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Abstract. We obtain estimates of the harmonic measure and the 
expectation of the exit time of a bounded cone for symmetric a-stable 
processes XI in Rd (a~(O,2) ,  d 2 3). This enables us to study the 
asymptotic behaviour of the corresponding Green function of both 
bounded and unbounded cones. We also apply our estimates to the 
problem concerning the exit time tv of the process X, from the 
unbounded cone V of angle AE(O, 7t/2). We namely obtain upper and 
lower bollnds for the constant po = po(d, lu, I) such that for all x E V 
we have F(@) < m for 0 < p < po and EX(7E) = for p > pa. 
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1. Introduction In recent years several results concerning potential theory 
of symmetric a-stable processes have been established (see e.g. [7], [S], [Ill). 
They extend classical potential theory of Brownian motion. Among the new 
results there are sharp estimates of the harmonic measure and Green function 
of symmetric a-stable processes for open bounded sets with C1,' boundary (see 
[15], [lo]). These estimates show that the asymptotic behaviour of Green 
function and the harmonic measure of these smooth sets is the same as for 
a ball. 

On more general Lipschitz domains the situation is more complicated. In 
[7] the boundary Hamack principle as well as some absolute estimates of 
a-harmonic functions in bounded Lipschitz domains have been obtained. The 
absolute estimates of [7] (Lemmas 3 and 5) do not give a full description 
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of asymptotics of a harmonic measure and may be further elaborated for 
particuIar Lipschitz domains. We find it instructive to investigate the case of 
the cone in more detail. The first aim of this paper is to study asymptotics of 
Green function and harmonic measure of symmetric a-stable processes X, in 
Wd for the cone, especially near its vertex ( o I E ( O ,  21, d 2 3). One of the main 
questions is how this asymptotics depends on the opening of the cone. We 
mainly focus on the case when the opening is arbitrarily narrow. This com- 
plements [q where the emphasis is put on comparing a-harmonic functions 
when the domain is fixed. 

We first investigate the harmonic measure and the expectation of the exit 
tinie for. bounded cones and then we obtain estimates of Green function of the 
unbounded and bounded cones. We recall that similar problems have been 
investigated for the Brownian motion (see e.g. [I)). We have to point out that, 
in contrast with the case of open bounded sets with C1ll boundary, our results 
are not sharp. For further discussion we refer to the end of Section 3. 

Another problem we investigate concerns the exit time z, = inf {t > 0 :  
X,# V} of the process from the unbounded cone Vof angle 1. We obtain some 
lower and upper bounds for the critical value po = p,(d,  a, A) such that for 
all X E  V we have Ex(z t )  < co for 0 6 p < po and Ex(z$)  = m for p > p,. The 
problem of finding the constant po has been extensively studied for the 
Brownian motion. In that case Burkholder [9] proved that for p 3 0 and X E  V 
we have F($) < cr, if and only if p < po, where p,  = po (d, A) is defined in 
terms of a certain hypergeometric function. Earlier, Spitzer [17] showed that 
p, = 71/(411) for dimension d = 2. This problem has also been studied for gene- 
ralized cones and conditioned Brownian motion (see [2], 1121). For the two- 
dimensional symmetric E-stable process DeBlassie [I31 expressed po in terms of 
some rather complicated differential operator and obtained some estimates 
of p,. However, the estimates do not seem to provide information about the 
behaviour of p,  when 1 tends to 0. In our paper we treat the case d 2 3 and use 
completely different methods than those used in [13]. While we do not give an 
exact expression for po, we are able to describe its asymptotics in 1 +0. 

2. Preliminaries. For X E  Rd, r > 0 we put B (x, r) = {y E Rd: Iy-xI < r }  
and S (x, r) = ( y  E Rd: ly - xl = r) .  The surface area of the (d - 1)-dimensional 
sphere S(0,  I) c Rd will be denoted by cod = 2ndi2/T(d/2). For any subset 
A c Rd, we denote its complement by A', its closure by 2, its interior by int (A)  
and its boundary by aA. For t > 0 and A c Rd we write tA = (tx: X E  A) 
and A/t = t- ' A. Furthermore, we write dist ( A ,  B) = inf { J x  - yl: x E A,  y E B),  
diam (A) = sup {lx- yl: x ,  y~ A )  and B A  (x)  = dist ( x ,  aA) for A, 3 c Rd and 
x € R d .  We write m(A) for the d-dimensional Lebesgue measure of the set 
A c R4 B(Rd) denotes the Bore1 c-field of Rd. 
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The notation c = c (x, y,  z) means that c is a constant depending only on 
x, y ,  z. Constants are always numbers in (0, m). 

For the rest of the paper let 01 E (0, 2) and d 2 3. By (X,, 'Px) we denote the 
standard [5] rotation invariant rsymmetric") a-stable, p-valued Levy process 
(i.e. homogeneous, with independent increments), with index of stability a and 
the characteristic function of the form 

EO exp (igXt) = exp ( - t ltIa) , 6 @, t 2 0- 

As usual, Ex denotes the expectation with respect to the distribution Px of the 
process starting from x € R d .  We always assume that sample paths of X, are 
right-cantinuous and have left-hand limits almost surely. (X,, Px)  is a Markov 
process with transition probabilities given by P,(x, A) = PX(X,€A) and is 
strong Markov with respect to the so-called "standard filtration" and quasi- 
-left-continuous on [0, co) (see [5]). The transition density of X, will be de- 
noted by p(t, x ,  y). For the sake of brevity we will refer to this process as to 
"symmetric a-stable". The LCvy measure v of this process is of the form 

Y (dx) = Cd4rr[~I-a-d dx, where CdVa = a2=-l r((d + ~ 1 ) / 2 ) n - ~ / ~  r-' (1 - (4)) q 

For A E 3 (Rd),  we define TA = inf { t > 0: X, E A'), the first exit h e  from A. 
It is well known that zt, and t " ~ ,  (for t > 0) have the same law under P O .  

