 such that 

w rn 1 
[( uI (s) ds)' + j U$ (s) dsI1/' < -. 

To  To  70 

From Step 1 we how that the reflected BSDE 
m 

(5.7) = t+  J lcaToI f i s ,  T , Z , ) d s + K i - K ; C - ( E l - R ; )  
t 

m 

-JZsd3,, t ~ C O , 0 3 1 ?  
t 

has a unique solution (x, Zt ,  R: ,  a;). Then we consider the double-barrier 
reflected BSDE 

From the result of Cvitanic and Karatzas [ 5 ]  we know that there exists a uni- 
que solution ( x ,  zt, g:, x;) satisfying the double-barrier reflected BSDE (5.8) 
and the properties (iHiii) in this section on [0, T,], We set 
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Then it is easy to check that (Y, 2, #+, K - )  is a solution of the double-barrier 
reflected BSDE (5.1). 

At last, we prove the uniqueness of the solution of (5.1). Let (r Z, K + ,  K-) be another solution of the double-barrier reflected BSDE (5.1) 
associated with If, t, S ,  U). We use the same notation as in Proposition 5.1; 
ItB's formula gives 

t 1 

Then, taking expectation we get 
41 

(5.9) E 1 TI2 + E 7 lZSl2 ds 4 2E J I t1 [u, (s) 1 + u, (s) IZ,~] ds 

From Gronwall's lemma we obtain ~ 1 x 1 ~  = 0 for all t E LO, a]. Then I t iZ = 0 
a.s., so Y = Y' by the continuity of 2 Going back to (5.9), we have 

m m 

E j I ~ , l ~ d s  < 4E sup 1x1~ J [u, (s)+u$ (s)]ds ,  
0 [OStdm) 0 

so EJ," (2,l2 ds = 0. Then it is easy to get Kt  = Kt. In the same way as in the 
proof of Proposition 5.1, we can get K: = K: and K; = R;. 

6. Applications in the mixed game problem with infinite horizon. Like for 
the mixed control problem, we now use the double-barrier reflected BSDE with 
infinite horizon to deal with a stochastic mixed differential game problem. 

Let %', a ,  X, U and % be the same as in Section 4, let V be another 
compact metric space, and Y be the space of 9-measurable processes with 
values in K 

Let q be a function from LO, a) x %'x U x V into R" such that: 
(i) cp (., X (-), - , .) is B@9 (U x V)-measurable, S (U x V) is the Bore1 

o-algebra on U x T/; 

(ii) For any t E [0, a) and x E %, cp (t, x ,  ., -) is continuous on U x T/; 

(iii) Iq (t, x, u, v)] < c (t) P-as., where c (t) is deterministic and 
j;c2(t)dt < m. 

For any (u, V ) E @  x "y; we define a probability Pus"' on (52,F) by 

m 
1 

- T J o 16-I (s, X) cp (s, X, us, v,)I2 ds). 



According to Girsanov's theorem, the process 
i 

~j".v) = B - ~ a - l ( ~ , X ) ~ ( ~ , X , u , , v s ) d ~ ,  t>O,  
0 

is a Brownian motion on (a, P(u$"l) and X is a weak solution of 

Suppose now that we have a system whose evolution is described by X, which 
has an effect on the payoffs of two players J, and J,. For their part the 
controllers have no influence on the system and they act such as to protect 
their' advimtages, which are antagonistic, by means of u E Q for J ,  and v  E Y for 
J ,  via the probability Ptu.u'. The pair (u, V ) E ~  x T is called an admissible 
control for the game. On the other hand, the two players have also the pos- 
sibility to stop the game at a for J ,  and z for J,, where a and z are elements 
of F. So the controlling actions are not free and the payoff corresponding to 
the actions of J ,  and J ,  is defined by 

where St ,  U, and 5 are the same as in Section 5, C (t, x, u, v )  is a function from 
[0, co) x % x  U x Vonto R which satisfies the same hypotheses as cp. The action 
of J, (respectively, J,) is to minimize (respectively, maximize) the payoff 
J(u, a; v ,  z). We can understand the reward and cost for the two players as 
follows: 

(i) C(t, X, u,  v)  is the instantaneous reward (respectively, cost) for 3, 
(respectively, J,). 

(ii) U, is the terminal cost (respectively, reward) for J ,  (respectively, J,) if 
J ,  decides to stop &st the game. 

(iii) S, is the terminal reward (respectively, cost) for J, (respectively, J , )  if 
J, decides to stop first the game. 

