PROBABILITY AND MATHEMATICAL STATISTICS Vol. 19, Fasc. 2 (1999), pp. 463–468

ON THE COMPLETENESS OF SOME *L*²-SPACES OF OPERATOR-VALUED FUNCTIONS

BY

LUTZ KLOTZ (LEIPZIG)

Abstract. In [3] there were studied Banach spaces of (equivalence classes of) functions Φ whose values are unbounded operators, in general, and which are *p*-integrable with respect to operator-valued measures having an operator density N with respect to some non-negative scalar measure μ . In the present short note it is shown that the values of all functions Φ are even bounded linear operators if and only if there is not any set A of positive finite measure μ such that the values of N on A have non-closed ranges. The result is used to answer a question raised by Górniak et al. [2].

1. For the reader's convenience we start with recalling the definition of some classes of L^p -spaces introduced in [3].

Let K be a non-trivial separable Hilbert space and H an infinite-dimensional separable Hilbert space over the field of complex numbers C. The inner product and the norm in H are denoted by (\cdot, \cdot) and $\|\cdot\|$, respectively. Let \mathscr{B} be the Banach space of all bounded linear operators of H into K, and \mathfrak{S}_{∞} the subspace of all compact operators. For a bounded linear operator X, let |X|and $\mathscr{R}(X)$ be the usual operator norm and the range of X, respectively. Let α be a symmetric gauge function (cf. [1], p. 96). It defines a norm $|\cdot|_{\alpha}$ on a certain linear subspace \mathfrak{S}_{α} of \mathfrak{S}_{∞} , which becomes a Banach space under the norm $|\cdot|_{\alpha}$. The well-known Schatten classes are examples of such spaces (cf. [1], pp. 120–121). Note that in the case K = C the spaces \mathfrak{S}_{α} do not depend on the choice of α and $|\cdot|_{\alpha} = |\cdot|$. For more information about the spaces \mathfrak{S}_{α} see [1].

Let $(\Omega, \mathfrak{A}, \mu)$ be a positive measure space. A function $T: \Omega \to \mathscr{B}$ is called *measurable* if it is strongly (or, equivalently, weakly) measurable. Assertions concerning measurable functions are to be understood as assertions which are true for μ -almost all (abbreviated to " μ -a.a.") elements of the domain of definition, although we will not emphasize this each time.

Let $\mathscr{B}(H)$ be the Banach algebra of bounded linear operators in H and $N: \Omega \to \mathscr{B}(H)$ be a measurable function such that $N(\omega) \ge 0$ and $|N(\omega)| = 1$,

 $\omega \in \Omega$. Here $N(\omega) \ge 0$ means $(N(\omega)x, x) \ge 0$ for all $x \in H$. Let

$$N(\omega) = \int_{0}^{1} \lambda E(d\lambda; \omega)$$

be the spectral representation of $N(\omega), \omega \in \Omega$. Let

$$P(\omega) := E((0, 1]; \omega)$$

and for $1 \leq p < \infty$

$$N(\omega)^{1/p} := \int_{0}^{1} \lambda^{1/p} E(d\lambda; \omega), \qquad N(\omega)^{\# 1/p} := \int_{0}^{1} \lambda^{-1/p} E(d\lambda \cap (0, 1]; \omega), \qquad \omega \in \Omega.$$

Moreover, let

$$P: \Omega \ni \omega \to P(\omega),$$
$$N^{1/p}: \Omega \ni \omega \to N(\omega)^{1/p}, \qquad N^{\# 1/p}: \Omega \ni \omega \to N(\omega)^{\# 1/p}.$$

Let \mathscr{A} be the set of all (not necessarily densely defined and not necessarily bounded) linear operators from H to K. Let $1 \leq p < \infty$ and α be a symmetric gauge function. By $\mathscr{L}^p_{\alpha}(Nd\mu)$ we denote the set of all functions $\Phi: \Omega \to \mathscr{A}$ with the following three properties:

 $\Phi(\omega) N(\omega)^{1/p}$ exists and belongs to \mathfrak{S}_{α} for μ -a.a. $\omega \in \Omega$;

 $\Phi N^{1/p}$ is measurable;

 $\|\Phi\|_{p,\alpha} := \left(\int_{\Omega} |\Phi(\omega) N(\omega)^{1/p}|_{\alpha}^{p} \mu(d\omega)\right)^{1/p} < \infty.$

