SOME MULTIVARIATE INFINITELY DIVISIBLE DISTRIBUTIONS AND THEIR PROJECTIONS

BY

MAKOTO MAEJIMA, KENJIRO SUZUKI AND YOZO TAMURA (YOKOHAMA)

Abstract

Recently K. Sato constructed an infinitely divisible probability distribution μ on \boldsymbol{R}^{d} such that μ is not selfdecomposable but every projection of μ to a lower dimensional space is selfdecomposable. Let $L_{m}\left(\boldsymbol{R}^{d}\right), 1 \leqslant m<\infty$, be the Urbanik-Sato type nested subclasses of the class $L_{0}\left(\boldsymbol{R}^{d}\right)$ of all selfdecomposable distributions on \boldsymbol{R}^{d}. In this paper, for each $1 \leqslant m<\infty$, a probability distribution μ with the following properties is constructed: μ belongs to $L_{m-1}\left(\boldsymbol{R}^{d}\right) \cap\left(L_{m}\left(\boldsymbol{R}^{d}\right)\right)^{c}$, but every projection of μ to a lower k-dimensional space belongs to $L_{m}\left(R^{k}\right)$. It is also shown that Sato's example is not only "non-selfdecomposable" but also "non-semi-selfdecomposable."

1. Introduction. Let $I\left(\boldsymbol{R}^{d}\right)$ and $S\left(\boldsymbol{R}^{d}\right)$ be the classes of all infinitely divisible distributions and all stable distributions on \boldsymbol{R}^{d}, respectively. Urbanik [9], [10] and Sato [4] studied the nested classes $L_{m}\left(\boldsymbol{R}^{d}\right), m=0,1,2, \ldots, \infty$, between $I\left(\boldsymbol{R}^{d}\right)$ and $S\left(\boldsymbol{R}^{d}\right)$, which are defined in the following way. For each $0 \leqslant m<\infty$, a distribution μ on \boldsymbol{R}^{d} is said to belong to the class $L_{m}\left(\boldsymbol{R}^{d}\right)$ if $\mu \in I\left(\boldsymbol{R}^{d}\right)$ and for any $a \in(0,1)$ there exists $\varrho_{a} \in L_{m-1}\left(\boldsymbol{R}^{d}\right)$ such that

$$
\begin{equation*}
\hat{\mu}(z)=\hat{\mu}(a z) \hat{\varrho}_{a}(z), \quad \forall z \in \boldsymbol{R}^{d} \tag{1.1}
\end{equation*}
$$

with the convention $L_{-1}\left(\boldsymbol{R}^{d}\right)=I\left(\boldsymbol{R}^{d}\right)$, where $\hat{\mu}$ is the characteristic function of μ. The class $L_{\infty}\left(\boldsymbol{R}^{d}\right)$ is defined as $\bigcap_{m \geqslant 0} L_{m}\left(\boldsymbol{R}^{d}\right)$. (They actually defined $L_{m}\left(\boldsymbol{R}^{d}\right)$ as a class of limit distributions of independent random variables, and showed that (1.1) is a necessary and sufficient condition.) Then it was shown that

$$
\begin{equation*}
I\left(\boldsymbol{R}^{d}\right) \supset L_{0}\left(\boldsymbol{R}^{d}\right) \supset L_{1}\left(\boldsymbol{R}^{d}\right) \supset \ldots \supset L_{\infty}\left(\boldsymbol{R}^{d}\right) \supset S\left(\boldsymbol{R}^{d}\right) \tag{1.2}
\end{equation*}
$$

A distribution μ in $L_{0}\left(\boldsymbol{R}^{d}\right)$ is called selfdecomposable.
For a $k \times d$ real matrix A and a measure (or a signed measure) μ on \boldsymbol{R}^{d}, define $A \mu$ by $(A \mu)(B)=\mu\left(A^{-1}(B)\right), B \in \mathscr{B}\left(\boldsymbol{R}^{k}\right)$. If a $d \times d$ symmetric matrix A satisfies $A^{2}=A$, and the dimension of the linear subspace $\left\{A x: x \in \boldsymbol{R}^{d}\right\}$ is $k(\leqslant d-1), A$ is called a k-dimensional projector.