Let f 2 0 be a Bore1 measurable function on Rd. We say that f is a- 
harmonic in an open set D c Rd if 

for every bounded open set A with the closure A contained in D. 
We define the harmonic measure w$ (for D, in x, with respect to X) 

by the formula cog (A) = Px (X(zD) E A), where x E Rd; A, D E ( R ~ ) .  When D 
is unbounded, by the usual convention, P"(x (z,) E A) is understood as 

- 

Px(X (7,) E A; ZD < m). It is clear that supp (a$) c Dc. 
The Riesz kernel is defined by 

m 

u(x, Y) = 1 ~ ( t ,  x, y)dt, x, yERd. 
0 

According to [5 ]  we have u(x, y) = A,,, I~-yl"-~,  where 

Let D be an open set. We define 

and call GD (x, y) the Green function for D. Additionally, we set GD (x, y) = 0 if ' 

x E Dc or y E Dc. It is well known that GD (x, y) 2 0 and G,(X, y) = GD ( y, x) for 

9 - PAMS 19.2 
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x, y € R d .  If A c D is an open bounded set, then we have 

(2.1) G,(x, y) = 5 GD(u, y)do;(u) for X E A ,  y $ K .  
AC 

In particular, GD(., y) is u-harmonic in D\{y). It satisfies also the following 
scaling property: 

GD(., 4 )  is continuous in the extended sense as a mapping from D x D into 
[0, m]. If Dl c D, are open sets, then we have GD, (x, y )  < GD, (x, y) for every 
x ,  YEP. 

By PP we denote the semigroup generated by the process (X,) killed on 
exiting D. For t > 0 and x, y ED let p,(t, x, y) be the transition density for the 
process, i.e. 

for any nonnegative Borel J We have pD(t, x, y) = p, (t, y, x) and pD (t, x, y) < 
p ( t ,  x ,  y )  for all t > O and all x,  ED. We also have 

We denote the Green operator for D by G,. We have 

for nonnegative Borel functions J: 
The potential theory of symmetric a-stable processes is enriched by the 

fact that the density of the harmonic measure for a ball is given by an explicit 
formula. Let x E B(0,  r). The harmonic measure r ~ " , ~ , ~ ,  for B (0, r) has the 
density function P,(x, -) (with respect to the Lebesgue measure) given by the 
formula 

Lo for 1y1 < r ,  

where ctf = r ( d / 2 )  x - ~ ~ ~ - ~  sin (xol/2) (see e.g. [16] or [6]) .  
More generally, it is proved in [7J that if D is a bounded open set with the 

outer cone property and x ED, then the harmonic measure oz is concentrated 
on int (Dc) and is absolutely continuous with respect to the Lebesgue measure 
on Dc. The corresponding density function will be denoted by f,"(z), x E D, 
z E int (D?. According to [7], f,X(z) is Cw in (x, Z)  E D x int (03; see also (2.2) 
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below. Similarly to the Green function, also f,"(z) satisfies a scaling property. 
We have 

f t D ( z ) = t - d f 8 ( ~ / t ) ,  t > O ,  x ~ t D ,  z~ in t{ tD~) .  

Assume now that D c Rd is an open nonempty bounded set, E E (Rd) and 
dist(E, D) > 0. The foIlowing formula [14j, exhibiting the relation between 
Green function, Lkvy measure and harmonic measure, will be useful in our 
further considerations: 

We note that if og(dD) = 0 for XED, then we can replace the assumption 
dist(E, D) > 0 by E c Dc. In particular, this applies to open bounded sets 
D with the outer cone property. 

We now briefly recall known estimates of Green function and harmonic 
measure for bounded open sets with a C1~' boundary. At first, let us recall the 
definition of these sets (cf. [18]). 

A function F: Rd -3 R is of class C1.l if its derivative F' satisfies IF'(x)- 
F' (y)l < k Ix-yl, x, y E R ~ ,  with a constant A. We say that a bounded open set 
D c Rd has a C1v1 boundary if for each X E ~ D  there are: a C1ql function 
F X.  . Rd-l + R (with A =  A (Dl), an orthonormal coordinate system CS, and 
a constant q = q{D) such that if y = (y,, . . . , y,) in CS,  coordinates, then 

It  is clear that a C1ll set D satisfies the outer cone property, and thus its 
harmonic measure has the density function on int(Dc). 

It is proved in [I51 that there exist constants c ,  = c,(D, a) and 
c2 = c2 (D, a) such that for any x, y E D 

< min 
1 d$2 a2 ( Y ) )  

I X - Y I ~  

This result and formula (2.2) give the following estimates of the harmonic 
measure for D. There exist constants c1 = c, (D, a) and e ,  = c2 (D, a) such that 
for any x E D and z E int (D3 

This inequality is proved in [lo]. 
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As an application of (2.3) one also obtains the inequality 

(2.5) C, daj2 (x) < Ex ( T ~ )  < c2 dQIZ (x), x E D, 

where c,  = c, ( D ,  mj and c2 = c2 ( D ,  a) (see [15]). 
In this paper we give some analogues of the inequalities (2.3H2.5) for 

bounded cones. 
The paper is organized as follows. In Section 3 we obtain estimates for the 

harmonic measure and the expectation of the exit time for bounded cones. This 
is the most technical part of the work. The results proved in the rest of the 
paper-are consequences of the estimates from Section 3. The most important 
results in Section 3 are upper and lower bounds for the harmonic measure 
(Theorems 3.12 and 3.18) and corresponding upper and lower bounds for the 
expectation of the exit time (Theorems 3.13 and 3.17). 

In Section 4 we get estimates of Green function of the unbounded and 
bounded cones (Theorems 4.6 and 4.7). Of independent interest may be Propo- 
sition 4.4 which may be treated as the local version of the upper bound es- 
timate in the inequality (2.3). Section 5 concerns the exit time T, from the 
unbounded cone V of angle A. In the section we obtain bounds for the critical 
value po = po(d, a, A) such that for all X E  V we have ES(z$) < KC for 
0 6 p < po and Ex(r+) = cr, for p > po. 

