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Abstract. In [2] Jajte formulated the following question: 
Let h,(x) and hi (x) be homeomorphisms of the interval LO, 11 

onto itself. Is it true that for any ~ € 1 0 ,  11 and almost any t ~ ( 0 ,  1) 
there exists a limit of a sequence 

for n + a, where t = (0, t, t, . . .), is a binary representation of t, i.e. 
t = xi,, ti2-' and t , ~  {0, I)? 

The answer is negative. We describe the set of condensation 
points of the sequence in some special cases. 

1991 Mathematics Subject Classification: Primary 60Jf5; Sec- 
ondary 26A18. 

1. Introduction and main results. Let ho and h1 be homeomorphisms of the 
interval [O, 11 onto itself. Fix X E  [0, 11 and t ~ ( 0 ,  1). We discuss the sequences 

where t = (0, t ,  t ,  . . .), is a binary representation of t ,  i.e. t = xi,, ti.2-' and 
ti E 10, 1). For t chosen in a random way, one can consider (1) as ergohc means 
for an elementary example of a random dynamical system. In 121 Jajte asked if the 
sequence (1) converges with n -r oo for all x E [0, 11 and almost all (in the sense of 
Lebesgue measure) t E (0, 1) .  It emerges that the answer is negative. Moreover, for 
a large and easily describable class of pairs h,, h, the limit does not exist for 
almost all t ~ ( 0 ,  1) and almost all x E [0,  11. More precisely, we have: 

THEOREM 1. There exists T c [0, 17 with I ( T )  = 1 such that, for any in- 
creasing homeomorphism h: [0, 11 + [0, 11 with 0 and 1 as the only fixed 
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pintsaPadforanyx~(0, l ) a d a n y t ~ ~ t h e s e t { n - ~ ~ ~ = , ~ , o  . . .ohl(  x):  EN) 
is dense in [O, 11, where ho = h, hl = hK1, t = Cia, t i  z -~ ,  ti E (0, 11, and I ( ) 
denotes Lebesgue measure. 

Roughly speaking, if one takes ergodic means of superpositions of homeo- 
morphisms chosen in a random way, then instead of one limit a dense set of 
condensation points is obtained. In some sense, the result is opposite to that 
which would be expected by analogy to ergodic theorems and to behaviour of 
a simple dynamical system defined by a homeomorphism of the interval [O, 11 
onto itself. An analogical result for an arbitrary increasing homeomorphism 
h is described in Section 3. 

2. Roofs. Before proving the theorem we fix some notation. Let 
R c [O, 11 be a set of numbers with more than one binary representation. 
Obviously, A(R) = 0, On the probability space (D = [O, 1]\R, Borel(52), A) the 
Rademacher sequence ri = ri j t )  = 1 -2ti forms a family of independent random 
variables with distribution Il (ri = 1) = I (r i  = - 1) = 1/2. For t E [ O ,  1]\R, 
XECO, 11,  EN, we put 

1 "  1 " 1 " 
at,,(x) = - htio .. . ohll  (x)  = - C hrio . . . oh" (x) = - C hrf-t.-.+rl 

n ,, , n i = ,  
(4 - 

n € = l  

P r o o f  of Theorem 1. The demanded set T can be defined by the 
following formula: 

The required properties of the set T are proved in Lemmas 1 and 2. 

LEMMA 1 .  For any increasing homeomorphism h: [0,  I] + 10, 11 with 0 and 
1 being the onIy$xed points of h and any t E T the set (a , , (x):  n EN) is dense in 
[0, 11 for any XE(O,  1). 

Proof.  Fix a homeomorphism h and points t~  x ~ ( 0 ,  1). According to 
the definition of a , , (x )  we have 

1 -- a t ,  (4 I a t ,  ( I  1 
.+1 -- 

6- 
n + l  t + l - t  n + l  n + l '  
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and 

(3) 

Now we prove that lim sup,,, a,,, (x) and lim inf,,, at,, (x) are equal to 
1 and 0, respectively. The number x is not a fixed point of h; hence h (x) > x or 
h(x)  < x. Both cases are analogical, so it is enough to consider the case 
h (x) > x. Numbers h" (x) > 0 form an increasing bounded sequence of reals, so 
there exists lim,, , hn (x) > 0. Moreover, 

. - 
h ( lim hn (x)) = lim hn (x) , 

n44r n- t  m 

so limn,, hn(x)  is a fixed point of h and must be equal to 1. 
Consider lim sup&,, (x) for n + a. Let 0 < s < 1 be arbitrarily chosen. Fix 

N E N satisfying 
vn>N 1-hn(x)  < ~ / 2 .  

