PROBABILITY AND MATHEMATICAL STATISTICS Vol. 19, Fasc. 2 (1999), pp. 407–412

A NON-ERGODIC PHENOMENON FOR SOME RANDOM DYNAMICAL SYSTEM

BY

ANDRZEJ KOMISARSKI* (WARSZAWA)

Abstract. In [2] Jajte formulated the following question: Let $h_0(x)$ and $h_1(x)$ be homeomorphisms of the interval [0, 1] onto itself. Is it true that for any $x \in [0, 1]$ and almost any $t \in (0, 1)$ there exists a limit of a sequence

$$\frac{1}{n}\sum_{i=1}^{n}h_{i}\circ\ldots\circ h_{i}(x)$$

for $n \to \infty$, where $t = (0, t_1 t_2 ...)_2$ is a binary representation of t, i.e. $t = \sum_{\substack{i \ge 1 \\ i \ge 1}} t_i 2^{-i}$ and $t_i \in \{0, 1\}$?

The answer is negative. We describe the set of condensation points of the sequence in some special cases.

1991 Mathematics Subject Classification: Primary 60J15; Secondary 26A18.

1. Introduction and main results. Let h_0 and h_1 be homeomorphisms of the interval [0, 1] onto itself. Fix $x \in [0, 1]$ and $t \in (0, 1)$. We discuss the sequences

(1) $\frac{1}{n}\sum_{i=1}^{n}h_{t_i}\circ\ldots\circ h_{t_1}(x),$

where $t = (0, t_1 t_2 ...)_2$ is a binary representation of t, i.e. $t = \sum_{i \ge 1} t_i 2^{-i}$ and $t_i \in \{0, 1\}$. For t chosen in a random way, one can consider (1) as ergodic means for an elementary example of a random dynamical system. In [2] Jajte asked if the sequence (1) converges with $n \to \infty$ for all $x \in [0, 1]$ and almost all (in the sense of Lebesgue measure) $t \in (0, 1)$. It emerges that the answer is negative. Moreover, for a large and easily describable class of pairs h_0 , h_1 the limit does not exist for almost all $t \in (0, 1)$ and almost all $x \in [0, 1]$. More precisely, we have:

THEOREM 1. There exists $T \subset [0, 1]$ with $\lambda(T) = 1$ such that, for any increasing homeomorphism h: $[0, 1] \rightarrow [0, 1]$ with 0 and 1 as the only fixed

^{*} Department of Mathematics, Warsaw University.

points and for any $x \in (0, 1)$ and any $t \in T$, the set $\{n^{-1}\sum_{i=1}^{n} h_{t_i} \circ \ldots \circ h_{t_1}(x): n \in N\}$ is dense in [0, 1], where $h_0 = h$, $h_1 = h^{-1}$, $t = \sum_{i \ge 1} t_i 2^{-i}$, $t_i \in \{0, 1\}$, and $\lambda()$ denotes Lebesgue measure.

Roughly speaking, if one takes ergodic means of superpositions of homeomorphisms chosen in a random way, then instead of one limit a dense set of condensation points is obtained. In some sense, the result is opposite to that which would be expected by analogy to ergodic theorems and to behaviour of a simple dynamical system defined by a homeomorphism of the interval [0, 1]onto itself. An analogical result for an arbitrary increasing homeomorphism h is described in Section 3.

2. Proofs. Before proving the theorem we fix some notation. Let $R \subset [0, 1]$ be a set of numbers with more than one binary representation. Obviously, $\lambda(R) = 0$. On the probability space $(\Omega = [0, 1] \setminus R$, Borel (Ω) , λ) the Rademacher sequence $r_i = r_i(t) = 1 - 2t_i$ forms a family of independent random variables with distribution $\lambda(r_i = 1) = \lambda(r_i = -1) = 1/2$. For $t \in [0, 1] \setminus R$, $x \in [0, 1]$, $n \in N$, we put

$$a_{t,n}(x) = \frac{1}{n} \sum_{i=1}^{n} h_{t_i} \circ \ldots \circ h_{t_1}(x) = \frac{1}{n} \sum_{i=1}^{n} h^{r_i} \circ \ldots \circ h^{r_1}(x) = \frac{1}{n} \sum_{i=1}^{n} h^{r_i + \ldots + r_1}(x).$$