It is well known that, for a distribution μ on \boldsymbol{R}^{d}, if $A \mu$ is Gaussian for any 1-dimensional projector A, then μ is Gaussian. For non-Gaussian stability, this fact does not necessarily remain true, but several conditions for its validity are known (see, e.g., [3]). Among those, if μ is infinitely divisible, then the stability of μ follows from the fact that $A \mu$ are stable for all 1-dimensional projectors A.

On the other hand, it is also known that even if $A \mu$ are infinitely divisible for all k-dimensional projectors A with $1 \leqslant k \leqslant d-1, \mu$ is not necessarily infinitely divisible. (As to the references on this fact, see [5].) An example by Shanbhag and Sreehari [7] gives us a multivariate distribution such that it is infinitely divisible and not selfdecomposable, but every linear combination of its components is selfdecomposable.

Recently Sato [5] has also given another example of $\mu \in I\left(\boldsymbol{R}^{d}\right)$ such that $\mu \notin L_{0}\left(\boldsymbol{R}^{d}\right)$, but $A \mu \in L_{0}\left(\boldsymbol{R}^{k}\right)$ for any $k \times d$ matrix A with $1 \leqslant k \leqslant d-1$, as follows.
$|x|$ denotes the Euclidean norm of $x \in \boldsymbol{R}^{d}$. Let $0<\delta \leqslant 1,0<\varepsilon \leqslant 1$,

$$
\begin{gathered}
D_{1}=\left\{x \in \boldsymbol{R}^{d}: 1<|x| \leqslant 2\right\}, \quad D_{2}=\left\{x \in \boldsymbol{R}^{d}:|x| \leqslant \delta\right\}, \\
\lambda_{0}(d x)=\left(1_{D_{1}}(x)-\varepsilon 1_{D_{2}}(x)\right) d x,
\end{gathered}
$$

and define

$$
\begin{equation*}
v_{0}(B)=\int_{R^{d}} \lambda_{0}(d x) \int_{0}^{\infty} 1_{B}\left(e^{-t} x\right) d x, \quad B \in \mathscr{B}_{0}\left(R^{d}\right) \tag{1.3}
\end{equation*}
$$

where $\mathscr{B}_{0}\left(\boldsymbol{R}^{d}\right)$ is the class of all Borel sets B in \boldsymbol{R}^{d} such that $B \subset\{|x|>\varepsilon\}$ for some $\varepsilon>0$, and $1_{B}(\cdot)$ is the indicator function of B. Then Sato [5] showed the following

Theorem A. The measure v_{0} in (1.3) is the Lévy measure of a distribution $\mu_{0} \in I\left(\boldsymbol{R}^{d}\right)$. Further, $\mu_{0} \notin L_{0}\left(\boldsymbol{R}^{d}\right)$ but $A \mu_{0} \in L_{0}\left(\boldsymbol{R}^{k}\right)$ for any $k \times d$ matrix A with $1 \leqslant k \leqslant d-1$.

The first purpose of this paper is to study the same problem for the nested classes $L_{m}\left(\boldsymbol{R}^{d}\right), 1 \leqslant m<\infty$, in (1.2). Namely, we show

Theorem 1. For each $1 \leqslant m<\infty$, there exists a distribution μ_{m} such that $\mu_{m} \in L_{m-1}\left(\boldsymbol{R}^{d}\right), \mu_{m} \notin L_{m}\left(\boldsymbol{R}^{d}\right)$, but $A \mu_{m} \in L_{m}\left(\boldsymbol{R}^{k}\right)$ for any $k \times d$ matrix A with $1 \leqslant k \leqslant d-1$.

