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Abstract. Recently K. Sato constructed an inlinitely divisible 
probability distribution p on Rd such that pis not selfdecomposable but 
every projection of y to a lower dmensional space is selfdecomposablc. 
Let &(Rd), 1 g rn < co, be the Urbanik-Sato type ncsted subclasses of 
the class L,(R") of all selfdecomposable distributions on R ~ .  In this 
paper, for each 1 < m < m, a probability distribution p with the fol- 
lowing properties is constructed: p belongs to L,-, (Rd) n ( L ~  (Rd)r, but 
every projection ofp  to a lower k-dimensional space belongs to L,(@. 
It is also shown that Sato's example is not only "non-selfdecomposable" 
but also "non-semi-selfdecornposable." 

1. Introduction. Let I (Rd) and S(Rd) be the classes of all infinitely divisible 
distributions and all stable distributions on Rd, respectively. Urbanik [9], [lo] 
and Sato [4] studied the nested classes Lm(Rd), m = 0, 1 ,  2,  . . ., oo, between 
I (Rd) and S (R3, which are defined in the following way. For each 0 6 m < oo, 
a distribution p on Rd is said to belong to the class Lm (Rd) if p~ i (Rd) and for 
any a ~ ( 0 ,  1) there exists e,  E L- 1 (Rd) such that 

with the convention L- 1 (Rd) = I (Rd), where f l  is the characteristic function of 
p.  The class L,  (Rd) is defined as n,,, L,(Rd). (They actually defined L,(Rd) 
as a class of limit distributions of independent random variables, and showed 
that (1.1) is a necessary and sufficient condition.) Then it was shown that 

A distribution p in Lo(Rd) is called seIfdecornposable. 
For a k x d real matrix A and a measure (or a signed measure) p on Rd, 

define Ap by (Ap) (3) = p (A-  (B)), BE L% (Rk). If a d x d symmetric matrix A 
satisfies A2 = A, and the dimension of the linear subspace {Ax: x€Rd} is 
k ( 6  d-1), A is called a k-dimensional projector. 
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It is well known that, for a distribution p on Rd, if Ap is Gaussian for any 
I-dimensional projector A, then p is Gaussian. For non-Gaussian stability, this 
fact does not necessarily remain true, but several conditions for its validity are 
known (see, e-g., [3]). Among those, if p is infinitely divisible, then the stability 
of p follows from the fact that A p  are stable for all l-dimensional projectors A. 

On the other hand, it is also known that even if Ap are infinitely divisible 
for all k-dimensional projectors A with 1 < k < d- 1, p is not necessarily in- 
finitely divisible. (As to the references on this fact, see [ 5 ] . )  An example by 
Shanbhag and Sreehari [7] gives us a multivariate distribution such that it is 
infinitely divisible and not selfdecomposable, but every linear combination of 
its -components is selfdecomposable. 

Recently Sato 151 has also given another example of ~ E I ( R ~ )  such that 
p $Lo (Rd) ,  but Ap E Lo (Rk)  for any k x d  matrix A with 1 < k d d - 1, as 
follows. 

1x1 denotes the Euclidean norm of x €Rd.  Let 0 < 6 < 1,O < E < 1, 

and define 
w 

(1.3) vo (3) = 1 2, ( d x )  j 1, (e-t x) d x ,  B E  go ( ~ 3 ,  
R d 0 

where BO(Rd) is the class of all Bore1 sets B in Rd such that B c (1x1 > E )  for 
some E > 0, and lBC) is the indicator function of 3. Then Sato 151 showed the 
following 

THE~REM A. The measure v, in (1.3) is the U v y  measure of a distribution 
po E I (Rd).  Further, p0 $ L o  (Rd) but Ap, E Lo (Rk) for any k x d matrix A with 
l < k g d - 1 .  

The first purpose of this paper is to study the same problem for the nested 
classes L, (Rd) ,  1  < rn < oo , in (1.2). Namely, we show 

THEOREM 1. For each 1  < m < a, there exists a distribution pm such that 
 EL^-^ (Rd), p,$Lm(Rd), but Ap,,,€Lm(Rk) for any k x d matrix A with 
l < k < d - 1 .  

In [2], the class of semi-selfdecomposable distributions Lofb, Rd), 
0 < b < 1, has been introduced. We say that, for each b E (0, I), p belongs to 
Lo (b , Rd) if for some e E I (Rd),  ,4 (z) = fi  (bz) 6 (2) for all z E Rd.  I t  is easy to see that 

Lo (b,  Rd)  c I (Rd)  and Lo (Rd) = n L~ (b , Rd). 
O C b C l  

Therefore, for every b E (0, I), 

I (Rd) 2 Lo (by Rd) 3 LO (Rd) . 
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The second purpose of this paper is to show that the example constructed 
by Sato &, in Theorem A) is not only "non-selfdecomposable," but also 
"non-semi-selfdecomposable." Namely, we show 

THEOREM 2. Let po be the one in Theorem A. Then p,$L,(b, Rd) for any 
b€(O, 1). 