3. Harmonic measure. Let us introduce spherical coordinates (Q, q,, . . . , 
9,- ,) with origin 0, where Q E LO, a), cpl , . . . , rpa- E [0, TI, and ip,- E LO, 24.  
For the rest of the paper fix AE(O, ~ / 2 )  and r > 0. We define the unbounded 
cone 

and the bounded cone 

and we call 1 the angle of C and T.: It is clear that C is an open bounded set 
with the outer cone property so, as pointed out in the Preliminaries, for x E C 
the harmonic measure wg is concentrated on int (C? and has there a density 
function fe (z) which is Cm in (x, Z) E C x int (Cc). 

Our main aim in this section is to obtain estimates of f,"(z) (when x E C/2, 
z E V\C) and to see how they depend on the opening of the cone. As mentioned 
in the Introduction we are especially interested in the case when the opening of 
the cone is "narrow7'. Our methods elaborate those used in 171 (see Lemmas 3 
and 5 therein). By introducing the measures qil,..,,ik (x, B) and p, (x, B) below 
we are able to obtain upper bound estimates for fe (-) which in case of narrow 
cones are more precise than those which can be deduced from [7]. 

For ~ E Z  let us put 
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and 
An= Cn\Cn-l = {x=(Q, pl ,  ..., qd-l): ~ ~ [ 2 " - ~ r , 2 " r ) ,  q l ~ [ O , R ) } .  

B and B, ( ~ E Z )  will denote sets belonging to B(Rd). 
For r n ~ Z  and X E  A, let us define 

We write dptx, y) for p(x, dy),  p ( x ,  3) is the probability of the event that the 
process starting from X E  A, jumps directly to B when leaving C,+ We can 
think' of p(x, 3)  as the probability of a "single jump". We shall mainly be 
interested in sets 3 ,  B, c- K This is reflected in the following definition. 

 or i~ Z and X E  V we set qi(x, B) = p ( x ,  BnAi) and by induction, for 
 EN, il, ..., i k € Z  and XEV, we set 

qil, ..., i k ( ~ ,  B) = J qiZ ,..., i k C ~ ,  B ) ~ P ( x ,  Y ) .  
Ai 

We may think of q,,,,..,, (x, B) as the probability of the event that the process 
starting from X E  A, goes to BnAi, after precisely k successive '?jumps" to 
Ail, 4 2 3  Aik- 

For  EN, m , n ~ Z  we write 

It is easy to notice that 

LEMMA 3.1. Let  EN, nz, ~ E Z ,  XEA,, B, c A, and (il, ..., ik)$Jk(m, n). 
Then we have 

qia ..... ik(x, Bnl = 0- 

P r o  of. The proof is by induction on k. For k = 1 we have (i,) $ 3, (m, n) if 
and only if i1 # n or i, < m+2. When i, # n, we have qil(x, B,) = 
p(x, BnnAil) = 0. Xi, =nand i1 < m+2, thenqil(x, B,) = P"(X(T,+,)EB,) = 0 
because B, c C, c C, + ,. 

Assuming that lemma holds for k, we will prove it for k +  1. Suppose that 
(il, ..., ik+l)#Jk+l(m, n). Then i1 < m+2 or (i,, ..., ik+,)$Jk(il, n). We have 

qii ...., i k + l  (x) B) = 1 qi2 ,..., i k + 1  (Y, B ) ~ P ( x ,  Y ) .  
As 1 

If il < m + 2, then Ai, c C,+ and, consequently, p (x, Ail) = PX (X (T,.-~+ E Ail) 
= 0. Thus the integral vanishes. When il 3 rn +2 and (i,, . . . , i,+ ,) $3, (i,, n), 
our assumption gives qi ,,..., i,,l (y, B) = 0 for Y E  Ail, which completes 
the proof. 

LEMMA 3.2. Let k E N, na, n E Z. If n - m < 2k, then Jk (m, n) is empty. For 

n - m 2 2k the number of elements of J,(m, n) equals (n-y~:-l). 
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Proof.  The first part of the lemma follows easily from the definition of 
Jk(m,  n). The second part will be proved by induction on k. If k = 1 and 
n - m  2 2, the assertion is easy. Assume that lemma holds for k and all 
n - m  2 2k. Let n-rn 2 2 ( k + I ) .  We have 

n - 2 k  

Jk+ l (m,  n) = U ((i,, ..., i k + , ) ~ Z k + l :  i l  = j ,  liz, ..., i k + l ) ~ J k ( j ,  n)) .  
j = m + 2  

Hence 

The last sum equals (n-mhk-2) and the lemma follows. 

For kg N and x E V let us define 

and a ( x ,  B) = z:'=, pk (x, B). We will write da (x, y) for ~ ( x ,  dy) .  Heuristically, 
p, (x, 3) is the probability of the event that the process starting from x E V goes 
to BnV after precisely k 'Ijumps" of the considered type and a(x,  B) is the 
probability that the process starting from x E V visits Bn  V during these 
LC' jumps". 

Now we are going to find a formula which expresses the harmonic mea- 
sure Px (X (73 E -) in terms of a (x, -). 

LEMMA 3.3. If X E  C-I and B1 c C 1 ,  then the following equality holds: 

Proof.  For k € N  we have 

Notice that qi l,..., ikf (y, B1) = 0 for y E V\C- Hence p,,  , (x, B,) equals 

Therefore 
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LEMMA 3.4; Let x E C - and B1 c Al.  Then we have the foIIowing formula: 

P ~ ( x ( T ~ ) E B ~ )  = a(x, B1)+  J PY(X(7C)~31)dc(x, Y). 
A0 

Proof. At first let X E A - ~ .  By Lernma3.2,Jk(-1, 0)is empty for all  EN. 
Hence from Lemma 3.1 we get p,(x, A,) = 0 for  EN, Consequently, 
a(x, A,,) = 0 and the integral in the assertion of the lemma vanishes. Let us 
recall that C = Co. By Lemma 3.2, if  EN and k 2 2, then J,(l, 1) is empty, 
so 31) = 0. Hence a(& El )  = pi(x, B1) = 41 ( x ,  31) = P x ( X ( ~ C o ) ~  
which proves the lemma for x E A- ,. 