Proof of Theorem 1. The demanded set T can be defined by the following formula:

$$T = \left\{ t \in [0, 1] \setminus R: \forall_{\alpha \in (0, 1)} \forall_{N \in \mathbb{N}} \exists_{n \in \mathbb{N}} \frac{1}{n} \# \left\{ i = 1, \dots, n: \sum_{k=1}^{i} r_{k}(t) > N \right\} > \alpha \right\}$$
$$\cap \left\{ t \in [0, 1] \setminus R: \forall_{\alpha \in (0, 1)} \forall_{N \in \mathbb{N}} \exists_{n \in \mathbb{N}} \frac{1}{n} \# \left\{ i = 1, \dots, n: \sum_{k=1}^{i} r_{k}(t) < -N \right\} > \alpha \right\}.$$

The required properties of the set T are proved in Lemmas 1 and 2. \blacksquare

LEMMA 1. For any increasing homeomorphism h: $[0, 1] \rightarrow [0, 1]$ with 0 and 1 being the only fixed points of h and any $t \in T$ the set $\{a_{t,n}(x): n \in N\}$ is dense in [0, 1] for any $x \in (0, 1)$.

Proof. Fix a homeomorphism h and points $t \in T$, $x \in (0, 1)$. According to the definition of $a_{t,n}(x)$ we have

$$a_{t,n+1}(x) = \frac{1}{n+1} [h_{t_{n+1}} \circ \dots \circ h_{t_1}(x) + na_{t,n}(x)],$$
$$\frac{na_{t,n}(x)}{n+1} \leq a_{t,n+1}(x) \leq \frac{na_{t,n}(x) + 1}{n+1},$$
$$-\frac{1}{n+1} \leq -\frac{a_{t,n}(x)}{n+1} \leq a_{t,n+1}(x) - a_{t,n}(x) \leq \frac{1 - a_{t,n}(x)}{n+1} \leq \frac{1}{n+1},$$

408

 $\langle \alpha \rangle$

and

(3)
$$|a_{t,n+1}(x)-a_{t,n}(x)| \leq \frac{1}{n+1} \to 0.$$

Now we prove that $\limsup_{n\to\infty} a_{t,n}(x)$ and $\liminf_{n\to\infty} a_{t,n}(x)$ are equal to 1 and 0, respectively. The number x is not a fixed point of h; hence h(x) > x or h(x) < x. Both cases are analogical, so it is enough to consider the case h(x) > x. Numbers $h^n(x) > 0$ form an increasing bounded sequence of reals, so there exists $\lim_{n\to\infty} h^n(x) > 0$. Moreover,

$$h\left(\lim_{n\to\infty}h^n(x)\right)=\lim_{n\to\infty}h^n(x),$$

so $\lim_{n\to\infty} h^n(x)$ is a fixed point of h and must be equal to 1.

Consider $\limsup_{n \in \mathbb{N}} \sup_{x \in \mathbb{N}} a_{r,n}(x)$ for $n \to \infty$. Let $0 < \varepsilon < 1$ be arbitrarily chosen. Fix $N \in \mathbb{N}$ satisfying

$$\forall_{n>N} \ 1-h^n(x) < \varepsilon/2.$$

For $t \in T$

$$\exists_{n\in\mathbb{N}}\,\frac{1}{n}\,\#\,\left\{i=1,\,\ldots,\,n:\,\sum_{k=1}^{i}r_{k}>N\right\}>\frac{1-\varepsilon}{1-\varepsilon/2}.$$

For such n we have

$$1 > a_{i,n}(x) = \frac{\sum_{i=1}^{n} h^{r_1 + \dots + r_i}(x)}{n} = \frac{\sum_{i=1}^{n} h^{r_1 + \dots + r_i}(x) + \sum_{i=1}^{n} h^{r_1 + \dots + r_i}(x)}{n}$$
$$\geq \frac{\sum_{i=1}^{n} (1 - \varepsilon/2)}{n} \ge (1 - \varepsilon/2) \frac{\# \{i = 1, \dots, n: r_1 + \dots + r_i > N\}}{n}$$
$$> (1 - \varepsilon/2) \frac{1 - \varepsilon}{1 - \varepsilon/2} = 1 - \varepsilon.$$

