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1. Introduction. The Rademacher system (r,) is a simple illuminating 
example of a sequence of functions having the same distributions and weakly 
converging to 0 = Er, = E(r,]r , ,  . . ., r,- One can expect more general rela- 
tions between weak limits and conditional expectations for sequences of random 
variables. The analysis of such problems is the main goal of this paper. In Section 
2 we discuss some connections between the weak and the almost everywhere 
convergence of sequences of functions. Roughly speaking, the weak convergence 
is not too far from the almost everywhere one, via conditioning or passing to 
a subsequence, and using martingale convergence theorems. In Section 3 we show 
that combining the weak convergence of random variables with the weak conver- 
gence of their distributions we get the convergence in measure and in L,  . Section 
4 is devoted to a characterization of all distributions of weak limits of sequences 
of functions having distributions weakly converging to a given one. 

2. Connections between weak and almost everywhere convergence. Let 
(52, P, p) be a probability space and let (dn) be a filtration in S Z ,  i.e. (dJ is an 
increasing sequence of sub-a-fields of 9 with a(Un,, A,) = 9. By EdnX we 
denote the conditional expectation of a random variable X with respect to d,. 

For any uniformly integrable sequence (X,) in L,  (a, 8, p)? the sequence 
Y, = X,-EdnX,  is convergent in the cr(L,, L,) topology (121, see also Theo- 
rem 2.3 below). In particular, any uniformly integrable sequence (XJ is weakly 
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convergent in L,  if only iFd"Xn converges weakly in L, .  This is obviously true 
when (EdnXn)  is a martingale. In 131 a sequence (X,, A?,) is called a pseudo- 
-martingale when (EdnX,)  is a martingale. In fact, any weakly convergent 
sequence (X,) is very close to a special pseudo-martingale. More precisely, we 
have the following 

2.1. PROPOSITION. k t  (d,) be an arbitrary filtration generated by Jinite 
partitions of a, Then, for any sequence (X,) weakly convergent in L, to zero, 
there exists a sequence &In of repetitions of d m ' s  i.e. &In = dm for 
n (m) <-n < n (rn + I), n (1) < n (2) < . . ., such that ( X ,  + A , ,  &In) is a pseudo-mar- 
tingale for some sequence (A , )  conuerying to zero uniformly. 

Proof.  Let (A?)), . . . , (AkTid be a partition of B generating (.dm). Take 
n(m) such that 

P (A!"') 11 xn l ~ i m ) (  < 7 for n > n (m), i = 1,2, . . ., k (m). 
R 

Obviously, we can assume that n(1) < n(2) < ... It is enough to put 
A,  = - P n X , .  

2.2. COROLLARY. If X ,  + X weakly in L1, then for any filtration ( 6 3  given 
by jinite partitions with A?, 7 AF we have. 

P X n 4 X  a.e. and in L,, 

where (g,) is a suitable sequence of repetitions of d m ' s .  

Proof.  X, - X + 0 weakly. Thus we have I I E ~ ~ ( X ,  - X ) ( ( ,  -+ 0 and 
P x , + X  a.e. and in L,. H 

For the sake of completeness we sketch the proof of the following theorem: 

2.3. THEDREM (~aj te  and Paszkiewicz [3]). Let (X,, d J  be a pseudo-mar- 
tingale with a ( U d )  = 9. Then (X,) is weakly convergent to some random varia- 
ble X in L, if and only if (X,) is unijiorrnly integrable. Then X = limnEdnXn. 