New,- let ~ E Z ,  rn < - 1, and assume that the lemma is true for 
x E A- 1~ . . . vA,. We will show that the lemma holds for x E A,- ,. By the 
strong Markov property we obtain for x E A,- 

The first term in the last sum equals 

The second one is equal to 

The third term equals 

I11 = 1 PY ( X  (fC) E B1) d p  (x, y). 
c -  ,\cm 

Noticing that C- l\Cm = uL+, A,, we infer by induction that 

By Lemma 3.3 we get 

Also by Lemma 3.3 we have 



Consequently, 

II+V = j PZ(X(~, )~B1)da(x ,  z). 
A0 

Since I +IV = a (x ,  B1) ,  the proof is complete. 

Having Lemma 3.4 it turns out that in order to estimate PX (X (2,) E - )  it 
suffices to have an appropriate estimate for a ( x ,  -). We give at first some simple 
inequalities for the probability of the "single jump" p(x, -1. 

LEMMA 3.5. Let rn, ~ E Z ,  X E A , ,  3, c A, and n - m a  3. Then we have 

b ~  d~ a, Ad- l 
p ( x ¶ B n ) ~ ~ J >  and p ( x , A n ) G m 3  

Bn I Y ~  
where 

4 22d + 3a ~ 5 ~ - ~  
bl = ~ + Q , z  and al = (d-1)3d+"/Z ' 

Proof. Since C,, , c B(0, 2"" r), we easily get 

For ~ E B ,  we have Ix-yl 2 3ly1/4 and ly12-22m+2r2 2 2 2 " - 2 r 2 - 2 2 m + 2  r 2 
22n-43r2. It follows that 

which establishes the first inequality in the lemma. Consequently, 

which proves the lemma. 
LEMMA 3.6. Let m ,  ~ E Z ,  X E A , ,  B,, c An and n - m  2 2. Then we have 
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where 

Proof, It is not difficult to check that al < az, bl < 6 ,  and 
Ln I Y I - ~ ~ J I  < pn(Bn). Hence for n-rn 2 3 we see that Lemma 3.6 follows from 
Lemma 3.5. What remains it is to consider the case n-na = 2. 

As in the proof of Lemma 3.5 we get 

For y E 3, we have Ix -yl 2 ly1/2 and Iy1+2"-' r 2 2"r. Hence 

It follows that 

which completes the proof. 

LEMMA 3.7. Let m , n ~ Z ,  n - m 2 2 ,  XEA,, B,c A,. Then we have 

C(X, B,) < cl lxIa-' d y  
~ ( l y l - 2 n - l  rp2 jyld+f,2-.' 

where E = min(a/2, ul Id-'),  u1 = C: cod- 2d+3at21n(2)(d- l ) - l ( l  -a/2)-' and 
C1 = C 1  (dl a). 

Both the constants E and ul are fixed in the sequel. The constant E has 
basic significance in this paper. 

P r o  of. Let k E N  and (i,, . . . , i,) E &(my n). At first we will prove that 

13-11 qi ,,..., i k ( x ,  B,) < 6, (a2Ad-1)k-1 2(m-n1q I% (Bn), 

where a,, b2 and p,, are defined in Lemma 3.6. 



Let k = 1. Since ( i l )  E Jl (m, n), we have I, = n and qi, (x, B,) = p ( x ,  B,). 
Hence the inequality (3.1) follows from Lemma 3.6. Now let k 2 2. By Lem- 
ma 3.6 and by induction we get 

and (3.1) follows. 
Let us recall that for 2k > n-m the set Jk(m, n) is empty, which yields 

pk (x, An) = 0 for 2k > n -  m. Consequently, by Lemmas 3.1 and 3.2 and for- 
mula (311) we get 

l(n-m)121 n - m - k - l  
d b, p, (B,) 2'" - "1" C ( k-1 

) (a2 A d - l r - 1 .  
k = l  

The last sum is less than 

The last expression equals 2(n-m)"1ad-1 since 16 = a2 ln (2). 
Now, let us assume that er ,  Ad-' < a/2, i.e. E = u1 Ad-'. It follows that 

CT (X , B,) < b2 pn (B,) 2(, -mi('-a) . For Y E  B, we have 2"-" 2 (yl/(2 [xi), and there- 
fore 2 ( n  -m) (e -a )  < 2" Iyl"" ]XI"-". For y EB, we also have 2"-' r < (yl. Hence 

which proves the lemma when E = u1 A d - l .  

Now we will prove that the lemma holds when 4 2  d ea, Ad-', i.e. E = a/2. 
This follows from estimates of the harmonic measure of open bounded sets 
with C1sl boundary and is independent of our preceding arguments. In fact, we 
will prove that the lemma is always true if we replace E by a/2 (recall that 
A E (0, ~ / 2 ) ) .  

Let x, = (Q, cpl, ..., ( P ~ - ~ )  be a point such that Q = 1/4, q, = R and 
consider D = B(0 ,  1)\B (x,, 1/4); D is an open bounded set with C1pl boundary 
satisfying 0 E i3D and Cn- c 2"-' rD.  write t = 2"-' r and let y E B,\aC,- ;. 
By (2.4) and the scaling property of J;;; we obtain 
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where bg = b3 ( D ,  u). We have 6, ( y / t )  = (lyl-2"-' r)/ t  and Iy -xl 2 (y)/2. 
Therefore 

We have 

Px (X (T=" - ,) E B.) = j fEn - , ( y) dy and (x, 8.1 8 Px ( X  (kn - ,) E B.). 
8" 

It follows that the lemma is true for E = u/2. 

