ON THE COMPLETENESS OF SOME L^{p}-SPACES OF OPERATOR-VALUED FUNCTIONS

BY
LUTZ KLOTZ (LEIPZIG)

Abstract

In [3] there were studied Banach spaces of (equivalence classes of) functions Φ whose values are unbounded operators, in general, and which are p-integrable with respect to operator-valued measures having an operator density N with respect to some non-negative scalar measure μ. In the present short note it is shown that the values of all functions Φ are even bounded linear operators if and only if there is not any set A of positive finite measure μ such that the values of N on A have non-closed ranges. The result is used to answer a question raised by Górniak et al. [2].

1. For the reader's convenience we start with recalling the definition of some classes of L^{p}-spaces introduced in [3].

Let K be a non-trivial separable Hilbert space and H an infinite-dimensional separable Hilbert space over the field of complex numbers \boldsymbol{C}. The inner product and the norm in H are denoted by (\cdot, \cdot) and $\|\cdot\|$, respectively. Let \mathscr{B} be the Banach space of all bounded linear operators of H into K, and \mathcal{S}_{∞} the subspace of all compact operators. For a bounded linear operator X, let $|X|$ and $\mathscr{R}(X)$ be the usual operator norm and the range of X, respectively. Let α be a symmetric gauge function (cf. [1], p. 96). It defines a norm $|\cdot|_{\alpha}$ on a certain linear subspace \mathfrak{S}_{α} of \mathfrak{S}_{∞}, which becomes a Banach space under the norm $|\cdot|_{\alpha}$. The well-known Schatten classes are examples of such spaces (cf. [1], pp. 120-121). Note that in the case $K=C$ the spaces \widehat{G}_{α} do not depend on the choice of α and $|\cdot|_{\alpha}=|\cdot|$. For more information about the spaces \mathcal{G}_{α} see [1].

Let $(\Omega, \mathscr{H}, \mu)$ be a positive measure space. A function $T: \Omega \rightarrow \mathscr{B}$ is called measurable if it is strongly (or, equivalently, weakly) measurable. Assertions concerning measurable functions are to be understood as assertions which are true for μ-almost all (abbreviated to " μ-a.a.") elements of the domain of definition, although we will not emphasize this each time.

Let $\mathscr{B}(H)$ be the Banach algebra of bounded linear operators in H and $N: \Omega \rightarrow \mathscr{B}(H)$ be a measurable function such that $N(\omega) \geqslant 0$ and $|N(\omega)|=1$,
$\omega \in \Omega$. Here $N(\omega) \geqslant 0$ means $(N(\omega) x, x) \geqslant 0$ for all $x \in H$. Let

$$
N(\omega)=\int_{0}^{1} \lambda E(d \lambda ; \omega)
$$

be the spectral representation of $N(\omega), \omega \in \Omega$. Let

$$
P(\omega):=E((0,1] ; \omega)
$$

and for $1 \leqslant p<\infty$

$$
N(\omega)^{1 / p}:=\int_{0}^{1} \lambda^{1 / p} E(d \lambda ; \omega), \quad N(\omega)^{\# 1 / p}:=\int_{0}^{1} \lambda^{-1 / p} E(d \lambda \cap(0,1] ; \omega), \quad \omega \in \Omega .
$$

Moreover, let

$$
\begin{gathered}
P: \Omega \ni \omega \rightarrow P(\omega), \\
N^{1 / p}: \Omega \ni \omega \rightarrow N(\omega)^{1 / p}, \quad N^{\# 1 / p}: \Omega \ni \omega \rightarrow N(\omega)^{\# 1 / p} .
\end{gathered}
$$

Let \mathscr{A} be the set of all (not necessarily densely defined and not necessarily bounded) linear operators from H to K. Let $1 \leqslant p<\infty$ and α be a symmetric gauge function. By $\mathscr{L}_{\alpha}^{p}(N d \mu)$ we denote the set of all functions $\Phi: \Omega \rightarrow \mathscr{A}$ with the following three properties:
$\Phi(\omega) N(\omega)^{1 / p}$ exists and belongs to \Im_{α} for μ-a.a. $\omega \in \Omega ;$
$\Phi N^{1 / p}$ is measurable;
$\|\Phi\|_{p, \alpha}:=\left(\int_{\Omega}\left|\Phi(\omega) N(\omega)^{1 / p}\right|_{\alpha}^{p} \mu(d \omega)\right)^{1 / p}<\infty$.
Two functions $\Phi, \Psi \in \mathscr{L}_{\alpha}^{p}(N d \mu)$ are called p-equivalent if $\Phi N^{1 / p}=\Psi N^{1 / p}$. Let $L_{\alpha}^{p}(N d \mu)$ be the set of all p-equivalence classes of functions of $\mathscr{L}_{\alpha}^{p}(N d \mu)$. As usual, studying $L_{\alpha}^{p}(N d \mu)$ we work with representatives, i.e. with functions, instead of equivalence classes. The space $L_{a}^{p}(N d \mu)$ is a Banach space under the norm $\|\cdot\|_{p, \alpha}$ (see [3], Theorem 7). Note that if $K=C$, the space $L_{\alpha}^{p}(N d \mu)$ does not depend on the choice of the symmetric gauge function α. In this case we will simply denote it by $L^{p}(N d \mu)$.
2. The following theorem answers the question under which conditions all elements of $L_{\alpha}^{p}(N d \mu)$ are not only \mathscr{A}-valued but even \mathscr{B}-valued, i.e. under which conditions for each p-equivalence class of $L_{\alpha}^{p}(N d \mu)$ there exists a \mathscr{B}-valued function belonging to this class.