Proof .  Since any sequence weakly convergent in L, is uniformly inte- 
grable (so relatively compact in the g(L, ,  L,) topology [4]), it is enough to 
show that the uniform integrability of a pseudo-martingale (X,) implies its 
weak convergence. Let (XJ be uniformly integrable. We can assume that 
IIXnII1 G 1 .  Take g e L ,  (a, 9, p), and let e > 0. We fix an h = xr=, ik 1,. with 
A k € F ,  11g- hll, < E .  Since a(Un,, d,) = 9, we find in the field Un3 dn, 
and consequently in some d,,, the sets B, satisfying p(A, A B 3  < 6 with 
a 6 such that p ( Z )  < 6 implies 

SIXn-XI < ~/llhll,. 
Z 

putting h ,  = x,N=, lBly we get 
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for n large enough, h, becomes d,,,-measurable, so 

For a pseudo-martingale (X,) in L, we have the following 

2.4 PROPOSITION. If supn3 IIXnll, < M , then X ,  + X in a (L,, L,) 
topology, where X = limn EdnX,. 

P roof. wdting X, = Ed- X, + (1 - Edn) X,, we have for g E L ,  

In the last proposition the convergence in the 0 (%, , L,) topology cannot 
be replaced by the a (L, , k*,) convergence. 

2.5. EXAMPLE. Let (a, 9, p) = ([O, I], Bore1 A). Let cp be an extension to 
a continuous linear functional on L, of the functional 

f (X) = lim X (w) 
m+O 

(for X's having this limit). Then, for 

and +fields 

d, = ( A  u 5;  A E  {a, [0, l / n ] ) ,  B E  Bore1 [ l / n ,  I]), 

the sequence (X,, d,) is a pseudo-martingale. On the other hand, q(X,) = 1 
and Xn + 0 in the a(L,, L,) topology. 

Re rnark. One can show that boundedness of a pseudo-martingale (X,) in 
the Ll-norm does not imply its weak convergence in L,. If (X,) is L,-bounded 
with p > 1, then it is uniformly integrable. Consequently, (X,)  converges 
weakly in L,, since L ,  is dense in L,. 

Now, we show that each weakly convergent sequence contains subse- 
quences close to the martingale increments. The idea is analogous to that of 
Banach and Saks that each sequence weakly convergent to zero contains an 
"almost orthogonal" subsequence (see [5 ] ,  Chapter 2, 38, and [6]) .  

26. THEOREM. Let X, -, X weakly in L,. For any sequence (E,) of positive 
numbers there exists a subsequence (Xn(k)) of (X,) satisjying 

for some 'Y, being martingale increments, i.e. 

Proof. One can assume that X = 0. Let us take n(1) = 1 and 
let Y, be a simple function satisfying IJX, - Y,II < E, . Assume that 
n(1 )  < . . . < n (k), Y,, . . ., Y, have already been fixed in a way such that (*) 
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holds, and Y, are simple functions. We can choose n (k + 1) large enough to 

Then we take a simple function Z satisfying 

and put x',, , = Z-E(Z I Y,, . . ., %). We have the estimation 

The induction concludes the proof. rn 

3. Weakly convergent sequences with weakly convergent distributions. 
Combining the weak convergence of random variables X, + X with the weak 
convergence of their distributions Fxb =- F ,  one can easily obtain interesting 
observations. If p > 1 ,  X, + X weakly in L, and Fxn * P ,  (weakly), then 
IlX,-Xll, + 0 for 1 < q < p. Indeed, then the sequence (IX,Iq) is uniformly 
integrable. In particular, for any E > 0 there exists a c ,  > 0 such that c > c, 

imp1ies j(lxnlq >c) 1X,Iq < E ,  which, together with the weak convergence of 
distribution, gives IlX,ll, + IlXll,. Since q > 1 ,  and X, + X weakly in L,, we get 
X,, + X in E, (by the Radon theorem [4], Section 37). 