Having Lemmas 3.4 -and 3.7 we can now formulate estimates of the har- 
monic measure Px ( X  (zc) E . ). 

LEMMA 3.8. Let X E C - ~  and B1 c Al .  Then the following inequality holds: 

dy '" (X(r,)~Bl) G '2 lxla-'f (lyl - r y / 2  ,yld+a,2 5 
where c2 = c2 ( d ,  a). 

Proof.  By the previous lemma we obtain 

Since PY (X (T~) fB1) G Py (X (ze(o,,)) E El), the expression on the right-hand 
side of (3.2) is bounded from above by 

Let us notice that for YE A, and Z E  B,  we have r-ly) = 
dist(y, B'(0, r)) < ly-zl, l/lyI < 4/12! and r+lyl < lzl+r. Therefore (3.3) is less 
than or equal to 

P 4d+a/21Xla-~ 1 1 
1 a IL ,ED (lyl - r/2y/2 12 - yld-Q/2 d~ ( l z l - ry /2  lzld+a,2 ~ I Z  . 

Now we will show that for all z€B1 the integral 

S dv 
A. (I yI - r/2)a12 I Z  -yld-a/2 

is bounded by a constant which does not depend on z. To obtain this let us put 
Ab = {y E A, : ]yl < 3r/4) and A: = A,\A',. For y E Ab and z E B1 we have 
ly -21 2 r/4. Hence 



Let us notice that A'd c B(O, r) c B ( z ,  3r) and lyl -r/2 >, r/4 for Y E  Ax. Con- 
sequently, 

Finally, from Lemmas 3.4 and 3.7 and the above estimates it follows that 

Using estimates of the harmonic measure proved in the previous lemma 
and the formula (2.2) we will get estimates of the expectation of the exit time z,. 

PROPOSITION 3-9. For a22 X E  C/2 we have 

Proof.  Using basic properties of Green operator (see Section 2) we obtain 
a well-known formula 

Let us put A; = { Z E A ~ :  lzl > 3r/2}. For ZEA; and ~ E C  we have ly-z] < 2121 
and Iy-zl < Iz(+ r < 5 (121 - r). By (2.2) it follows that 

C d , u  
P*(X(TC)€~A;) = I Gc(x. Y) I -rlti+~ dzdy 

C A; 

On the other hand, by Lemma 3.8 we obtain 

and the proposition follows. 

Using Lemma 3.8 and Proposition 3.9 with again formula (2.2) we can 
estimate the density of the harmonic measure f," (z) for all z E V\C and x E C/2. 
This gives an extension of Lemma 3.8. 

PROPOSITION 3.10. Let x E C/2 and z E V\C. The following inequaiity holds: 
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Proof.  For Z E  Al the inequality follows directly from Lemma 3.8 with 
c4 = c2. NOW Iet B c V\C,. By formula (2.2) we have 

Let us notice that for z E V\C1 and y E C we have (yl < 1z[/2 and, consequently, 
Iy-zl 2 lzl/2. Therefore (3.4) is bounded from above by 

Gc(x, ~ ) d y 2 ~ + '  Cd,& 1 I z I - ~ - ' ~ z  = 2d+" Cd,crEr(~C) I z I - ~ - ~ ~ Z .  
C B B 

Hence Prciposition 3.10 follows from Proposition 3.9. 

Until now we were concerned with estimates of the density fg(z) of the 
harmonic measure in terms of the distance 1x1 from x to the edge 0 of the cone. 
Our next aim is to get estimates of ft(z)  which depend also on &(x) - the 
distance from x to the boundary of the cone. 

Let E l  be a fixed line through 0, perpendicular to the half-line 
hl = {x = (Q, q l ,  .. ., rpd-l): q1 = 0). Fix a point xo from the line such that 
Ixol = 1/2. Let D be a domain with C',' boundary such that 

and the line segment Ox, c aD. Then take E = B(0, l)\D; E is an open 
bounded set with C1sl boundary. The density of the harmonic measure for 
E satisfies the following inequality (see (2.4)): 

The constant c5 depends on E and a, but since E is fixed in each Rd, we write 
c5 = c5 (d, a). 

Let y ~ d v  y # 0, and denote by I ,  the line determined by 0 and y. 
Consider a line I ,  through y, perpendicular to I ,  and lying in the same plane as 
l 2  and hl. The point y divides 1, into two half-lines. One of them, which will be 
denoted by h,, is contained in Vc.  By h ,  denote a half-line beginning at 0, 
parallel to E ,  and with the same direction as h2. 

Let T, be a fmed rotation around 0 mapping x, to y/(2 lyl) and h1 to h,. It 
follows that the line segment 0 (y/2 lyl) c d (T,, E) and T, D c P, so we have 
VnB(0, 1) c T, E. 

For x E T, E and z E int ((T, E)') we have 
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Let us define a set E ( m ,  y) = 2"rT,E for vn~Z and y ~ a K  y # 0. For 
abbreviation we put t = 2" r. It is clear that C, = V n B ( 0 ,  t )  c E (m, y )  c 

B(0 ,  t), and aIso the line segment 0 ,  tyl(2lyl) c JE(m,  y). Now, let x ~ E ( m ,  y) 
and z E V\B (0, t). By the scaling property of the density of the harmonic mea- 
sure and (3.5) we obtain 

Notice that 'for all B c Rd, s > 0, and x €Rd  we have BsB ( S X )  = sSB (x). Thus 
dT,B (x / t )  = SE(m,y) (x)/t- For z E V n  BE (0 , t )  we also have dTYE (z/t) = ( I z I  - t)it 
and 1 + G$,"E(z/t) >, (2t)-"I2 1 ~ 1 4 1 ~ .  Consequently, we get 

where x E E (m, y) and z E V\B (0, 2m r). 