Two functions Φ , $\Psi \in \mathscr{L}^p_{\alpha}(Nd\mu)$ are called *p*-equivalent if $\Phi N^{1/p} = \Psi N^{1/p}$. Let $E_{\alpha}(Nd\mu)$ be the set of all *p*-equivalence classes of functions of $\mathscr{L}^p_{\alpha}(Nd\mu)$. As usual, studying $E_{\alpha}(Nd\mu)$ we work with representatives, i.e. with functions, instead of equivalence classes. The space $E_{\alpha}(Nd\mu)$ is a Banach space under the norm $\|\cdot\|_{p,\alpha}$ (see [3], Theorem 7). Note that if K = C, the space $E_{\alpha}(Nd\mu)$ does not depend on the choice of the symmetric gauge function α . In this case we will simply denote it by $E(Nd\mu)$.

2. The following theorem answers the question under which conditions all elements of $E_{\alpha}(Nd\mu)$ are not only \mathscr{A} -valued but even \mathscr{B} -valued, i.e. under which conditions for each *p*-equivalence class of $E_{\alpha}(Nd\mu)$ there exists a \mathscr{B} -valued function belonging to this class.

THEOREM 1. Let α be a symmetric gauge function and $1 \leq p < \infty$. The following two conditions are equivalent:

(I) All elements of $L^{p}_{a}(Nd\mu)$ are *B*-valued.

(II) There does not exist a set $A \in \mathfrak{A}$ such that

(i) $0 < \mu(A) < \infty$,

(ii) $\Re(N(\omega))$ is not closed for $\omega \in A$.

Proof. The proof is divided into a number of steps.

Step 1. Let I be any subinterval of [0, 1]. Then the function $E(I; \cdot)$ is measurable and there exists a measurable function $x: \Omega \to H$ such that for $\omega \in \Omega$

(1) $\mathbf{x}(\omega) \in \mathscr{R}(E(\mathbf{I}; \omega)),$

(2) $||\mathbf{x}(\omega)|| = 1$ if $E(\mathbf{I}; \omega) \neq 0$.

This result follows from [3], Lemma 1, and [4], Lemma 8.

Step 2. Let $C := \{ \omega \in \Omega : \mathscr{R}(N(\omega)) \text{ is not closed} \}$. Then C belongs to \mathfrak{A} . The range $\mathscr{R}(N(\omega))$ is not closed if and only if $P(\omega) \neq E((k^{-1}, 1]; \omega)$ for all k from the set of positive integers N. Since according to Step 1 the functions P and $E((k^{-1}, 1]; \cdot)$ are measurable, the result follows.

Step 3. (II) \Rightarrow (I). Let $\Phi \in L^p_{\alpha}(N d\mu)$. In [3], the proof of Lemma 6, it was shown that there exists a function $T \in E_{\alpha}(P d\mu)$ such that $\Phi = TN^{\#1/p}$. Note that the elements of $E_{\alpha}(P d\mu)$ are \mathscr{B} -valued and that T is equal to 0 outside a set of σ -finite measure μ . Since the closedness of $\mathscr{R}(N(\omega))$ is equivalent to the boundedness of $N(\omega)^{\#1/p}$ and since the set C of Step 2 is measurable, we are done.

Step 4. Let A be a measurable set having the properties (i) and (ii). Then there exist a measurable subset $B \subseteq A$ and an increasing sequence $\{n_j\}_{j\in N} \subseteq N$ such that $\mu(B) > 0$ and $E((n_{j+1}^{-1}, n_j^{-1}]; \omega) \neq 0$ for all $\omega \in B$ and $j \in N$.

Choose a positive real number ε such that $\mu(A) - \varepsilon > 0$. Set $n_1 := 1$. For $n \in N$, $n > n_1$, let

$$A_n := \{ \omega \in A : E((n^{-1}; n_1^{-1}]; \omega) \neq 0 \}.$$

Since, for $\omega \in \Omega$, $\lim_{n \to \infty} E((0, n^{-1}], \omega) = 0$ with respect to the strong operator topology, we have

$$\bigcup_{n_1+1}^{\infty} A_n = A.$$

Choose $n_2 \in N$, $n_2 > n_1$, so large that

$$\mu\left(\bigcup_{n=n_1+1}^{n_2}A_n\right)>\mu(A)-\frac{\varepsilon}{2}$$

and set

$$B_1:=\bigcup_{n=n_1+1}^{n_2}A_n.$$

Assume that for a certain $k \in N$ we have already constructed an increasing sequence $\{n_i\}_{j=1}^{k+1} \subseteq N$ and a non-increasing sequence $\{B_j\}_{j=1}^k \subseteq \mathfrak{A}$ such that

$$\mu(B_j) > \mu(A) - \sum_{s=1}^j 2^{-s} \varepsilon$$

and

$$E((n_{j+1}^{-1}, n_j^{-1}]; \omega) \neq 0$$
 for $\omega \in B_j, j = 1, ..., k$.