In [2], the class of semi-selfdecomposable distributions $L_{0}\left(b, \boldsymbol{R}^{d}\right)$, $0<b<1$, has been introduced. We say that, for each $b \in(0,1), \mu$ belongs to $L_{0}\left(b, \boldsymbol{R}^{d}\right)$ if for some $\varrho \in I\left(\boldsymbol{R}^{d}\right), \hat{\mu}(z)=\hat{\mu}(b z) \hat{\varrho}(z)$ for all $z \in \boldsymbol{R}^{d}$. It is easy to see that

$$
L_{0}\left(b, \boldsymbol{R}^{d}\right) \subset I\left(\boldsymbol{R}^{d}\right) \quad \text { and } \quad L_{0}\left(\boldsymbol{R}^{d}\right)=\bigcap_{0<b<1} L_{0}\left(b, R^{d}\right)
$$

Therefore, for every $b \in(0,1)$,

$$
I\left(\boldsymbol{R}^{d}\right) \supset L_{0}\left(b, R^{d}\right) \supset L_{0}\left(\boldsymbol{R}^{d}\right)
$$

The second purpose of this paper is to show that the example constructed by Sato (μ_{0} in Theorem A) is not only "non-selfdecomposable," but also "non-semi-selfdecomposable." Namely, we show

Theorem 2. Let μ_{0} be the one in Theorem A. Then $\mu_{0} \notin L_{0}\left(b, R^{d}\right)$ for any $b \in(0,1)$.

Similarly to the nested classes $L_{m}\left(\boldsymbol{R}^{d}\right), 1 \leqslant m<\infty$, mentioned above, Maejima and Naito [2] have defined the nested classes $L_{m}\left(b, \boldsymbol{R}^{d}\right), 1 \leqslant m<\infty$, of $L_{0}\left(b, \boldsymbol{R}^{d}\right)$ as follows. Let $0<b<1$. For each $1 \leqslant m<\infty, \mu$ is said to belong to the class $L_{m}\left(b, R^{d}\right)$ if $\mu \in I\left(\boldsymbol{R}^{d}\right)$ and there exists $\varrho \in L_{m-1}\left(b, R^{d}\right)$ such that

$$
\hat{\mu}(z)=\hat{\mu}(b z) \varrho(z), \quad \forall z \in \boldsymbol{R}^{d} .
$$

It is easy to see that for each $b \in(0,1), L_{m}\left(b, \boldsymbol{R}^{d}\right) \supset L_{m}\left(\boldsymbol{R}^{d}\right)$ and $L_{m}\left(\boldsymbol{R}^{d}\right)$ $=\bigcap_{0<b<1} L_{m}\left(b, R^{d}\right)$. Related to Theorem 2 above, a natural question arises: For each $1 \leqslant m<\infty$, does μ_{m} in Theorem 1 belong to $L_{m}\left(b, \boldsymbol{R}^{d}\right)$ or not? The answer is the following

Theorem 3. Let $1 \leqslant m<\infty$, and let μ_{m} be the one in Theorem 1. Then $\mu_{m} \notin L_{m}\left(b, R^{d}\right)$ for any $b \in(0,1)$.
2. Preliminary lemmas. To prove Theorem 1, the following characterization for $\mu \in L_{0}\left(R^{d}\right)$ is our starting point. This is a reformulation by Sato and Yamazato [6] of a result of Urbanik [8].

Theorem B. $\mu \in L_{0}\left(\boldsymbol{R}^{d}\right)$ if and only if $\mu \in I\left(\boldsymbol{R}^{d}\right)$ and its Lévy measure v is either zero or represented as

$$
\begin{equation*}
v(B)=\int_{\boldsymbol{R}^{d}} \lambda(d x) \int_{0}^{\infty} 1_{B}\left(e^{-t} x\right) d t, \quad B \in \mathscr{B}_{0}\left(\boldsymbol{R}^{d}\right) \tag{2.1}
\end{equation*}
$$

where λ is a measure on \boldsymbol{R}^{d} satisfying

$$
\begin{gather*}
\lambda(\{0\})=0, \tag{2.2}\\
\int_{|x| \leqslant 2}|x|^{2} \lambda(d x)<\infty, \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{|x|>2} \log |x| \lambda(d x)<\infty . \tag{2.4}
\end{equation*}
$$

This λ is uniquely determined by ν.
Since ν and λ are uniquely determined by $\mu \in I\left(R^{d}\right)$, when we want to emphasize the correspondence between those, we may write $\nu=v_{\mu}$ and $\lambda=\lambda_{\mu}$.