LEMMA 3.11. Let k ,  ~ E Z ,  m <  -1 ,  and XEA,, B c  V\Cm+l, k . 2 ~ ~ 2 .  
Then tkere exist constants c6 = c6(d, a) and c7 = c7 ( d ,  a)  such that 

c(j 1~1"'~ ag2 (x )  C7 Ad- l (x) 
B ( I z I  - 2"'+ 1 r)"' jZld+a/2 dz and P(x '  ' 2(k-m)a 1,442 ' 

P r o  of. Let x* be such that Ix -x*( = S y  (x). Of course, we have 
0 < Ix*] c 1x1 < 2"r and 0,  2"rx*/lx*l c aE (m+ 1, x*). Therefore B E ( , + l , f l l ( ~ )  = 
lx - x*l = Sc (x). From (3.6) it follows that 

where Z E  V\Cm+,. The first inequality in the assertion of the lemma follows 
directly from (3.7). It suffices to notice that p ( x ,  3) = j, fcm+l (z)  dz, 2"-' r < 1x1 
and lzl < 2 ] x  -21 for z E B. The second inequality follows from the first one. 
Indeed, we have 

cg I x [ ' / ~  8Z2 (x)  c6 IxlaI2 8z2 (x)  (2k - 1 ry/2 

~ ( ' 9  ' 1 ( 1 2 1  - 2m+ 1 ,.y4/2 izld+u/2 d2 < S dz.  
~k (2'-' r y  Ak(I~I-2k-1 $1' lzld 

In the proof of Lemma 3.6 it was shown that the last integral is bounded from 
above by wd- (d- I)-' (1 - 01/2)-' Ad-'. We also have  XI"/^ < ru/(2-"" lxlU/'), 
and the second inequality in the lemma follows. 

Now we are able to prove our main upper bound estimate for the density 
of the harmonic measure of the bounded cone. 
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THEOREM 3.12. Let x E C/2 and z E V\C. Then we have 

82' (x)  Ixlai2 - E  rE 
f;(') a @ 2 ( z ) l z l d + a / 2  7 

where c = c ( d ,  a). 

Proof. Let m E 2, m G - 1, x E A, and 3 c V\C. By the strong Markov 
property we get 

P" ( X  (Q) E B) = PX (X (zc, + ,) E B) + E X  ( P ~ ( ~ ~ ~ +  (X (TC) E 3); X (T ~ ,  , ,) f AC,) 

' + F ( ~ X P G + I )  ( x ( r c ) f B ) ;  x & ~ + ~ ) E A ~ )  = I+II+IlI. 
k = m + 2  

We have 1 ~ 1 " ~ ~  < IxlaiZp"r" and lz1 -2m+1 r 2 SC (2)  for z E V\C. Therefore, by 
Lemma 3.11 we obtain 

c6 lxlY2-' rE Sg2 ( x )  ,. 
I = p ( x ,  3) 692 l Z l d + t " f  

Now we will estimate 11. Noticing that if m = - 1, then I1 vanishes, we 
assume that m 4 -2. In order. to estimate I1 we will divide it into two parts. 
We have 

For z E V\C1 and y E A, we obtain 

To get the last inequality it remains to notice that Iz-yl > 1z1/2. Consequently, 

Noticing that 2"" $ 2aIxla-9E."-a we obtain b y  Lemma 3.11 

From Lemma 3.1 1 and the inequality fz (z )  < fgc,,r, (z )  (for z E V\C) we get 

For Y E  A, and Z E  Al we have r + lyl < lzl + r ,  1/lyl $ 4/lzl and r-  lyl = 
dist ( y ,  Bc (0, r))  $ ]y -z]. For m < - 2 we also have lyl -2"" r 2 lyl -r/2. 
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Therefore, the right-hand side of (3.11) is bounded from above by 

In the proof of Lemma 3.8 it was shown that there exists a constant 
c8 = cg ( d ,  ct) such that 

Hence we obtain 

According to (3.10) and the last inequality there exists a constant cg = cg (d, a) 
such that 

dz 
11 = IV + v < cg sg2 ( x )  Ixl"lZ -" [ ,322 (2)  lzld +a'2.  

Our next aim is to estimate 111. Let us notice that if in 2 -2, then 111 
vanishes, Therefore we will assume that m < -3. We have 

For y E A,, rn + 2 < k < - 1 and z E V\C we get by Proposition 3.10 

The last inequality follows from the fact that lyl < 2k r for y E A,. According to 
(3.13) and Lemma 3.11 we get 

- 1 2 k k - E )  ra 
4 

'1' < Z I SSpt (z)  l r ld+u ,Z  k = m + 2  AkB 
dzdp(x1 Y )  

c4 ra dz - 1 

= S C 2k(a-E)p(x ,  A,) 
(2) Izld+a/2 k = m + 2  

~ ~ c , P k " ' ~  6 $ 2 ( ~ ) 1  dz - 1 
d C 2k(a  - 4 2 ( m  - , 

I x [ ~ ~ ~  (2) I z ~ ~ + ~ / ~  k = m + 2  

The last sum equals 
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It is not difficult to see that 2"- 1 2 min(2"l2 - 1, a2 Ad-'), where a2 is defined 
in Lemma 3.6 and is such that u, = a, ln(2). Consequently, the right-hand side 
of (3.14) is bounded from above by 

where c,, = c , ,  (d, a). It follows that 

which with (3.81, (3.9) and (3.12) proves the theorem. 

Having Theorem 3.12 we can strengthen the estimate of the expectation of 
zc which was given in Proposition 3.9. The proof is almost the same as the 
proof of Proposition 3.9, so it is omitted. 