Then using analogous arguments as in the construction of n_2 and B_1 , we can find a positive integer $n_{k+2} > n_{k+1}$ and a measurable set $B_{k+1} \subseteq B_k$ such that

$$\mu(B_{k+1}) > \mu(B_k) - 2^{-(k+1)} \varepsilon$$

and

$$E\left((n_{k+2}^{-1}, n_{k+1}^{-1}]; \omega\right) \neq 0 \quad \text{for } \omega \in B_{k+1}$$

set $B := \bigcap_{k=1}^{\infty} B_k$, we obtain
 $\mu(B) \ge \mu(A) - \varepsilon > 0$

and

If we

$$E((n_{j+1}^{-1}, n_j^{-1}]; \omega) \neq 0$$
 for $\omega \in B$ and $j \in N$.

Step 5. Assume that (II) is not true. Then there exist a measurable set B of positive finite measure μ and a bounded measurable function $x: \Omega \to H$ such that the functional

$$x \to (N(\omega)^{\# 1/p} x, x(\omega))$$

is an unbounded linear functional on $\mathscr{R}(N(\omega))$ if $\omega \in B$, and

$$\mathbf{r}(\omega) = 0 \quad \text{if } \omega \in \Omega \backslash B.$$

If (II) is not true, there exists a measurable set A having properties (i) and (ii). Construct a set B and a sequence $\{n_j\}_{j\in N}$ as in Step 4. Choose a sequence $\{c_j\}_{j\in N}$ of positive real numbers such that

$$\sum_{j=1}^{\infty} c_j^2 < \infty \quad \text{and} \quad \sum_{j=1}^{\infty} n_j^{1/p} c_j^2 = \infty.$$

By Step 1, for $j \in N$ there exists a measurable function $x_j: \Omega \to H$ such that

$$\mathbf{x}_{j}(\omega) \in \mathscr{R}\left(E\left((n_{j+1}^{-1}, n_{j}^{-1}]; \omega\right)\right)$$

and

$$\|\mathbf{x}_{j}(\omega)\| = 1$$
 if $E((n_{j+1}^{-1}, n_{j}^{-1}]; \omega) \neq 0$.

Now set

$$x(\omega) = 0$$
 if $\omega \in \Omega \setminus B$,

and

$$\mathbf{x}(\omega) = \sum_{j=1}^{\infty} c_j \mathbf{x}_j(\omega) \quad \text{if } \omega \in B.$$

Obviously, the function x is measurable. Fix $\omega \in B$ and set

$$y_k := \sum_{j=1}^k c_j x_j(\omega), \quad k \in \mathbb{N}.$$

The sequence $\{y_k\}_{k \in \mathbb{N}}$ is bounded, since

$$||y_k||^2 = \sum_{j=1}^k c_j^2 < \sum_{j=1}^\infty c_j^2 < \infty.$$

(N(\omega)^{\#1/p} y_k, \mathbf{x}(\omega)) = (N(\omega)^{\#1/p} \sum_{j=1}^k c_j \mathbf{x}_j(\omega), \sum_{j=1}^\infty c_j \mathbf{x}_j(\omega))
= \sum_{j=1}^k c_j^2 (N(\omega)^{\#1/p} \mathbf{x}_j(\omega), \mathbf{x}_j(\omega)) \ge \sum_{j=1}^k c_j^2 \mathbf{n}_j^{1/p}

But

tends to ∞ if $k \to \infty$. Hence the linear functional $x \to (N(\omega)^{\# 1/p} x, x(\omega))$ is unbounded if $\omega \in B$.