Similarly to the nested classes L, (Rd), 1 < rn < m, mentioned above, 
Maejima and Naito [2] have defined the nested classes L, ( b y  Rd), 1 < rn < a, 
of Lo (b, Rd) as follows. Let 0 < b  < 1 .  For each 1 < m < m, p is said to belong 
to the class L,,, (by Rd) if j.i E I (R3  and there exists Q E L,-, (b, Rd) such that 

fi  (2) = ji (bz) g (z), Vz E HCd. 

It is easy to see that for each b E (0, I), L, (b ,  Rd) 3 L, (Rd) and L, (Rd) 
= no<b< I,,, (by Rd). Related to Theorem 2 above, a natural question arises: 
For each 1 4 m < oo, does p, in Theorem 1 belong to L, (by Rd) or not? The 
answer is the following 

THEOREM 3, Let 1 6 m < a, and let p, be the one in Theorem 1 .  Then 
p,,,+L,(b, Rd) for any b ~ ( 0 ,  1). 

2. Preliminary lemmas. To prove Theorem 1, the following characteriza- 
tion for P E  Lo (Rd) is our starting point. This is a reformulation by Sato and 
Yamazato [6] of a result of Urbanik [8]. 

THEOREM B. p € L O  (Rd) i f  and only i f  p € I ( R d )  and its Ldvy measure v is 
either zero or represented as 

where II is a measure on Rd satiifying 

(2.3) 

and 

1 log 1x1 1 (dx) c 03. 
1x1 ' 2 

This A is uniquely determined by v. 

Since v and 1 are uniquely determined by p € I ( R d ) ,  when we want to 
emphasize the correspondence between those, we may write v = v, and rZ = Rc. 

In the following, we state two results by Jurek [I] on characterization for 
p E L, (Rd),  1 < m < oo , which will be used in the proof of Theorem 1. We say 
that an Rd-valued stochastic process (Y (t), t 2 0 )  is a LLuy process if it has 
independent and stationary increments, it is right continuous, it has left h i t s  
and Y (0) = 0 a.s. The distribution of a random variable X is denoted by dp (X). 
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For c > 0 and B c Rd, write cB = {ex: x E 3). For a E (0, 1) and a measure 
5 on Rd, define 

A ,  ((B) = e ( a ~ l - e  ( 3 1 3  

I 

when < (B) and 5 (aB) are finite, and for n 2 2 and a,, . . . , a, E (0, I), define 

(Aan...aj 0 (B)  = Au,, ( A n - -  i...ai <l(B) 
I successively. 

LEMMA 1 ([I], Corollary 2.6). Let 0 < m < a,. p belongs to L,,,(R3 if and 
$ p E I (R3  and its LBvy measure v, satisfies 

(2.5) - ,  ( A a  ,.,. aivp)(B)20,  Val,...,uL~(O,l), V B E B ~ ( R ~ )  
for any l = 1, ..., m+l. 

LEMMA 2 ([I], Theorem 2.3). Let 1 < m < ar, . ,u belongs to Lm (Rd) if and 
oniy if there exists a LPuy process ( Y  (t)) such that 

a d  2 (Y (1)) E L,- (P) n Ilog (P), where I,,, (Rd) is the set of all { €1 (Rd) satis- 
fying 1 log (1 + 1x1) t (dx)  < m. 

I For our purpose, we state Lemma 2 in terms of Ap as follows. 

I LEMMA 3. Let 1 d m < m . p belongs to L,(Rd) $and only i f p  E Lo (Rd) and 
1 = 1, in the representation (2.1) satisJies 

for any l =  1, ..., m. 
P r o  of. Let p E Lo (Rd).  Note that the LCvy measure of 8 (Y  (1)) in Lemma 

2 is A, in our notation (see [6], p. 91). Then combining Lemmas 1 and 2, and 
noticing that A, E I,,, (Rd) by (2.4), we conclude Lemma 3. 

3. Proof of Theorem 1. For our construction of desired distributions in 
Theorem 1, we fully use the example by Sato [5 ]  mentioned in Theorem A. We 
first show that the measure vo in (1.3) satisfies (2.2), (2.3) and that 

Since vo is the Lkvy measure as shown in Theorem A, (2.2) and (2.3) are 
automatically satisfied. As to (3.1), we have 

I because Ro (I  yl > 2) = 0. 
E Suppose for 0 d pn < CQ we are given a measure v, on Rd satisfying (2.2), 
I (2.3) and such that ~ ~ ( 1 x 1  > 2) = 0. v, also satisfies (2.4) trivially. Thus we can 



MultivaPiate infinitely divisible distributions 425 

define the Lkvy measure 

by taking R = v, in (2.1). If ~ ~ ( 1 x 1  > 2) = 0, then v,,, (1x1 > 2) = 0 as above. 
Thus v , + ~  also satisfies (2.2H2.4). Therefore starting with v, in (1.3), we can 
construct a sequence of LBvy measures v,, 0 < m < a, and denote by 
pm€I (Rd) the distribution whose Lkvy measure is v,. Note that 

in our notation. We will show that, for 1 d rn < m, p, is the desired distri- 
bution satisfying the requirements in Theorem 1. 