Theorem 1. Let α be a symmetric gauge function and $1 \leqslant p<\infty$. The following two conditions are equivalent:
(I) All elements of $L_{\alpha}^{p}(N d \mu)$ are \mathscr{B}-valued.
(II) There does not exist a set $A \in \mathfrak{H}$ such that
(i) $0<\mu(A)<\infty$,
(ii) $\mathscr{R}(N(\omega))$ is not closed for $\omega \in A$.

Proof. The proof is divided into a number of steps.
Step 1. Let I be any subinterval of $[0,1]$. Then the function $E(I ; \cdot)$ is measurable and there exists a measurable function $x: \Omega \rightarrow H$ such that for $\omega \in \Omega$
(1) $\boldsymbol{x}(\omega) \in \mathscr{R}(E(I ; \omega))$,
(2) $\|x(\omega)\|=1$ if $E(I ; \omega) \neq 0$.

This result follows from [3], Lemma 1, and [4], Lemma 8.
Step 2. Let $C:=\{\omega \in \Omega: \mathscr{R}(N(\omega))$ is not closed $\}$. Then C belongs to \mathfrak{H}. The range $\mathscr{R}(N(\omega))$ is not closed if and only if $P(\omega) \neq E\left(\left(k^{-1}, 1\right] ; \omega\right)$ for all k from the set of positive integers N. Since according to Step 1 the functions P and $E\left(\left(k^{-1}, 1\right] ; \cdot\right)$ are measurable, the result follows.

Step 3. (II) $\Rightarrow(\mathrm{I})$. Let $\Phi \in L_{\alpha}^{p}(N d \mu)$. In [3], the proof of Lemma 6, it was shown that there exists a function $T \in L_{a}^{p}(P d \mu)$ such that $\Phi=T N^{\# 1 / p}$. Note that the elements of $L_{\alpha}^{P}(P d \mu)$ are \mathscr{B}-valued and that T is equal to 0 outside a set of σ-finite measure μ. Since the closedness of $\mathscr{R}(N(\omega))$ is equivalent to the boundedness of $N(\omega)^{\# 1 / p}$ and since the set C of Step 2 is measurable, we are done.

Step 4. Let A be a measurable set having the properties (i) and (ii). Then there exist a measurable subset $B \subseteq A$ and an increasing sequence $\left\{n_{j}\right\}_{j \in N} \subseteq N$ such that $\mu(B)>0$ and $E\left(\left(n_{j+1}^{-1}, n_{j}^{-1}\right] ; \omega\right) \neq 0$ for all $\omega \in B$ and $j \in N$.

Choose a positive real number ε such that $\mu(A)-\varepsilon>0$. Set $n_{1}:=1$. For $n \in N, n>n_{1}$, let

$$
A_{n}:=\left\{\omega \in A: E\left(\left(n^{-1} ; n_{1}^{-1}\right] ; \omega\right) \neq 0\right\}
$$

Since, for $\omega \in \Omega, \lim _{n \rightarrow \infty} E\left(\left(0, n^{-1}\right], \omega\right)=0$ with respect to the strong operator topology, we have

$$
\bigcup_{n=n_{1}+1}^{\infty} A_{n}=A .
$$

Choose $n_{2} \in N, n_{2}>n_{1}$, so large that

$$
\mu\left(\bigcup_{n=n_{1}+1}^{n_{2}} A_{n}\right)>\mu(A)-\frac{\varepsilon}{2}
$$

and set

$$
B_{1}:=\bigcup_{n=n_{1}+1}^{n_{2}} A_{n} .
$$

Assume that for a certain $k \in N$ we have already constructed an increasing sequence $\left\{n_{j}\right\}_{j=1}^{k+1} \subseteq N$ and a non-increasing sequence $\left\{B_{j}\right\}_{j=1}^{k} \subseteq \mathfrak{A}$ such that

$$
\mu\left(B_{j}\right)>\mu(A)-\sum_{s=1}^{j} 2^{-s} \varepsilon
$$

and

$$
E\left(\left(n_{j+1}^{-1}, n_{j}^{-1}\right] ; \omega\right) \neq 0 \quad \text { for } \omega \in B_{j}, j=1, \ldots, k
$$