In the following, we state two results by Jurek [1] on characterization for $\mu \in L_{m}\left(\boldsymbol{R}^{d}\right), 1 \leqslant m<\infty$, which will be used in the proof of Theorem 1 . We say that an \boldsymbol{R}^{d}-valued stochastic process $\{Y(t), t \geqslant 0\}$ is a Lévy process if it has independent and stationary increments, it is right continuous, it has left limits and $Y(0)=0$ a.s. The distribution of a random variable X is denoted by $\mathscr{L}(X)$.

For $c>0$ and $B \subset \boldsymbol{R}^{d}$, write $c B=\{c x: x \in B\}$. For $a \in(0,1)$ and a measure ξ on \boldsymbol{R}^{d}, define

$$
\Delta_{a} \xi(B)=\xi(a B)-\xi(B)
$$

when $\xi(B)$ and $\xi(a B)$ are finite, and for $n \geqslant 2$ and $a_{1}, \ldots, a_{n} \in(0,1)$, define successively.

$$
\left(\Delta_{a_{n} \ldots a_{1}} \xi\right)(B)=\Delta_{a_{n}}\left(\Delta_{a_{n-1} \ldots a_{1}} \xi\right)(B)
$$

Lemma 1 ([1], Corollary 2.6). Let $0 \leqslant m<\infty$. μ belongs to $L_{m}\left(\boldsymbol{R}^{d}\right)$ if and only if $\mu \in I\left(\boldsymbol{R}^{d}\right)$ and its Lévy measure v_{μ} satisfies

$$
\begin{equation*}
\left(\Delta_{a_{1} \ldots a_{1}} v_{\mu}\right)(B) \geqslant 0, \quad \forall a_{1}, \ldots, a_{l} \in(0,1), \quad \forall B \in \mathscr{B}_{0}\left(R^{d}\right) \tag{2.5}
\end{equation*}
$$

for any $l=1, \ldots, m+1$.
Lemma 2 ([1], Theorem 2.3). Let $1 \leqslant m<\infty . \mu$ belongs to $L_{m}\left(\boldsymbol{R}^{d}\right)$ if and only if there exists a Lévy process $\{Y(t)\}$ such that

$$
\mu=\mathscr{L}\left(\int_{0}^{\infty} e^{-t} d Y(t)\right)
$$

and $\mathscr{L}(Y(1)) \in L_{m-1}\left(\boldsymbol{R}^{d}\right) \cap I_{\log }\left(\mathbb{R}^{d}\right)$, where $I_{\log }\left(\boldsymbol{R}^{d}\right)$ is the set of all $\xi \in I\left(\boldsymbol{R}^{d}\right)$ satisfying $\int \log (1+|x|) \xi(d x)<\infty$.

For our purpose, we state Lemma 2 in terms of λ_{μ} as follows.
Lemma 3. Let $1 \leqslant m<\infty$. μ belongs to $L_{m}\left(\boldsymbol{R}^{d}\right)$ if and only if $\mu \in L_{0}\left(\boldsymbol{R}^{d}\right)$ and $\lambda=\lambda_{\mu}$ in the representation (2.1) satisfies

$$
\begin{equation*}
\left(\Delta_{a_{l} \ldots a_{1}} \lambda_{\mu}\right)(B) \geqslant 0, \quad \forall a_{1}, \ldots, a_{l} \in(0,1), \quad \forall B \in \mathscr{B}_{0}\left(\boldsymbol{R}^{d}\right) \tag{2.6}
\end{equation*}
$$

for any $l=1, \ldots, m$.
Proof. Let $\mu \in L_{0}\left(\boldsymbol{R}^{d}\right)$. Note that the Lévy measure of $\mathscr{L}(Y(1))$ in Lemma 2 is λ_{μ} in our notation (see [6], p. 91). Then combining Lemmas 1 and 2, and noticing that $\lambda_{\mu} \in I_{\log }\left(\boldsymbol{R}^{d}\right)$ by (2.4), we conclude Lemma 3.
3. Proof of Theorem 1. For our construction of desired distributions in Theorem 1, we fully use the example by Sato [5] mentioned in Theorem A. We first show that the measure v_{0} in (1.3) satisfies (2.2), (2.3) and that