THEOREM 3.13. There exists a constant c = c (d, u) such that for a22 x E C/2 

Now our airn is to obtain lower bound estimates of Ex (z,) and f,"(z). As in 
the proof of the upper bound estimate we will need some simple inequalities for 
a probability of a single "jump" p (JC, .). For m E Z let us put 

LEMMA 3.14. Let m, n E 2, n - m 2 2, x E A, and En c A,. Then we have 

where bl = ~ f 2 ~ - " 3 - ~ - ~ s i n " A  and a, = c~wd-,1n(2)2 3dj2-2 3-d-a X - d - a + 2  

(d - I)-'. If x €A",, then we have 

P r o  of. Let r, = 2"-' r sin A. At first let us consider the case dV (x) < r,. 
Let x* be the point on aV such that Ix-x*l = dv(x). It is easy to see that the 
half-line 1 = {z = (Q, rpl , . . . , cpd- (PI = 0) is contained in the plane deter- 
mined by points 0, x and x*. Denote by x" the point of intersection of 1 and the 
line determined by x, x*. Let x' be the point within the line segment such 
that Ix' - x*J = r,. Since 

12-x*l = IZlsinA 2 1x1 sinA2 2"-l rsinR > r,, 
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such a point exists and is easy to notice that S,(x') = (x'-x*l. Consequently, 
x E B (x', rm) c K If y y~ B ( X I ,  rm), then 

so we also have B ( x l ,  r 3  c C,,,. It follows that 

For Z E A ,  we have Iz-xl < lz/+lxl < 3]zf /2,  Iz-x'l < lz-xl +lx-x'] < 2 Izl 
and r,-- lx - x'l = 6 )  (x). Therefore 

p(x ,  BJ 2 4 r z 2  2d-a3-d8 f2  (x)  j I z I - ~ - '  dz .  
E n  

Notice that for z E A, we have rz2 lzl-" 2 2- 3a12 1x1 2(m-n1a sinai2 A. Hence 

(3.15) p (x, B,,) 3 c:2d-5at2 3-d S g 2  (x )  I x ~ - ~ ~ ~  2(m-n)x sina12 ,I j dz. 
Bn 

As in Lemma 3.5 we get 

Since sin q 2 (23i2/n) (P for (P E [O,n/4], we obtain 

Noticing that sinai2 A 2 2 a ~ - a A x  we get from (3.15) 

Now let us consider the case 6, ( x )  2 r,. When y E B ( x ,  r,), we have 
lyf < 1x1 +rm < 2"" r and, consequently, B ( x ,  r,) c C,, ,. Hence 

Since for z E A, we have Iz- xl < 3 12112 and rk lzl-" 2 2(m-n)a-2a sina A, we get 

(3.18) p(x ,  B,) 2 ~ % r " , 2 ~ ' " 3 - ~ - "  1 J ~ [ - ~ - " d z  
B,  

d2d-a 3-6-uga 2 2 cu J ( x )  I x ~ - " / ~  2('"--"sinal j l ~ l - ~ d z  
B n  

Hence, replacing sinaA by 2"n-",Ia we obtain 
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Consequently, (3.15), (3.16), (3.18) and (3.19) give the first two inequalities in the 
lemma. 

Let us notice that if x E xm, then Sy ( x )  2 1x1 sin (4'2) >, 2"- r sin (A/2) 2 r,,,. 
Hence the third inequality in the lemma follows from (3.17) in a similar way as 
the inequality (3.18). To get the fourth inequality notice that for X E  xm and 
ZE& we have 

and from (3.17) we finally get 

LEMMA 3.15. Let rn, n EZ, n - pn 2 2, x E A, and 3, c A,.   hen we have 

D(X, B,) 2 cl 6g2 (x) I x [ ~ / ~ - ' '  J I z I - ~ - ~ + " ~ z ,  
an 

where = u 2 ~ d - l + a  - C d W  - ln(2)23d/2-5 5(2-d-a)/2n-d-af 2 (A- 1)-1 
y U 2 -  a d I. 

c l  = 2-"al b1/(12a2) (al, a2,  b1 are the same as is Lemma 3.14). 

Similarly to E and ul the constants E' and u2 are fixed in the whole 
paper. Let us notice that u, = 5a2/8. Easy computations show that 
c: ad- (d - 1)- ' < ~ / ( 2  &), u2 (7~/2)~-"" < a/(4 A)? and hence ef < a/?. 

Pro  of. At first we will prove that for x EX,, k E N and (i,, . . . , ik) E 

Jk (m, n) we have 

For k = 1 we have i1 = n and qi, (x, Bn) = p(x, B,), so (3.20) follows from the 
third inequality in Lemma 3.14. Now let k > 2. Let us recall that if (i,, . . . , ik) E 
Jk (m, n), then n- il 2 2 and (i2, . . . , ik) E Jk- (il, n). By the forth inequality in 
Lemma 3.14 and by induction we get 

which proves (3.20). 
Now we are going to prove that for x E A,, k g  N and (i,, . . . , ik) E Jk (m,  n) 

we have 
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For k = 1 we have qi , (x ,  Bn) = p(x, B,,) and (3.21) follows from the first in- 
equality in Lemma 3.14 and an easy inequality a, < a,. Let k > 2. By the 
second inequality in Lemma 3.14 and by (3.20) we obtain 

and (3.21) follows. Consequently, for X E  A, 

Let us put c = azid-l+I1 and w = [(n - m - 2)/4]. We have [(n - m)/2] 3 2w + 1 
and n-rn 3 4w+2. Hence the last sum in (3.22) is bounded from below by 

It is not d=cult to show that 

for 1 < w and E ,  w E Nu(0). According to the remark before the proof we have 
c = id-'+' 8u2/5 < 1/2. Hence 

Since c < 112, it is easy to notice that 1+3c/2 2 (1+5c/8I2 and 
(1 + 5c/8) 2 25c18. We also have E' = 5c/8, 4w 2 n - m - 6 and (1 + 5/16)6 < 6. 
Consequently, the last sum in (3.22) is bounded from below by 

It is clear that 2"-" < 2 1zl/lxl for z E A,, x E A, which yields 

2(n-m)(~'-a) > 2-a a -E  , 1 1  '(zle'-". 

