A NON-ERGODIC PHENOMENON FOR SOME RANDOM DYNAMICAL SYSTEM

BY
ANDRZEJ KOMISARSKI* (WARSZAWA)

Abstract. In [2] Jajte formulated the following question: Let $h_{0}(x)$ and $h_{1}(x)$ be homeomorphisms of the interval $[0,1]$ onto itself. Is it true that for any $x \in[0,1]$ and almost any $t \in(0,1)$ there exists a limit of a sequence

$$
\frac{1}{n} \sum_{i=1}^{n} h_{t_{i}} \circ \ldots \circ h_{t_{1}}(x)
$$

for $n \rightarrow \infty$, where $t=\left(0, t_{1} t_{2} \ldots\right)_{2}$ is a binary representation of t, i.e. $t=\sum_{i \geqslant 1} t_{i} 2^{-i}$ and $t_{i} \in\{0,1\}$?

The answer is negative. We describe the set of condensation points of the sequence in some special cases.

1991 Mathematics Subject Classification: Primary 60J15; Secondary 26A18.

1. Introduction and main results. Let h_{0} and h_{1} be homeomorphisms of the interval $[0,1]$ onto itself. Fix $x \in[0,1]$ and $t \in(0,1)$. We discuss the sequences

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} h_{t_{i}} \circ \ldots \circ h_{t_{1}}(x) \tag{1}
\end{equation*}
$$

where $t=\left(0, t_{1} t_{2} \ldots\right)_{2}$ is a binary representation of t, i.e. $t=\sum_{i \geqslant 1} t_{i} 2^{-i}$ and $t_{i} \in\{0,1\}$. For t chosen in a random way, one can consider (1) as ergodic means for an elementary example of a random dynamical system. In [2] Jajte asked if the sequence (1) converges with $n \rightarrow \infty$ for all $x \in[0,1]$ and almost all (in the sense of Lebesgue measure) $t \in(0,1)$. It emerges that the answer is negative. Moreover, for a large and easily describable class of pairs h_{0}, h_{1} the limit does not exist for almost all $t \in(0,1)$ and almost all $x \in[0,1]$. More precisely, we have:

Theorem 1. There exists $T \subset[0,1]$ with $\lambda(T)=1$ such that, for any increasing homeomorphism $h:[0,1] \rightarrow[0,1]$ with 0 and 1 as the only fixed

[^0]points and for any $x \in(0,1)$ and any $t \in T$, the set $\left\{n^{-1} \sum_{i=1}^{n} h_{t_{i}} \circ \ldots \circ h_{t_{1}}(x): n \in N\right\}$ is dense in $[0,1]$, where $h_{0}=h, h_{1}=h^{-1}, t=\sum_{i \geqslant 1} t_{i} 2^{-i}, t_{i} \in\{0,1\}$, and $\lambda()$ denotes Lebesgue measure.

Roughly speaking, if one takes ergodic means of superpositions of homeomorphisms chosen in a random way, then instead of one limit a dense set of condensation points is obtained. In some sense, the result is opposite to that which would be expected by analogy to ergodic theorems and to behaviour of a simple dynamical system defined by a homeomorphism of the interval [0,1] onto itself. An analogical result for an arbitrary increasing homeomorphism h is described in Section 3.
2. Proofs. Before proving the theorem we fix some notation. Let $R \subset[0,1]$ be a set of numbers with more than one binary representation. Obviously, $\lambda(R)=0$. On the probability space $(\Omega=[0,1] \backslash R$, $\operatorname{Borel}(\Omega), \lambda)$ the Rademacher sequence $r_{i}=r_{i}(t)=1-2 t_{i}$ forms a family of independent random variables with distribution $\lambda\left(r_{i}=1\right)=\lambda\left(r_{i}=-1\right)=1 / 2$. For $t \in[0,1] \backslash R$, $x \in[0,1], n \in N$, we put

$$
a_{t, n}(x)=\frac{1}{n} \sum_{i=1}^{n} h_{t_{i}} \circ \ldots \circ h_{t_{1}}(x)=\frac{1}{n} \sum_{i=1}^{n} h^{r_{i}} \circ \ldots \circ h^{r_{1}}(x)=\frac{1}{n} \sum_{i=1}^{n} h^{r_{i}+\ldots+r_{1}}(x) .
$$