Our problem is to look for a saddle-point strategy for the two players, i.e. 
a strategy (ti, 8; 8, f) such that 

for any (u, c r ) ~ % x Y  and (v ,  T ) E Y X F .  
For (t, x, p, u,  v) E [O m) x %2 x Rm x U x V we define the Hamiltonian by 

and we suppose that the following assumption holds: 

(6.1) inf supH(t, X, p ,  u, v) = sup infH(t, X,  p, u,  v). 
Ufu u.v "EV UEU 
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Under the above condition, which is called Isaacs's condition (Elliott [lo], 
Bensoussan and Lions [3], Davis and Elliott [6] ,  Hamadhe and Lepeltier 
[14], [15]), by the Benes theorem (Benes [2]), there exists a pair of 9 @ B  (Rm)- 
measurable functions u*(t, X, p) and u* (t, X, p) with values, respectively, in 
U and V such that for any (t , p) E LO, oo) x Rm, u E U and v E V,  

(6.2) H(t, X, p ,  u*(t, X, p), v* ( t ,  X, P)) = inf supH(t, X, P, u, 0) 
U"U v,v 

and 
= sup infH (t, X, p, u, v) 

UEV EU 

(6.3) - B ( t ,  X, p, u* ( t ,  X, 1-4, 0) 6 H(t,  X, P ,  u* (t, X, p), v* (t, 1, p)) 

for all (u, V) E U x V. Under the assumption (iii) of q, H (t, X, p, u, v) satisfies 
the Lipschitz condition (H2.2) in p. Then it is easily deduced from (6.2) that the 
function H (t, X, p, u* (t, X, p) ,  V* (t, X, p)) also satisfies the Lipschitz condi- 
tion (H2.2) in p. 

We now give the main result of this section, 

THEOREM 6.1. Assume (H5.1HH5.3) and Isaacs's condition (6.1) are satis- 
fied; let (Y*, Z*, K*+,  K*-) be the solution of the double-barrier reflected 
BSDE with infinite horizon associated with (H (t, X, 2, u* (t, X, Z), o* (t, X, Z)),  
t, S, U), u* = u* (t, X, ZF), v* = v* (t, X, Z:), t E [ O ,  co), and 

inf(tsC0, a), K* < St} ,  
i =  {* inf{tE [O, a), x* 2 U,), 

otherwise, otherwise. 

Then Yo* = J(u*, 6; v* ,  9) and (u*, 8 ;  v*, f) is a saddle-point strategy for the 
mixed stochastic game problem with ininite horizon. 

Proof .  We consider the following double-barrier infinite horizon reflec- 
ted BSDE associated with ( ~ ( t ,  X, 2, u* (t, X, Z) ,  u* (t, X, Z)), t, S, u): 

m 

I;* = 5+ 1 H(S, X, Z,*, uS(s, X, Z:), u*(s, X, Z,*))ds 
t 

m 

+K:+ -K:+ -(K:- - K : - 1 -  f z,*~B,. 
t 

By Theorem 5.3, there exists a unique solution (x*, Z:, K:+, K:-) satisfying 
the properties (ij(iii) in Section 5 and we know that Y: is a deterministic 
constant. Then 



i A b 
- - p * . u * 1  [ 1 C(S, XY U* (3, X, z3, u* (s, X, Z3)ds 

0 
?A;  

+ Kf ,** - KfAni - j Z: dBY*"*) + ;] . 
0 

We know that the processes K*+ and Ks- increase only when x* = St and 
x* = U,, respectively. Therefore, they do not increase between 0 and ? A 6, and 
then K$,,++ = Kt;* = 0. On the other hand, using the Burkholder-Davis-Gun- 
dy inequality and the assumptions on q,  we deduce that the process 
(SO 2: , is a P("*~"*)-martingale, and then 

P A  % 
yo* = gu*.uf )  [ S C (s, X, U* (s, X ,  Z:), U* ( s ,  X ,  2,")) ds + xt;, ;I. 

0 

From the equality 

we obtain Y,* = J(u*, 5 ;  v*, ?). 
Now, let u be an element of 9, and c be a stopping time. Since P and P(","*) 

are equivalent probabilities on (a, 9), we get 

= Cub*] 
m 

= I?','*) [t + ~ ( s ,  X,  Z,*, u* (s, X, Z:), v* (s, X ,  2:)) ds 
0 

= [ 1 H (s, X, Z:, u* (s, X,  Z:), v* (s, X, Z:)) ds 
0 

C A T  

+K::~-K:;~- z:~B,+ Y&] 
0 

n n i  a ~ i  
= 1 C(S, x, u,, v*(s, x, Z:))~S+K:,+?-~$2- j ~ , * d g , ~ * ) + & - ~ ~  

0 0 
a n ?  

+ J (H (s, x ,  z:, u* (s, x, z:), o* (s, X, z?)) 
0 

-H(s,X,Z,*, us, v * ( s ,  X,z:)))ds]. 
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I But Kz;: = 0 P(UpV')-a.s, and by (6.3) we have 
I 

- W ( s , X , Z ~ , u , , u * ( s , X , Z , * ) ) , < O  for all s~[O,m).  

On the other hand, ( J ~ Z : ~ B ~ ~ * ~ ) , , ,  is a P('~Y*l-martingale, 

y* anr - = y-* t 1 ~ r Q a , a < m l f  - y$ l(o<?)+c l l?=rn=m) 

It follows - that. . - 

= J(u ,  a; u*, f). 

In the same way we can show that, for any (v, Z) E V x F we have 

J(u*, 8; u*, f) = Yz 
O A T  

3 J$@*~'[ ~ ( s ,  X ,  u*(s, X, Z:), v,)ds+S, lirgz,z<ml+ UG 11a-=e+ 5 l r o = z = m ) I  
0 

= J(u*,  8; v,  7). 

Henceforth the strategy (u*, 6;  v*, f) is a saddle-point for the mixed stochastic 
game problem with infinite horizon. 
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