The weak convergence X, + X in L, of random variables satisfying 
IIX,Jll = llX/ll does not imply the convergence in L ,  (e.g. X, = 1 +r, + 1 
weakly for the Rademacher system (r,)). Anyway, we have the following 
result : 

3.1. THEOREM. Let (X,,) c L, .  Asmme that X,, -, X weakly in L, and 

Fxn = F x  (weakly). Then X, + X in probabiIity and, consequently, in L, .  
Before starting the proof it is convenient to show the following lemma: 

3.2. LEMMA. Let Xn -+ X weakly in L, and F,,, - Fx weakly. Then, for any 
continuity point ~ E R  of Fx, and E > 0, we haue 

and, a-E is ta continuity point of Fx, 

P r o  of. We prove only (1). In the sequel, we shall write u, = w, + o (1) 
(u, < w, + o (I), respectively) to say that u, = w,+ 6, (u, < w, + a,, respectively) 
for some 6, + 0. 

First, let us observe that, for ~ E R ,  

Indeed, take E > 0. The sequence (X,), being weakly convergent, is uniformly 
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integrable [4], so 

for c 2 c,  and all n = 1 ,  2, . . .; we can additionally assume that I J ( x , c l ~ /  c e 
for c 3 c,. Then, writing 

. . 

we have 

Obviously, one can assume that c, is a continuity point of F,. The weak 
convergence of measures dFxn  I) dFx  leads easily to the estimation 

for n > no, so finally we get (3). 
The weak convergence of X, to X and (3) imply, for U E  R,  

Moreover, for any continuity point a of Fx, we have 

(since p (X > a) = p (X, > a) + o (1)). Subtracting [(,,,a,x >a) X,, we get from (4) 

Obviously, we have 

Moreover, by (51, (6) and (7) we have 

Consequently, 
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which means 

for some 6 ,  + 0, and gives immediately (1). In a similar way one can also 
prove (2). EI 

33. Proof  of Theorem 3.1. Let, for ~ > 0 ,  the numbers a,< ... < a m  
be fixed in a way such that F ,  is continuous in each ai; a i - a ; - ,  < E for 
i = 1, . . ., rn; F(a,) < E ,  F(am) > 1 - e. Using Lemma 3.2 to X,  X, and once 
more-to -X, -X, we obtain 

P ( a i - l ~ X ~ ~ , ~ ( X , ~ a i + s v X n < a i - l - ~ ) ) < ~ / m  for n > n ( i ) .  

Then n > max (n (9: i = 1, . . . , m) implies 

The stochastic convergence is proved. The weak convergence of (X,) implies 
its uniform integrability, so X, + X in A, .  RI 

3.4. R em a r k, If X, + X weakly in L, with p > 1 and FXn + F x  (weakly), 
then, obviously, X,  + X weakly in L, . Therefore, by Theorem 3.1, X, + X in 
probability. If, additionally, the sequence (IXn13 is uniformly integrable, then 
Xn 4 X  in L,. 

4. Distributions of weak limits. The following two theorems give complete 
characterization of distributions of weak limits. Roughly speaking, weak limits 
of sequences of random variables having distributions weakly converging to 
a given one can be described by a suitable conditioning. As usual, Fx and 
px = dFx denote a distribution function and a distribution law of X,  respec- 
tively. 

4.1. THEOREM. Let ( X ,  Y )  be a random vector defined on a probability 
space, say ( M ,  A, P), with X having finite expectation. Then there exists a 
probability space (Q, E p) and random variables e,, EEL, (Q, p)  satisfying 
the conditions 

lo tn+ 5 weakly in L,(Q, p), 
2' Frn = Fx and F g  = FE(XIU). 

4.2. THEOREM. Let 5, + 5 weakly in L, (Q, 9, p), and Fgn * F. Then there 
exist two random variables X ,  Y o n  a probability space (My 4, P)  such that 

Proof  of Theorem 4.1. Let us put Q = R x  [O, 11,  F = Bore1 Q, 
p = dF, x 1, A being the Lebesgue measure on LO, 11. Let F(J, ol), y E R ,  a E R 
be a regular conditional distribution for X given (Y  = y), i.e, for each y, F ( y ,  .) 
is a distribution function and, for each ol, F (y, a) = P ( X  < o: I Y =  y) dFy-  
-almost everywhere (see e.g. [I ] ) .  For y e R ,  we denote by gCy, t) the 
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rearrangement (%versem) of distribution function F ( y ,  a), i-e., for 0 < t < 1,  
we put 

g ( y ,  t )  = inf{a; F(y,  4 3 t ) .  