Proof of Theorem 1. The demanded set T can be defined by the following formula:
(2)

$$
\begin{aligned}
T= & \left\{t \in[0,1] \backslash R: \forall_{\alpha \in(0,1)} \forall_{N \in N} \exists_{n \in N} \frac{1}{n} \#\left\{i=1, \ldots, n: \sum_{k=1}^{i} r_{k}(t)>N\right\}>\alpha\right\} \\
& \cap\left\{t \in[0 ; 1] \backslash R: \forall_{\alpha \in(0,1)} \forall_{N \in N} \exists_{n \in N} \frac{1}{n} \#\left\{i=1, \ldots, n: \sum_{k=1}^{i} r_{k}(t)<-N\right\}>\alpha\right\} .
\end{aligned}
$$

The required properties of the set T are proved in Lemmas 1 and 2. \mathbf{a}
Lemma 1. For any increasing homeomorphism $h:[0,1] \rightarrow[0,1]$ with 0 and 1 being the only fixed points of h and any $t \in T$ the set $\left\{a_{t, n}(x): n \in N\right\}$ is dense in $[0,1]$ for any $x \in(0,1)$.

Proof. Fix a homeomorphism h and points $t \in T, x \in(0,1)$. According to the definition of $a_{t, n}(x)$ we have

$$
\begin{gathered}
a_{t, n+1}(x)=\frac{1}{n+1}\left[h_{t_{n+1}} \circ \ldots \circ h_{t_{1}}(x)+n a_{t, n}(x)\right], \\
\frac{n a_{t, n}(x)}{n+1} \leqslant a_{t, n+1}(x) \leqslant \frac{n a_{t, n}(x)+1}{n+1}, \\
-\frac{1}{n+1} \leqslant-\frac{a_{t, n}(x)}{n+1} \leqslant a_{t, n+1}(x)-a_{t, n}(x) \leqslant \frac{1-a_{t, n}(x)}{n+1} \leqslant \frac{1}{n+1},
\end{gathered}
$$

and
(3)

$$
\left|a_{t, n+1}(x)-a_{t, n}(x)\right| \leqslant \frac{1}{n+1} \rightarrow 0
$$

Now we prove that $\lim \sup _{n \rightarrow \infty} a_{t, n}(x)$ and $\liminf _{n \rightarrow \infty} a_{t, n}(x)$ are equal to 1 and 0 , respectively. The number x is not a fixed point of h; hence $h(x)>x$ or $h(x)<x$. Both cases are analogical, so it is enough to consider the case $h(x)>x$. Numbers $h^{n}(x)>0$ form an increasing bounded sequence of reals, so there exists $\lim _{n \rightarrow \infty} h^{n}(x)>0$. Moreover,

$$
h\left(\lim _{n \rightarrow \infty} h^{n}(x)\right)=\lim _{n \rightarrow \infty} h^{n}(x),
$$

so $\lim _{n \rightarrow \infty} h^{n}(x)$ is a fixed point of h and must be equal to 1 .
Consider $\lim \sup a_{t, n}(x)$ for $n \rightarrow \infty$. Let $0<\varepsilon<1$ be arbitrarily chosen. Fix $N \in N$ satisfying

$$
\forall_{n>N} 1-h^{n}(x)<\varepsilon / 2
$$

For $t \in T$

$$
\exists_{n \in N} \frac{1}{n} \#\left\{i=1, \ldots, n: \sum_{k=1}^{i} r_{k}>N\right\}>\frac{1-\varepsilon}{1-\varepsilon / 2} .
$$

For such n we have

$$
\begin{aligned}
1>a_{t, n}(x) & =\frac{\sum_{i=1}^{n} h^{r_{1}+\ldots+r_{i}}(x)}{n}=\frac{\sum_{\substack{i=1 \\
r_{1}+\ldots+r_{i}>N}}^{n} h^{r_{1}+\ldots+r_{i}}(x)+\sum_{\substack{i=1 \\
r_{1}+\ldots+r_{i} \leqslant N}}^{n} h^{r_{1}+\ldots+r_{i}}(x)}{n} \\
& \geqslant \frac{\sum_{\substack{r_{1}+\ldots+r_{i}>N}}^{n}(1-\varepsilon / 2)}{n} \geqslant(1-\varepsilon / 2) \frac{\#\left\{i=1, \ldots, n: r_{1}+\ldots+r_{i}>N\right\}}{n} \\
& >(1-\varepsilon / 2) \frac{1-\varepsilon}{1-\varepsilon / 2}=1-\varepsilon .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\forall_{\varepsilon>0} \exists_{n \in N}\left|a_{t, n}(x)-1\right|<\varepsilon . \tag{4}
\end{equation*}
$$

It is easy to prove in the same way that

$$
\begin{equation*}
\forall_{\varepsilon>0} \exists_{n \in N}\left|a_{t, n}(x)-0\right|<\varepsilon . \tag{5}
\end{equation*}
$$

Relations (3), (4) and (5) imply that $\left\{a_{t, n}(x): n \in N\right\}$ is dense in [0,1].
Lemma 2. The Lebesgue measure of the set T defined by (2) is equal to 1.