For t f T  

For such n we have 

Hence 

It is easy to prove in the same way that 

Relations (3), (4) and (5) imply that { a , , ( $ :   EN) is dense in [0, 11. ES 

LEMMA 2. The Lebesgue measure ofthe set T defied by (2)  is equal to 1. 
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To prove this lemma we need the following generalization of the classical 
arcsin law for a symmetric random walk. (For more detaiIs about arcsin law 
see 111.) 

LEMMA 3. For any I? E Z and any 0 < oc < 1 we have 

where f (a) = 1 -2n-' arc sin &. 
P-roof of Lemma 2. For any N E N  and O < o : < 1  let us put 

~ i o r d i n ~  to the definition (21, the set T is an intersection of two sets. Denote 
them by TI and T2, respectively. We have 

We wilI show that AtT,,,) = 1. For a given N E N  and 0 < a < 1, fix 
u < B < 1. Define by induction a sequence of sets A, c [0, 1]\R and sequences 
of numbers nl,  N1 E N ,  as follows: 

Assume that Aj,  4, nj have already been defined for all j < I. ( I  = 1 means 
that no A j ,  4, nj have been defined so far.) To define A,, N,, n1 observe that 
there exists N ,  large enough to satisfy 

and then 

By Lemma 3 the Lebesgue measure of the set 

tends to f (EN;' (N,+L ?)) > f (8) when n tends to infinity, and hence 
there exists n, > N ,  satisfying 
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Let At be the latter set considered. 
A, are independent in (a = [ O ,  l]\R, Bore1 (a), A) because rk are inde- 

pendent and A(AI) 3 f ( f l )  > 0. Consequently, by the Borel-Cantelli theorem, 
t (limsup,,, A,) = 1. According to the definitions of TN,m and A, it is easy to 
verify that A, c TN,, for all EEN. This implies ;l(TN,J = 1. B y  (6), TI is a count- 
able intersection of sets TN,o! and A(TJ = 1. Similarly it can be proved that 
I (T,) = 1. A measure d the set T= TlnT2 is also equal to 1. a 

P r o o f  of Lemma 3. Let B, = ( t ~ [ 0 ,  l]\R: ~i=, rk( t )  = N holds for 
j = 1 and does not hold for j < 1 )  and 

We have to prove that, for any fixed N E Z and u E (0, I), A(An,,,,) tends to f (a) 
as n tends to a. It  is easy to see that for any E > 0 

which is equal to f (a-E) (dm to the classical arcsin law). 
The same argument gives us the inequality 

lim inf A (A,,=,, I B1) 2 f (u + E). 
n-r  ao 

Since f is a continuous function and E is arbitrary, limn,, A(A,,=,, ( Bl) exists and 
is equal to f (a), which together with zzl 1 (Bl) = 1 gives us the conclusion. 

3. Other generalizations. Now we formulate a simple generalization of 
Theorem 1. 

THEOREM 2. There exists T c [0, 11 with A(T) = 1 such that, for any in- 
creasing homeomorphism k: [O,  11 + [O, 11, for any ~ € 1 0 ,  I] and any t E T we 
have 

where m, is the maximal fixed point of h not greater than x, M ,  is the minimal 
$xed point of h not less than x. As before h, = h, h, = h-I and t = (0, t, t ,  . . .), 
is a binary representation of t .  

Proof.  The set T is the same as in the proof of Theorem 1 and is defined 
by (2). To check that it satisfies the conclusion of the theorem we consider two 
cases: 
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If x is a fixed point of k, then 

M , = m , = x  and cl htiO ... oht,(x):   EN =cl{x) = [m,, M,].  

If x is not a fured point, then consider a restriction h' = h of the 
function h. The function h' is an increasing homeomorphism of the intervaI 
[m,, M J  onto itself with m, and M ,  as the only two fixed points. 1 is easy to 
see that, as in Theorem 1, {n - I  x;=, h;;o . . . 0 hi, (x): n E Nj is dense in 
[m,, M,],  and this implies the conclusion. 
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