Then, in particular, we have g € E 1  (a, F,  p) and 
1 

g (y, t) dt = E(X ( Y = y) dF,-a.e. 
0 

Let us put, for ( y ,  x)E!~,  

- - a t;b, x) = B(X I Y = Y), L(Y,  4 = g(y, rnx)Y 

where r :  [0, 11 + [O, 11 is an arbitrary fixed measure preserving mixing 
transformation [2] (i.e. il(An7-" B) + ;L(A) I (B) as n -+ m for each A, B E 
Bore1 [O, 11). Then we have 

By the Fubini theorem and the mixing property of T, for any t,b E L, (a) we get 

Proof of Theorem 4.2. Take a measurable space 

(M, A) = (R2, Bore1 R2). 

Let P, be a probability distribution in R2 of the vector (l,, 0, n = 1, 2, . .. 
Taking a subsequence, if necessary, one can assume that P,, * P for some 
probability measure P in R2. For random variables X ( x ,  y) = x and 
Y (x ,  y) = y on the probability space (My A, P)  = (R2, Bore1 R2, P), we have 
F, = F. The equality 

FE(x~Y)  = Fy = F g  

is a consequence of the following lemma: 

4.3. LEMMA. Let 5, + < weakly in L, (By F ,  F) and the distributions on the 
plane p ( < , , ~  converge weakly to p. Then for the coordinates X ( x ,  y) = x and 
Y (x, y) = y on the probability space (R2, Bore1 R2, p), we have E(X I Y) = Y .  
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Proof.  For any a <fly we have 

by the weak convergence of measures s p and the uniform integrability 
of <, . On the other hand, 

J X ~ P [ < . , < , =  { t n d ~ +  ,f 5 d ~ =  J Y'P. 
f y ~ ( ~ ~ P ) l  (t~ia,P)l (EE(~,B)) (Y.la,B)l 

Thus 

which completes the proof. 

4.4. COMMENTS. In the formulation of the last two theorems we used, just 
for clarity, two difFerent probability spaces (M, A, P) and (W, F, p) .  In fact, we 
can always assume that these spaces coincide. It in enough to consider sepa- 
rately the atoms and non-atomic parts of (a, F, p) to show that: 

1. If FCn - F weakly for (en) on 8, then there exists a random variable 
< on t2 such that F = Ft. 

. 
2. If en + weakly in L, (52) and Fen * F, then there exist X on B and 

a c-field d c F such that F ,  = F and FEdX = F g  (the idea of the universality 
of the interval [0, 11 as a probability space is used here if a non-atomic part of 
(8,  F ,  p) is nontrivial). 

3. Obviously, the conditions 5, -+ 5 weakly in L,  (Q) and FSn - F do not 
imply the existence of a random variable X and a a-field d c 9 satisfying 

5 = EdX and F ,  = F. 

The sequence 5, (0) = r ,  (w) + o on 52 = 10, 11 is an example, where (r,) is the 
Rademacher system. 

Remark. The characterization of distributions of weak limits given in 
Theorems 4.1 and 4.2 is formulated for the case of the weak convergence in L, 
with p = 1 just for simplicity. For a sequence (l,) in L,, the convergence in the 
a (L,, L,) topology, l/p + l/q = 1, 1 d p < a, is equivalent to the c (L,, L,) 
convergence. 

Note added in proof. The authors have recently been informed that Theorem 
3.1 follows from the result of L. Pratelli (Une caractCrisation de la conuergence 
dans L!, SCm. Prob. XXVI, Lecture Notes in Math. 1526, Springer, 1992; 
thCor2me (5.1), p. 66). For this reference, the authors thank P. Berti and P. Rigo. 
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