$$
\begin{equation*}
v_{0}(|x|>2)=0 . \tag{3.1}
\end{equation*}
$$

Since v_{0} is the Lévy measure as shown in Theorem A, (2.2) and (2.3) are automatically satisfied. As to (3.1), we have

$$
v_{0}(|x|>2)=\int_{\mathbf{R}^{d}} \lambda_{0}(d y) \int_{0}^{\infty} 1\left(\left|e^{-t} y\right|>2\right) d t=\int_{|y|>2} \lambda_{0}(d y) \int_{0}^{\infty} 1\left(\left|e^{-t} y\right|>2\right) d t=0
$$

because $\lambda_{0}(|y|>2)=0$.
Suppose for $0 \leqslant m<\infty$ we are given a measure ν_{m} on \boldsymbol{R}^{d} satisfying (2.2), (2.3) and such that $v_{m}(|x|>2)=0 . v_{m}$ also satisfies (2.4) trivially. Thus we can
define the Lévy measure

$$
\begin{equation*}
v_{m+1}(B)=\int_{\mathbf{R}^{d}} v_{m}(d x) \int_{0}^{\infty} 1_{B}\left(e^{-t} x\right) d t \tag{3.2}
\end{equation*}
$$

by taking $\lambda=v_{m}$ in (2.1). If $v_{m}(|x|>2)=0$, then $v_{m+1}(|x|>2)=0$ as above. Thus v_{m+1} also satisfies (2.2)-(2.4). Therefore starting with v_{0} in (1.3), we can construct a sequence of Lévy measures $v_{m}, 0 \leqslant m<\infty$, and denote by $\mu_{m} \in I\left(\boldsymbol{R}^{d}\right)$ the distribution whose Lévy measure is v_{m}. Note that

$$
\begin{equation*}
v_{m}=\lambda_{\mu_{m+1}} \tag{3.3}
\end{equation*}
$$

in our notation. We will show that, for $1 \leqslant m<\infty, \mu_{m}$ is the desired distribution satisfying the requirements in Theorem 1.

By Theorem A, μ_{0} is such that $\mu_{0} \in I\left(\boldsymbol{R}^{d}\right), \mu_{0} \notin L_{0}\left(\boldsymbol{R}^{d}\right)$ and $A \mu_{0} \in L_{0}\left(\boldsymbol{R}^{k}\right)$ for any $k \times d$ matrix A with $1 \leqslant k \leqslant d-1$. We show the assertion of the theorem by induction on m.

Suppose, for some $m_{0} \geqslant 0$, the distribution $\mu_{m_{0}}$ satisfies $\mu_{m_{0}} \in L_{m_{0}-1}\left(\boldsymbol{R}^{d}\right)$, $\mu_{m_{0}} \notin L_{m_{0}}\left(\boldsymbol{R}^{d}\right)$ and $A \mu_{m_{0}} \in L_{m_{0}}\left(\boldsymbol{R}^{k}\right)$ for any $k \times d$ matrix A with $1 \leqslant k \leqslant d-1$. Since $\mu_{m_{0}} \notin L_{m_{0}}\left(R^{d}\right)$, we see from Lemma 1 that $\Delta_{a_{1} \ldots a_{1}} v_{m_{0}}(B)<0$ for some $l=1, \ldots, m_{0}+1, a_{1}, \ldots, a_{l} \in(0,1), B \in \mathscr{B}_{0}\left(\boldsymbol{R}^{d}\right)$. Thus, by (3.3), $\left(\Delta_{a_{l} \ldots a_{1}} \lambda_{\mu_{m_{0}+1}}\right)(B)<0$ for such l, a_{1}, \ldots, a_{l} and B, implying $\mu_{m_{0}+1} \notin L_{m_{0}+1}\left(\boldsymbol{R}^{d}\right)$ by Lemma 2.