Hence

(4)
$$\forall_{\varepsilon>0} \exists_{n\in\mathbb{N}} |a_{t,n}(x)-1| < \varepsilon.$$

It is easy to prove in the same way that

(5)
$$\forall_{\varepsilon>0} \exists_{n\in\mathbb{N}} |a_{t,n}(x) - 0| < \varepsilon.$$

Relations (3), (4) and (5) imply that $\{a_{t,n}(x): n \in N\}$ is dense in [0, 1]. LEMMA 2. The Lebesgue measure of the set T defined by (2) is equal to 1. To prove this lemma we need the following generalization of the classical arc sin law for a symmetric random walk. (For more details about arc sin law see [1].)

LEMMA 3. For any $N \in \mathbb{Z}$ and any $0 < \alpha < 1$ we have

$$\lambda\left(\left\{t\in[0,\,1]\backslash R\colon\frac{1}{n}\,\#\,\{i=1,\,\ldots,\,n\colon\sum_{k=1}^{i}r_{k}(t)>N\}>\alpha\right\}\right)\to f(\alpha) \quad \text{for } n\to\infty,$$

where $f(\alpha)=1-2\pi^{-1}\arcsin\sqrt{\alpha}.$

P-roof of Lemma 2. For any $N \in N$ and $0 < \alpha < 1$ let us put

$$T_{N,\alpha} = \left\{ t \in [0, 1] \setminus R \colon \exists_{n \in \mathbb{N}} \frac{1}{n} \not= \left\{ i = 1, \ldots, n \colon \sum_{k=1}^{i} r_k(t) > N \right\} > \alpha \right\}.$$

According to the definition (2), the set T is an intersection of two sets. Denote them by T_1 and T_2 , respectively. We have

(6)
$$T_1 = \bigcap_{N=1}^{\infty} \bigcap_{\alpha \in \mathbf{Q} \cap (0,1)} T_{N,\alpha}.$$

We will show that $\lambda(T_{N,\alpha}) = 1$. For a given $N \in N$ and $0 < \alpha < 1$, fix $\alpha < \beta < 1$. Define by induction a sequence of sets $A_i \subset [0, 1] \setminus R$ and sequences of numbers $n_i, N_i \in N$, as follows:

Assume that A_j , N_j , n_j have already been defined for all j < l. (l = 1 means) that no A_j , N_j , n_j have been defined so far.) To define A_l , N_l , n_l observe that there exists N_l large enough to satisfy

$$\forall_{n\geq N_1} \frac{1}{n} (n+\sum_{j<1} n_j) < \frac{\beta}{\alpha},$$

and then

$$f\left(\frac{\alpha}{n}\left(n+\sum_{j f(\beta).$$

By Lemma 3 the Lebesgue measure of the set

$$\left\{t \in [0, 1] \setminus R: \frac{1}{n} \# \left\{i = 1, \dots, n: \sum_{k=1}^{i} r_{k+\Sigma_{j < l} n_j}(t) > N + \sum_{j < l} n_j\right\} > \frac{\alpha}{N_l} (N_l + \sum_{j < l} n_j)\right\}$$

tends to $f(\alpha N_l^{-1}(N_l + \sum_{j < l} n_j)) > f(\beta)$ when *n* tends to infinity, and hence there exists $n_l > N_l$ satisfying

$$\lambda\left(\left\{t\in[0,\,1]\backslash R\colon \frac{1}{n_l} \#\left\{i=1,\,\ldots,\,n_l\colon\sum_{k=1}^i r_{k+\sum_{jN+\sum_{j\frac{\alpha}{N_l}\left(N_l+\sum_{jf\left(\beta\right).$$

410

Let A_I be the latter set considered.

 A_l are independent in $(\Omega = [0, 1] \setminus R$, Borel (Ω) , λ) because r_k are independent and $\lambda(A_l) \ge f(\beta) > 0$. Consequently, by the Borel-Cantelli theorem, $\lambda(\limsup_{l\to\infty} A_l) = 1$. According to the definitions of $T_{N,\alpha}$ and A_l it is easy to verify that $A_l \subset T_{N,\alpha}$ for all $l \in N$. This implies $\lambda(T_{N,\alpha}) = 1$. By (6), T_1 is a countable intersection of sets $T_{N,\alpha}$ and $\lambda(T_1) = 1$. Similarly it can be proved that $\lambda(T_2) = 1$. A measure of the set $T = T_1 \cap T_2$ is also equal to 1.