To prove this lemma we need the following generalization of the classical arcsin law for a symmetric random walk. (For more details about arcsin law see [1].)

Lemma 3. For any $N \in Z$ and any $0<\alpha<1$ we have
$\lambda\left(\left\{t \in[0,1] \backslash R: \frac{1}{n} \#\left\{i=1, \ldots, n: \sum_{k=1}^{i} r_{k}(t)>N\right\}>\alpha\right\}\right) \rightarrow f(\alpha) \quad$ for $n \rightarrow \infty$, where $f(\alpha)=1-2 \pi^{-1} \arcsin \sqrt{\alpha}$.

Proof of Lemma 2. For any $N \in N$ and $0<\alpha<1$ let us put

$$
T_{N, \alpha}=\left\{t \in[0,1] \backslash R: \exists_{n \in N} \frac{1}{n} \#\left\{i=1, \ldots, n: \quad \sum_{k=1}^{i} r_{k}(t)>N\right\}>\alpha\right\}
$$

According to the definition (2), the set T is an intersection of two sets. Denote them by T_{1} and T_{2}, respectively. We have

$$
\begin{equation*}
T_{1}=\bigcap_{N=1}^{\infty} \bigcap_{\alpha \in \boldsymbol{Q} \cap(0,1)} T_{N, \alpha} . \tag{6}
\end{equation*}
$$

We will show that $\lambda\left(T_{N, \alpha}\right)=1$. For a given $N \in N$ and $0<\alpha<1$, fix $\alpha<\beta<1$. Define by induction a sequence of sets $A_{l} \subset[0,1] \backslash R$ and sequences of numbers $n_{l}, N_{l} \in N$, as follows:

Assume that A_{j}, N_{j}, n_{j} have already been defined for all $j<l$. . $l=1$ means that no A_{j}, N_{j}, n_{j} have been defined so far.) To define A_{l}, N_{l}, n_{l} observe that there exists N_{l} large enough to satisfy

$$
\forall_{n \geqslant N_{l}} \frac{1}{n}\left(n+\sum_{j<l} n_{j}\right)<\frac{\beta}{\alpha},
$$

and then

$$
f\left(\frac{\alpha}{n}\left(n+\sum_{j<l} n_{j}\right)\right)>f(\beta) .
$$

By Lemma 3 the Lebesgue measure of the set
$\left\{t \in[0,1] \backslash R: \frac{1}{n} \#\left\{i=1, \ldots, n: \sum_{k=1}^{i} r_{k+\Sigma_{j<l} n_{j}}(t)>N+\sum_{j<l} n_{j}\right\}>\frac{\alpha}{N_{l}}\left(N_{l}+\sum_{j<l} n_{j}\right)\right\}$
tends to $f\left(\alpha N_{l}^{-1}\left(N_{l}+\sum_{j<l} n_{j}\right)\right)>f(\beta)$ when n tends to infinity, and hence there exists $n_{l}>N_{l}$ satisfying

$$
\begin{aligned}
& \lambda\left(\left\{t \in[0,1] \backslash R: \frac{1}{n_{l}} \#\left\{i=1, \ldots, n_{l}: \sum_{k=1}^{i} r_{k+\Sigma_{j<l} n_{j}}(t)>N+\sum_{j<l} n_{j}\right\}\right.\right. \\
&\left.\left.>\frac{\alpha}{N_{l}}\left(N_{l}+\sum_{j<l} n_{j}\right)\right\}\right)>f(\beta)
\end{aligned}
$$

Let A_{l} be the latter set considered.
A_{l} are independent in $(\Omega=[0,1] \backslash R$, Borel $(\Omega), \lambda)$ because r_{k} are independent and $\lambda\left(A_{l}\right) \geqslant f(\beta)>0$. Consequently, by the Borel-Cantelli theorem, $\lambda\left(\lim \sup _{l \rightarrow \infty} A_{l}\right)=1$. According to the definitions of $T_{N, \alpha}$ and A_{l} it is easy to verify that $A_{l} \subset T_{N, \alpha}$ for all $l \in N$. This implies $\lambda\left(T_{N, \alpha}\right)=1$. By (6), T_{1} is a countable intersection of sets $T_{N, \alpha}$ and $\lambda\left(T_{1}\right)=1$. Similarly it can be proved that $\lambda\left(T_{2}\right)=1$. A measure of the set $T=T_{1} \cap T_{2}$ is also equal to 1 .