Step 6. (I) \Rightarrow (II). Obviously, it is enough to prove the result if the dimension of K is 1. So we will assume K = C. If (II) does not hold, we can construct a set B and a function x as in Step 5. For $\omega \in B$ set

$$\Phi(\omega) x := (N(\omega)^{\# 1/p} x, x(\omega)), \qquad x \in \mathscr{R}(N(\omega)^{1/p}),$$

and for $\omega \in \Omega \setminus B$ set $\Phi(\omega) = 0$. Since

$$\int_{\Omega} |\Phi(\omega) N(\omega)^{1/p}|^p \, \mu(d\omega) = \int_{B} ||\mathbf{x}(\omega)||^p \, \mu(d\omega) < \infty,$$

the function Φ belongs to $L^p(Nd\mu)$. But $\Phi(\omega) \notin \mathscr{B}$ if $\omega \in B$; hence (I) does not hold.

COROLLARY. If μ is a σ -finite measure, then all elements of $E_{\alpha}(Nd\mu)$ are *B*-valued if and only if $\mathcal{R}(N(\omega))$ is closed for μ -a.a. $\omega \in \Omega$.

3. In [2], pp. 108–109, Górniak et al. considered a σ -finite measure space $(\Omega, \mathfrak{A}, \nu)$, a measurable function $F'_{\nu}: \Omega \to \mathscr{B}(H)$ such that $F'_{\nu}(\omega) \ge 0$ for $\omega \in \Omega$, and the inner product space L^2_F of all (equivalence classes of) measurable functions x such that

$$\int_{\Omega} \left(F'_{\nu}(\omega) \, \boldsymbol{x}(\omega), \, \boldsymbol{x}(\omega) \right) \boldsymbol{v}(d\omega) < \infty \, .$$

They proved that the closedness of $\mathscr{R}(F'_{\nu}(\omega))$ for ν -a.a. $\omega \in \Omega$ is sufficient for the completeness of L_F^2 and raised the question whether this condition is necessary for the completeness of L_F^2 ; cf. [2], Remark 5.6, and also [5], p. 211. Using the results of Section 1, we can answer this question in the affirmative.

THEOREM 2. The space L_F^2 is complete if and only if $\mathscr{R}(F'_v(\omega))$ is closed for v-a.a. $\omega \in \Omega$.

Proof. First note that we can assume that $F'_{\nu}(\omega) \neq 0$ for all $\omega \in \Omega$. Under this assumption set

 $N(\omega) := |F'_{\nu}(\omega)|^{-1} F'_{\nu}(\omega) \quad \text{and} \quad \mu(d\omega) := |F'_{\nu}(\omega)| \nu(d\omega), \quad \omega \in \Omega.$

The measure μ is σ -finite and $|N(\omega)| = 1$, $\omega \in \Omega$. Clearly, the space L_F^2 does not change if we replace F'_v by N and v by μ . Let K := C and consider the space $L^2(Nd\mu)$. For $x \in L_F^2$ define

$$\Phi(\omega) x := (x, x(\omega)), \quad x \in H, \, \omega \in \Omega.$$

It is not hard to see that the map $x \to \Phi$ is an isometry of L_F^2 onto the set of all \mathscr{B} -valued elements of $L^2(Nd\mu)$. Thus L_F^2 is complete if and only if all elements of $L^2(Nd\mu)$ are \mathscr{B} -valued. Using the Corollary, we obtain the assertion.

17 - PAMS 19.2

L. Klotz

REFERENCES

- [1] I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Non-self-adjoint Operators in Hilbert Space (in Russian), Nauka, Moscow 1965.
- [2] J. Górniak, A. Makagon and A. Weron, An explicit form of dilation theorems for semispectral measures, in: Prediction Theory and Harmonic Analysis. The Pesi Masani Volume, V. Mandrekar and H. Salehi (Eds.), North-Holland Publishing Company, Amsterdam-New York-Oxford 1983, pp. 85-111.
- [3] L. Klotz, Some Banach spaces of measurable operator-valued functions, Probab. Math. Statist. 12 (1991), pp. 85-97.
- [4] Inclusion relations for some B-spaces of operator-valued functions, Math. Nachr. 150 (1991), pp. 119–126.
- [5] A. Makagon and H. Salehi, Notes on infinite dimensional stationary sequences, in: Probability Theory on Vector Spaces IV. Proceedings of a Conference held in Lańcut, Poland, June 10-17, 1987, Lecture Notes in Math. 1391, S. Cambanis and A. Weron (Eds.), Springer, Berlin-Heidelberg-New York 1989, pp. 200-238.

Department of Mathematics University 04109 Leipzig, Germany

Received on 13.11.1998