Next note that Lemma 1 remains true for $m=-1$, and that Lemma 2 also remains true for $m=0$. Since $\mu_{m_{0}} \in L_{m_{0}-1}\left(R^{d}\right)$, we see from Lemma 1 (including the case for $m=-1$) that

$$
\left(\Delta_{a_{l} \ldots a_{1}} v_{m_{0}}\right)(B) \geqslant 0, \quad \forall a_{1}, \ldots, a_{l} \in(0,1), \forall B \in \mathscr{B}_{0}\left(R^{d}\right)
$$

for any $l=1, \ldots, m_{0}$. Thus, by (3.3),

$$
\left(\Delta_{a_{l} \ldots a_{1}} \lambda_{\mu_{m_{0}+1}}\right)(B) \geqslant 0, \quad \forall a_{1}, \ldots, a_{l} \in(0,1), \forall B \in \mathscr{B}_{0}\left(R^{d}\right)
$$

for any $l=1, \ldots, m_{0}$, implying $\mu_{m_{0}+1} \in L_{m_{0}}\left(\boldsymbol{R}^{d}\right)$ by Lemma 2 (including the case for $m=0$).

Finally, we suppose that A is any $k \times d$ matrix with $1 \leqslant k \leqslant d-1$. In general, if $\mu \in I\left(\boldsymbol{R}^{d}\right)$, then $A \mu \in I\left(\boldsymbol{R}^{k}\right)$ and its Lévy measure $v_{A \mu}$ is $\left[A v_{\mu}\right]_{\boldsymbol{R}^{k} \backslash\{0\}}$. If

$$
v_{\mu}(B)=\int_{\mathbf{R}^{a}} \lambda_{\mu}(d x) \int_{0}^{\infty} 1_{B}\left(e^{-t} x\right) d t,
$$

then for $B \in \mathscr{B}_{0}\left(\boldsymbol{R}^{k}\right)$

$$
\begin{aligned}
v_{A \mu}(B) & =v_{\mu}\left(A^{-1}(B)\right)=\int_{\mathbf{R}^{d}} \lambda_{\mu}(d x) \int_{0}^{\infty} 1_{A^{-1}(B)}\left(e^{-t} x\right) d t \\
& =\int_{\mathbf{R}^{d}}\left(A \lambda_{\mu}\right)(d x) \int_{0}^{\infty} 1_{B}\left(e^{-t} x\right) d t .
\end{aligned}
$$

By induction hypothesis and Lemma 1, we see that

$$
\left(\Delta_{a_{l} \ldots a_{1}}\left(A v_{m_{0}}\right)\right)(B) \geqslant 0, \quad \forall a_{1}, \ldots, a_{l} \in(0,1), \quad \forall B \in \mathscr{B}_{0}\left(\mathbb{R}^{k}\right)
$$

for any $l=1, \ldots, m_{0}+1$. On the other hand,

$$
v_{A \mu_{m_{0}+1}}(B)=\int_{\mathbf{R}^{d}}\left(A v_{m_{0}}\right)(d x) \int_{0}^{\infty} 1_{B}\left(e^{-t} x\right) d t .
$$

Hence, by Lemma 2, $A \mu_{m_{0}+1} \in L_{m_{0}+1}\left(R^{k}\right)$, which concludes that our μ_{m+1} having its Lévy measure v_{m+1} in (3.2) is an example of the desired distribution. This completes the proof of Theorem 1.
4. Proof of Theorem 2. By Lemma 4.1 in [2], $\mu \in L_{0}\left(b, \boldsymbol{R}^{d}\right)$ if and only if $v_{\mu}(b B) \geqslant v_{\mu}(B)$ for any $B \in \mathscr{B}_{0}\left(R^{d}\right)$. Thus, for a given $b \in(0,1)$, if we could show

$$
v_{0}\left(b r_{1}<|x| \leqslant b r_{2}\right)<v_{0}\left(r_{1}<|x| \leqslant r_{2}\right) \quad \text { for some } 0<r_{1}<r_{2},
$$