Then using analogous arguments as in the construction of n_{2} and B_{1}, we can find a positive integer $n_{k+2}>n_{k+1}$ and a measurable set $B_{k+1} \subseteq B_{k}$ such that

$$
\mu\left(B_{k+1}\right)>\mu\left(B_{k}\right)-2^{-(k+1)} \varepsilon
$$

and

$$
E\left(\left(n_{k+2}^{-1}, n_{k+1}^{-1}\right] ; \omega\right) \neq 0 \quad \text { for } \omega \in B_{k+1} .
$$

If we set $B:=\bigcap_{k=1}^{\infty} B_{k}$, we obtain

$$
\mu(B) \geqslant \mu(A)-\varepsilon>0
$$

and

$$
E\left(\left(n_{j+1}^{-1}, n_{j}^{-1}\right] ; \omega\right) \neq 0 \quad \text { for } \omega \in B \text { and } j \in N .
$$

Step 5. Assume that (II) is not true. Then there exist a measurable set B of positive finite measure μ and a bounded measurable function $x: \Omega \rightarrow H$ such that the functional

$$
x \rightarrow\left(N(\omega)^{\# 1 / p} x, x(\omega)\right)
$$

is an unbounded linear functional on $\mathscr{R}(N(\omega))$ if $\omega \in B$, and

$$
x(\omega)=0 \quad \text { if } \omega \in \Omega \backslash B
$$

If (II) is not true, there exists a measurable set A having properties (i) and (ii). Construct a set B and a sequence $\left\{n_{j}\right\}_{j \in N}$ as in Step 4. Choose a sequence $\left\{c_{j}\right\}_{j \in N}$ of positive real numbers such that

$$
\sum_{j=1}^{\infty} c_{j}^{2}<\infty \quad \text { and } \quad \sum_{j=1}^{\infty} n_{j}^{1 / p} c_{j}^{2}=\infty
$$

By Step 1 , for $j \in N$ there exists a measurable function $\boldsymbol{x}_{\boldsymbol{j}}: \Omega \rightarrow H$ such that

$$
\boldsymbol{x}_{j}(\omega) \in \mathscr{R}\left(E\left(\left(n_{j+1}^{-1}, n_{j}^{-1}\right] ; \omega\right)\right)
$$

and

$$
\left\|x_{j}(\omega)\right\|=1 \quad \text { if } E\left(\left(n_{j+1}^{-1}, n_{j}^{-1}\right] ; \omega\right) \neq 0
$$

Now set

$$
x(\omega)=0 \quad \text { if } \omega \in \Omega \backslash B,
$$

and

$$
x(\omega)=\sum_{j=1}^{\infty} c_{j} x_{j}(\omega) \quad \text { if } \omega \in B
$$

Obviously, the function \boldsymbol{x} is measurable. Fix $\omega \in B$ and set

$$
y_{k}:=\sum_{j=1}^{k} c_{j} x_{j}(\omega), \quad k \in N .
$$

The sequence $\left\{y_{k}\right\}_{k \in N}$ is bounded, since

$$
\left\|y_{k}\right\|^{2}=\sum_{j=1}^{k} c_{j}^{2}<\sum_{j=1}^{\infty} c_{j}^{2}<\infty .
$$

But

$$
\begin{aligned}
\left(N(\omega)^{\# 1 / p} y_{k}, x(\omega)\right) & =\left(N(\omega)^{\# 1 / p} \sum_{j=1}^{k} c_{j} x_{j}(\omega), \sum_{j=1}^{\infty} c_{j} x_{j}(\omega)\right) \\
& =\sum_{j=1}^{k} c_{j}^{2}\left(N(\omega)^{\# 1 / p} x_{j}(\omega), x_{j}(\omega)\right) \geqslant \sum_{j=1}^{k} c_{j}^{2} n_{j}^{1 / p}
\end{aligned}
$$

tends to ∞ if $k \rightarrow \infty$. Hence the linear functional $x \rightarrow\left(N(\omega)^{\# 1 / p} x, x(\omega)\right)$ is unbounded if $\omega \in B$.