By Theorem A, p, is such that p, E I(Rd), p0 $Lo (.@ and Ap0 E Lo (Rk) 
for any k x d matrix A with 1 < k < d - 1. We show the assertion of the 
theorem by induction on m. 

Suppose, for some m, 3 0, the distribution p,, satisfies pm, E Lm,- (Rd),  
pmo 4 L,, (Rd) and A h ,  E L,, (RA) for any k x d matrix A with 1 6 k < d - 1 .  
Since p m o L m o ( d ,  we see from Lemma 1 that A ,,..,,, v,(B) < O 
for some E = l ,  ..., rno+l, a,  ,..., a,f(O, I), BEB,(R*). Thus, by (3.31, 
Idaz ..., Apmo+ I) IB) < 0 for such 1 ,  a , ,  . . . , a, and B ,  implying P,, + 1 $ Lm,+ i Wd) 
by Lemma 2. 

Next note that Lemma 1 remains true for rn = - 1, and that Lemma 2 also 
remains true for m = 0. Since b, G L,,- (Rd), we see from Lemma 1 (includ- 
ing the case for m = -1) that 

for any 1 = 1, . . . , m,. Thus, by (3.3), 

for any 1 = I ,  . . ., m,, implying ,urn,+ EL,, (Rd) by Lemma 2 (including the case 
for rn = 0) .  

Finally, we suppose that A  is any k x d matrix with 1 ,< k ,< d - I .  
In general, if p E I (Rd), then Ap E I (Rk) and its Levy measure V A ~  is [ A V J ~ ~ \ { ~ ] .  
If 

a3 

v,(B) = J A,(dx) 1 lB(eT*x)dt, 
R d 0 

then for B E go (R? 
m 

vAQ(B) = v,, ( A - I  (B)) = j Ap (dx) j lA-~(B)(e - '  x )  dt 
Rd 0 
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By induction hypothesis and Lemma 1, we see that 

a .  0 2 , Val, . . ., a, 11, ~ B E B , ( R ~ )  

for any I = 1, . . ., m,, + 1. On the other hand, 

Hence, by Lemma 2, Ap,, + EL,,, , (lgk), which concludes that our ,urn+ hav- 
ing its Ltvy measure v,+ in (3.2) is an example of the desired distribution. This 
completes the proof of Theorem 1. 

4. proof of Theorem 2. By Lemma 4.1 in [2], ,UE L,(b, Rd) if and only 
if v, (bB) 2 v, (3) for any BE a, (@. Thus, for a given b E (0, I), if we could 
show 

v,(brl < 1x1 < br,) < v,  (r ,  < 1x1 < r2)  for some 0 < r ,  < r, ,  

then Theorem 2 would be concluded. Here we use the calculation done by Sato 
[ 5 ] .  He showed that if 0 < r ,  < r, < 1, then 

where c, is the surface measure of the unit sphere in Rd, Thus 

and we have 

This completes the proof. 

5. Proof of Theorem 3. We need two lemmas corresponding to Lemmas 
1 and 3. 
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LEMMA 4 [Z]. Let 0 < b < 1 and 0 < m < a. p belongs to L, (b, Rd) if and 
only i f  ~ E I  (Rd) and its LLuy measure v, satisfies 

(A:  v,) (3) 2 0, VB E go (W3 

for any 1 = 1, . . ., mi-  1,  where AI, = Ab... ,. 
LEMMA 5. Let 0 < b <  1 and 1 < m <  a. Suppose , U E L , - , ( ~ .  Then ,u 

belongs to Lm(b, R4) if and only if il = AP in the representation (1.3) satisJies 

(A: 1,) (B) 2 0, V B  E go (Rd) 
for any 1 = 1 ,  ..., m. 

  his lemma can be proved in exactly the same way as Lemma 3 with the 
replacement of Lemma 1 by Lemma 4. 

P roo f  of Theorem 3. Since p,$L,(b, m, by Lemma 4 we have 
A ,  v,, (B) < 0 for some BE a, (Itd) .  As before 

Hence, by Lemma 4, p, $L,  (b, Rd). Repeating this argument, we conclude that 
pm$Lm(b, R ~ )  for each 1 < m < co. 

6. Corncluding remarks. 
(i) We have the following two relations: 

Lm (Rd) c L, - (Rd) and L, (Rd) c Lm (b , Rd) . 
One might ask what the relationship between Lm-l (Rd) and L,(b, Rd) is. 

( I )  L, (b, Rd) n (L,- (R~))'  # 0. This can be shown by taking non-self- 
decomposable semi-stable distribution, the existence of which is well known. 

(11) L- (Rd) n (L, ( b ,  IZd))" # 0. Our p, constructed in Theorem 1 as- 
sures this noa-emptiness. 

(ii) It is known that if APE S(R1) for any 1 x d matrix A for some p E I(Rd),  
then p~ S (Rd) (see, e.g., 131). In Theorems A and 1, we have seen that this type 
of property does not hold for the classes Lm(Rd), 0 < m < oo . The same ques- 
tion about L,(Rd) seems interesting, but it is still open. 
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