Proof of Lemma 3. Let $B_{l}=\left\{t \in[0,1] \backslash R: \sum_{k=1}^{j} r_{k}(t)=N\right.$ holds for $j=l$ and does not hold for $j<l\}$ and

$$
A_{n, \alpha, N}=\left\{t \in[0,1] \backslash R: \frac{1}{n} \#\left\{i=1, \ldots, n: \sum_{k=1}^{i} r_{k}(t)>N\right\}>\alpha\right\} .
$$

We have to prove that, for any fixed $N \in \boldsymbol{Z}$ and $\alpha \in(0,1), \lambda\left(A_{n, \alpha, N}\right)$ tends to $f(\alpha)$ as n tends to ∞. It is easy to see that for any $\varepsilon>0$

$$
\begin{aligned}
& \underset{n \rightarrow \infty}{\lim \sup } \lambda\left(A_{n, \alpha, N} \mid B_{l}\right) \\
& \quad \leqslant \lim _{n \rightarrow \infty} \lambda\left(\left\{t \in[0,1] \backslash R: \frac{1}{n} \#\left\{i=1, \ldots, n: \sum_{k=l+1}^{l+i} r_{k}(t)>0\right\}>\alpha-\varepsilon\right\}\right),
\end{aligned}
$$

which is equal to $f(\alpha-\varepsilon)$ (due to the classical arcsin law).
The same argument gives us the inequality

$$
\liminf _{n \rightarrow \infty} \lambda\left(A_{n, \alpha, N} \mid B_{l}\right) \geqslant f(\alpha+\varepsilon)
$$

Since f is a continuous function and ε is arbitrary, $\lim _{n \rightarrow \infty} \lambda\left(A_{n, \alpha, N} \mid B_{l}\right)$ exists and is equal to $f(\alpha)$, which together with $\sum_{l=1}^{\infty} \lambda\left(B_{l}\right)=1$ gives us the conclusion.
3. Other generalizations. Now we formulate a simple generalization of Theorem 1.

Theorem 2. There exists $T \subset[0,1]$ with $\lambda(T)=1$ such that, for any increasing homeomorphism $h:[0,1] \rightarrow[0,1]$, for any $x \in[0,1]$ and any $t \in T$, we have

$$
\operatorname{cl}\left\{\frac{1}{n_{i=1}} \sum_{t_{i}}^{n} h_{t_{1}} \ldots \circ h_{t_{1}}(x): n \in N\right\}=\left[m_{x}, M_{x}\right]
$$

where m_{x} is the maximal fixed point of h not greater than x, M_{x} is the minimal fixed point of h not less than x. As before $h_{0}=h, h_{1}=h^{-1}$ and $t=\left(0, t_{1} t_{2} \ldots\right)_{2}$ is a binary representation of t.

Proof. The set T is the same as in the proof of Theorem 1 and is defined by (2). To check that it satisfies the conclusion of the theorem we consider two cases:

If x is a fixed point of h, then
$M_{x}=m_{x}=x \quad$ and $\quad \operatorname{cl}\left\{\frac{1}{n_{i}} \sum_{i=1}^{n} h_{t_{i}} \circ \ldots \circ h_{t_{1}}(x): n \in N\right\}=\operatorname{cl}\{x\}=\left[m_{x}, M_{x}\right]$.
If x is not a fixed point, then consider a restriction $h^{\prime}=\left.h\right|_{\left[m_{x}, M_{x}\right]}$ of the function h. The function h^{\prime} is an increasing homeomorphism of the interval [m_{x}, M_{x}] onto itself with m_{x} and M_{x} as the only two fixed points. It is easy to see that, as in Theorem $1,\left\{n^{-1} \sum_{i=1}^{n} h_{t_{i}}^{\prime} \circ \ldots \circ h_{t_{1}}^{\prime}(x): n \in N\right\}$ is dense in [$\left.m_{x}, M_{x}\right]$, and this implies the conclusion.

- Acknowledgements. The author would like to thank Adam Paszkiewicz for valuable discussions and for his help during the preparation of this paper.

REFERENCES

[1] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York 1966.
[2] R. Jajte, Problem 98*, Wiadom. Mat. 7 (1964), p. 251.

Department of Mathematics, Warsaw University ul. Banacha 2, 02-097 Warszawa, Poland
E-mail address: andkom@mimuw.edu.pl

[^0]: * Department of Mathematics, Warsaw University.