Step 6. $(\mathrm{I}) \Rightarrow(\mathrm{II})$. Obviously, it is enough to prove the result if the dimension of K is 1 . So we will assume $K=C$. If (II) does not hold, we can construct a set B and a function \boldsymbol{x} as in Step 5. For $\omega \in B$ set

$$
\Phi(\omega) x:=\left(N(\omega)^{\# 1 / p} x, x(\omega)\right), \quad x \in \mathscr{R}\left(N(\omega)^{1 / p}\right),
$$

and for $\omega \in \Omega \backslash B$ set $\Phi(\omega)=0$. Since

$$
\int_{\Omega}\left|\Phi(\omega) N(\omega)^{1 / p}\right|^{p} \mu(d \omega)=\int_{B}\|x(\omega)\|^{p} \mu(d \omega)<\infty,
$$

the function Φ belongs to $L^{p}(N d \mu)$. But $\Phi(\omega) \notin \mathscr{B}$ if $\omega \in B$; hence (I) does not hold.

Corollary. If μ is a σ-finite measure, then all elements of $L_{\alpha}^{p}(N d \mu)$ are \mathscr{B}-valued if and only if $\mathscr{R}(N(\omega))$ is closed for μ-a.a. $\omega \in \Omega$.
3. In [2], pp. 108-109, Górniak et al. considered a σ-finite measure space $(\Omega, \mathfrak{A}, v)$, a measurable function $F_{v}^{\prime}: \Omega \rightarrow \mathscr{B}(H)$ such that $F_{v}^{\prime}(\omega) \geqslant 0$ for $\omega \in \Omega$, and the inner product space L_{F}^{2} of all (equivalence classes of) measurable functions \boldsymbol{x} such that

$$
\int_{\Omega}\left(F_{v}^{\prime}(\omega) x(\omega), x(\omega)\right) v(d \omega)<\infty
$$

They proved that the closedness of $\mathscr{R}\left(F_{v}^{\prime}(\omega)\right)$ for v-a.a. $\omega \in \Omega$ is sufficient for the completeness of L_{F}^{2} and raised the question whether this condition is necessary for the completeness of L_{F}^{2}; cf. [2], Remark 5.6, and also [5], p. 211. Using the results of Section 1, we can answer this question in the affirmative.

Theorem 2. The space L_{F}^{2} is complete if and only if $\mathscr{R}\left(F_{v}^{\prime}(\omega)\right)$ is closed for $v-a . a . ~ \omega \in \Omega$.

Proof. First note that we can assume that $F_{v}^{\prime}(\omega) \neq 0$ for all $\omega \in \Omega$. Under this assumption set

$$
N(\omega):=\left|F_{v}^{\prime}(\omega)\right|^{-1} F_{v}^{\prime}(\omega) \quad \text { and } \quad \mu(d \omega):=\left|F_{v}^{\prime}(\omega)\right| v(d \omega), \quad \omega \in \Omega
$$

The measure μ is σ-finite and $|N(\omega)|=1, \omega \in \Omega$. Clearly, the space L_{F}^{2} does not change if we replace F_{v}^{\prime} by N and v by μ. Let $K:=C$ and consider the space $L^{2}(N d \mu)$. For $x \in L_{F}^{2}$ define

$$
\Phi(\omega) x:=(x, x(\omega)), \quad x \in H, \omega \in \Omega .
$$

It is not hard to see that the map $\boldsymbol{x} \rightarrow \Phi$ is an isometry of L_{F}^{2} onto the set of all \mathscr{B}-valued elements of $L^{2}(N d \mu)$. Thus L_{F}^{2} is complete if and only if all elements of $L^{2}(N d \mu)$ are \mathscr{B}-valued. Using the Corollary, we obtain the assertion.

REFERENCES

[1] I. Ts. Gokhberg and M. G. Kreǐn, Introduction to the Theory of Linear Non-self-adjoint Operators in Hilbert Space (in Russian), Nauka, Moscow 1965.
[2] J. Górniak, A. Makagon and A. Weron, An explicit form of dilation theorems for semispectral measures, in: Prediction Theory and Harmonic Analysis. The Pesi Masani Volume, V. Mandrekar and H. Salehi (Eds.), North-Holland Publishing Company, Amsterdam-New YorkOxford 1983, pp. 85-111.
[3] L. Klotz, Some Banach spaces of measurable operator-valued functions, Probab. Math. Statist. 12 (1991), pp. 85-97.
[4] - Inclusion relations for some I^{p}-spaces of operator-valued functions, Math. Nachr. 150 (1991), pp. 119-126.
[5] A. Makagon and H. Salehi, Notes on infinite dimensional stationary sequences, in: Probability Theory on Vector Spaces IV. Proceedings of a Conference held in Lańcut, Poland, June 10-17, 1987, Lecture Notes in Math. 1391, S. Cambanis and A. Weron (Eds.), Springer, Berlin-Heidel-berg-New York 1989, pp. 200-238.

Department of Mathematics
University
04109 Leipzig, Germany

Received on 13.11.1998