then Theorem 2 would be concluded. Here we use the calculation done by Sato [5]. He showed that if $0<r_{1}<r_{2}<1$, then

$$
\begin{aligned}
I\left(r_{1}, r_{2}\right) & =\frac{1}{c_{d}} v_{0}\left(r_{1}<|x| \leqslant r_{2}\right) \\
& =-\int_{r_{1}}^{r_{2}} r^{d-1} \log \frac{r}{r_{1}} d r-\log \frac{r_{2}}{r_{1}} \int_{r_{2}}^{1} r^{d-1} d r+\log \frac{r_{2}}{r_{1}} \int_{1}^{2} r^{d-1} d r
\end{aligned}
$$

where c_{d} is the surface measure of the unit sphere in \boldsymbol{R}^{d}. Thus

$$
I\left(b r_{1}, b r_{2}\right)=-\int_{b r_{1}}^{b r_{2}} r^{d-1} \log \frac{r}{b r_{1}} d r-\log \frac{r_{2}}{r_{1}} \int_{b r_{2}}^{1} r^{d-1} d r+\log \frac{r_{2}}{r_{1}} \int_{1}^{2} r^{d-1} d r
$$

and we have

$$
\begin{aligned}
I= & I\left(r_{1}, r_{2}\right)-I\left(b r_{1}, b r_{2}\right) \\
= & -\int_{r_{1}}^{r_{2}} r^{d-1} \log \frac{r}{r_{1}} d r-\log \frac{r_{2}}{r_{1}} \int_{r_{2}}^{1} r^{d-1} d r \\
& +\int_{b r_{1}}^{b r_{2}} r^{d-1} \log \frac{r}{b r_{1}} d r+\log \frac{r_{2}}{r_{1}} \int_{b r_{2}}^{1} r^{d-1} d r \\
= & \left(b^{d}-1\right) \int_{r_{1}}^{r_{2}} r^{d-1} \log \frac{r}{r_{1}} d r+\log \frac{r_{2}}{r_{1}} \int_{b r_{2}}^{r_{2}} r^{d-1} d r \\
\geqslant & \frac{1}{d} \log \frac{r_{2}}{r_{1}}\left\{\left(b^{d}-1\right)\left(r_{2}^{d}-r_{1}^{d}\right)+\left(1-b^{d}\right) r_{2}^{d}\right\}=-\frac{1}{d} \log \frac{r_{2}}{r_{1}}\left(b^{d}-1\right) r_{1}^{d}>0 .
\end{aligned}
$$

This completes the proof.
5. Proof of Theorem 3. We need two lemmas corresponding to Lemmas 1 and 3.

Lemma 4 [2]. Let $0<b<1$ and $0 \leqslant m<\infty$. μ belongs to $L_{m}\left(b, \boldsymbol{R}^{d}\right)$ if and only if $\mu \in I\left(\boldsymbol{R}^{d}\right)$ and its Lévy measure v_{μ} satisfies

$$
\left(\Delta_{b}^{l} v_{\mu}\right)(B) \geqslant 0, \quad \forall B \in \mathscr{B}_{0}\left(\mathbb{R}^{d}\right)
$$

for any $l=1, \ldots, m+1$, where $\Delta_{b}^{l}=\Delta_{b \ldots b}$.
Lemma 5. Let $0<b<1$ and $1 \leqslant m<\infty$. Suppose $\mu \in L_{0}\left(\boldsymbol{R}^{d}\right)$. Then μ belongs to $L_{m}\left(b, R^{d}\right)$ if and only if $\lambda=\lambda_{\mu}$ in the representation (1.3) satisfies

$$
\left(\Delta_{b}^{l} \lambda_{\mu}\right)(B) \geqslant 0, \quad \forall B \in \mathscr{B}_{0}\left(\boldsymbol{R}^{d}\right)
$$

for any $l=1, \ldots, m$.
This lemma can be proved in exactly the same way as Lemma 3 with the replacement of Lemma 1 by Lemma 4.