Proof of Lemma 3. Let $B_i = \{t \in [0, 1] \setminus R: \sum_{k=1}^{j} r_k(t) = N \text{ holds for } j = l \text{ and does not hold for } j < l\}$ and

$$A_{n,\alpha,N} = \left\{ t \in [0, 1] \setminus R: \frac{1}{n} \# \left\{ i = 1, \ldots, n: \sum_{k=1}^{i} r_k(t) > N \right\} > \alpha \right\}.$$

We have to prove that, for any fixed $N \in \mathbb{Z}$ and $\alpha \in (0, 1)$, $\lambda(A_{n,\alpha,N})$ tends to $f(\alpha)$ as *n* tends to ∞ . It is easy to see that for any $\varepsilon > 0$

$$\begin{split} &\limsup_{n\to\infty}\lambda(A_{n,\alpha,N}|B_l)\\ &\leqslant \lim_{n\to\infty}\lambda\bigg(\bigg\{t\in[0,\,1]\backslash R\colon \frac{1}{n}\,\#\,\big\{i=1,\,\ldots,\,n\colon\sum_{k=l+1}^{l+i}r_k(t)>0\big\}>\alpha-\varepsilon\bigg\}\bigg), \end{split}$$

which is equal to $f(\alpha - \varepsilon)$ (due to the classical arcsin law).

The same argument gives us the inequality

$$\liminf_{n\to\infty}\lambda(A_{n,\alpha,N}|B_l) \ge f(\alpha+\varepsilon).$$

Since f is a continuous function and ε is arbitrary, $\lim_{n\to\infty} \lambda(A_{n,\alpha,N} | B_l)$ exists and is equal to $f(\alpha)$, which together with $\sum_{l=1}^{\infty} \lambda(B_l) = 1$ gives us the conclusion.

3. Other generalizations. Now we formulate a simple generalization of Theorem 1.

THEOREM 2. There exists $T \subset [0, 1]$ with $\lambda(T) = 1$ such that, for any increasing homeomorphism h: $[0, 1] \rightarrow [0, 1]$, for any $x \in [0, 1]$ and any $t \in T$, we have

$$\operatorname{cl}\left\{\frac{1}{n}\sum_{i=1}^{n}h_{t_{i}}\circ\ldots\circ h_{t_{1}}(x):\ n\in\mathbb{N}\right\}=[m_{x},\ M_{x}],$$

where m_x is the maximal fixed point of h not greater than x, M_x is the minimal fixed point of h not less than x. As before $h_0 = h$, $h_1 = h^{-1}$ and $t = (0, t_1 t_2 ...)_2$ is a binary representation of t.

Proof. The set T is the same as in the proof of Theorem 1 and is defined by (2). To check that it satisfies the conclusion of the theorem we consider two cases: A. Komisarski

If x is a fixed point of h, then

$$M_x = m_x = x \quad \text{and} \quad \operatorname{cl}\left\{\frac{1}{n}\sum_{i=1}^n h_{t_i} \circ \ldots \circ h_{t_1}(x): n \in N\right\} = \operatorname{cl}\left\{x\right\} = [m_x, M_x].$$

If x is not a fixed point, then consider a restriction $h' = h|_{[m_x,M_x]}$ of the function h. The function h' is an increasing homeomorphism of the interval $[m_x, M_x]$ onto itself with m_x and M_x as the only two fixed points. It is easy to see that, as in Theorem 1, $\{n^{-1}\sum_{i=1}^n h'_{t_i} \circ \ldots \circ h'_{t_1}(x): n \in N\}$ is dense in $[m_x, M_x]$, and this implies the conclusion.

Acknowledgements. The author would like to thank Adam Paszkiewicz for valuable discussions and for his help during the preparation of this paper.

REFERENCES

W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York 1966.
R. Jajte, Problem 98*, Wiadom. Mat. 7 (1964), p. 251.

Department of Mathematics, Warsaw University ul. Banacha 2, 02-097 Warszawa, Poland *E-mail address*: andkom@mimuw.edu.pl

Received on 22.7.1999