Proof of Theorem 3. Since $\mu_{0} \notin L_{0}\left(b, R^{d}\right)$, by Lemma 4 we have $\Delta_{b} \nu_{\mu_{0}}(B)<0$ for some $B \in \mathscr{B}_{0}\left(\boldsymbol{R}^{d}\right)$. As before

$$
\Delta_{b} \lambda_{\mu_{1}}(B)=\Delta_{b} v_{\mu_{0}}(B)<0 .
$$

Hence, by Lemma 4, $\mu_{1} \notin L_{1}\left(b, R^{d}\right)$. Repeating this argument, we conclude that $\mu_{m} \notin L_{m}\left(b, \boldsymbol{R}^{d}\right)$ for each $1 \leqslant m<\infty$.
6. Concluding remarks.
(i) We have the following two relations:

$$
L_{m}\left(\boldsymbol{R}^{d}\right) \subset L_{m-1}\left(\boldsymbol{R}^{d}\right) \quad \text { and } \quad L_{m}\left(\boldsymbol{R}^{d}\right) \subset L_{m}\left(b, \boldsymbol{R}^{d}\right)
$$

One might ask what the relationship between $L_{m-1}\left(R^{d}\right)$ and $L_{m}\left(b, R^{d}\right)$ is.
(I) $L_{m}\left(b, R^{d}\right) \cap\left(L_{m-1}\left(R^{d}\right)\right)^{c} \neq \varnothing$. This can be shown by taking non-selfdecomposable semi-stable distribution, the existence of which is well known.
(II) $L_{m-1}\left(\boldsymbol{R}^{d}\right) \cap\left(L_{m}\left(b, R^{d}\right)\right)^{c} \neq \varnothing$. Our μ_{m} constructed in Theorem 1 assures this non-emptiness.
(ii) It is known that if $A \mu \in S\left(\boldsymbol{R}^{1}\right)$ for any $1 \times d$ matrix A for some $\mu \in I\left(\boldsymbol{R}^{d}\right)$, then $\mu \in S\left(\boldsymbol{R}^{d}\right)$ (see, e.g., [3]). In Theorems A and 1, we have seen that this type of property does not hold for the classes $L_{m}\left(\boldsymbol{R}^{d}\right), 0 \leqslant m<\infty$. The same question about $L_{\infty}\left(R^{d}\right)$ seems interesting; but it is still open.

Acknowledgement. The authors would like to thank Ken-iti Sato for sending them his paper [5] where Theorem A is proved, for leading them to the paper [1], and for his valuable comments on the earlier version of this paper.

REFERENCES

[1] Z. J. Jurek, The classes $L_{m}(Q)$ of probability measures on Banach spaces, Bull. Polish Acad. Sci. Math. 31 (1983), pp. 51-62.
[2] M. Maejima and Y. Naito, Semi-selfdecomposable distributions and a new class of limit theorems, Probab. Theory Related Fields 112 (1998), pp. 13-31.
[3] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman and Hall, New York-London 1994.
[4] K. Sato, Class L of multivariate distributions and its subclasses, J. Multivariate Anal. 10 (1980), pp. 207-232.
[5] - Multivariate distributions with selfdecomposable projections, J. Korean Math. Soc. 35 (1998), pp. 783-791.
[6] - and M. Yamazato, Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stochastic Process. Appl. 17 (1984), pp. 73-100.
[7] D. N. Shanbhag and M. Sreehari, An extension of Goldie's result and further results in infinite divisibility, Z. Wahrsch. verw. Gebiete 47 (1979), pp. 19-25.
[8] K. Urbanik, Self-decomposable probability distributions on \boldsymbol{R}^{m}, Zastos. Mat. 10 (1969), pp. 91-97.
[9] - Slowly varying sequences of random variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), pp. 679-682.
[10] - Limit laws for sequences of normed sums satisfying some stability conditions, in: Multivariate Analysis-III, P.R. Krishnaiah (Ed.), Academic Press, New York 1973, pp. 225-237.

Department of Mathematics, Faculty of Science and Technology, Keio University 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Received on 3.12.1998;
revised version on 15.9.1999