Thus the lemma follows from (3.22) h d  (3.23). 
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Let us notice that apart from its vertex the bounded cone C has other 
"singularities" at aVndB(0, r) (the points for which p = r and rpl = 1). It was 
not the aim of the paper to consider this kind of singularities. Therefore, in the 
following estimate of P"(X (zc) E Bl)  (where B1 c A,) we consider only such 
sets B1 that are 'Yar" from aVnaB(0, r). 

LEMMA 3.16. Let x E C-,. Then we have 

for B1 c A1\.S, where 

and cl is the same as in Lemma 3.15. 

Proof. Set s = (rsinA)/8. At first assume B, r ( z E A ~ :  IzI  2 r+s)+ By 
Lemmas 3.4 and 3.15 we get 

We have IZ]-"/~ 2 2-2"6ca/2 (z) sinai2 L for Z E B ~ .  Let us also notice that 
c;md < 1. Hence the inequality in the lemma holds for all sets B1 which are 
contained in {Z E A1: I z I  2 r +s). 

Now our task is to prove the lemma for B1 c (ZE Al\S: lzl < r+s). Let 
us assume that x E C-2. Then choose 2, E A1\S such that Izol E (r, r +  s). Let 
yo be the point belonging to the line segment such that lyol = r-s. Notice 
that &(yo) 2 sin(A/2)r/2 2 s, and so B(yo, s) c A,. Put w = (lzol-r)/2 < s/2. 
Since Sv(z0) 2 r sin (1/2) 2 s, it is easy to check that B(zo, w) c A,. From Lem- 
ma 3.4 we obtain 

For y E B (yo, s/2) we have PY (X (TC) E B (zo, w)) 2 PY (X ( z ~ ~ ~ ~ ~ )  E B (20, w)). 
From this and Lemma 3.15 we infer that the right-hand side of (3.24) is boun- 
ded from below by 

For z E B(zo, w) we have Iz-yol -s = 6B[yo,s) (z) < 88(yo,s) (zO) + Iz-zO1. The last 
sum is smaller than 3w < 3ac (z), so Iz -yol - s < 4ac (z). For z E B (zo, w) and 
y ~ B ( y ~ ,  s/2) we also have ly-zl < 3s, lz-yol+s < 4s and s2-ly-yo12 > s2/4. 



Hence (3.25) is bounded from below by 

Since wz (B (yo, 57/21) = sd 2 p d  ad d-' and sat2 r -"I2 2 2 -2a  siaaI2 1, the lemma is 
true for B1 = B(z, ,  w) if X E C - ~ .  Consequently, the Iemma holds for all sets 
B1 c (z€A,\S: lzl < r + s )  when X E C - 2 .  

It remains to consider the case X E  API .  T h s  is left so far aside since we 
could not apply (3.24) because a ( x ,  Ao) = 0 for x E A -  We only give main 
ideasof the proof in tbis case. Choose s, z,, yo and w as in the case x E C-2. Let 
us adopt the notation from the proof of Lemma 3.14. In that notation 
r -  = r3 r sin 1. As in Lemma 3.14 at first assume 6, (x) < r -  ,. Consider the 
ball B (x', r- ,) c C and notice that for z E B (x ' ,  r -  ') we have lzl g 1x1 + 2r - < 
3r/4, so B(x l ,  r -  ' ) n B  ( y o ,  3/21 is empty. Consequently, by the strong Markov 
property we have 

For Y E  B ( y o ,  s/2) we have ly -xrI G 2 lyl, so 

Now assume 6, ( x )  2 r -  and consider the ball B ( x ,  r- l) c C. As before, 
B ( x ,  r - , ) n B ( y 0 ,  s /2)  is empty and we get 

For y E B (  yo, s/2) we have 

From inequalities (3.26H3.29) it follows that Px (X (zc) E B (z,, w)) is bounded 
from below by (3.25) with c ,  replaced by c3. This proves the lemma. 

We can now formulate a lower bound estimate of the expectation of the 
exit time from the bounded cone C. 

THEOREM 3.17. There exist a constant c = c (d ,  E, 1) such that for all x E C/2  

Ex (23  2 cay2 (x )  ( x ( " / ~  -" f ' .  
As a constant c one can take c = cl Cd;,14-d-a , where cl is from Lem- 

ma 3.15. 



Exit time and Green function of cone 36 1 

Proof .  The proof is almost the same as the proof of Proposition 3.9. Let 
us put A; = (Z E AI: I z I  > 3r /2) .  For Z E  A', and y E C we have ly -zl 3 1z1/4. 
From (2.2) it follows that 

On the other hand, by Lemmas 3.4 and 3.15 we get 

F (X (zc) E A;) 2 a ( x ,  A;) 2 c,  62' ( x )  \x1'J2-" f '  J lzlLd-'dz 
-4; 

and the theorem follows, 

The following theorem is our main lower bound estimate of the density of 
the harmonic measure of C, 

THEOREM 3.18. We have 

for all x E C/2 and z E V\(CuS), where c' = c' ( d ,  a, A) and 

Moreover, the inequality is true for all z E V\C when 6g2 (z )  is  replaced by ( z [ " / ~ .  

As a constant c' one can take c' = min (c,,  cCd,, 2 -d-a) ,  where c, is from 
Lemma 3.16 and c is from Theorem 3.17. 

Proof .  For ZEA, \S the inequality follows directly from Lemma 3.16. 
Now let B c V\C,. By formula (2.2) we have 

P " ( X ( T ~ ) E B )  = j ~ ~ ( ~ ,  Y ? S  Cd,a dzdy. 
C B IY - I d + =  

For y E C and z E V\C1 we have Iy-zl < 3 121/2 and ly -21 d 3ac (z). Therefore 

Applying Theorem 3.17 we see that the inequality in the theorem is true for 
ZE V\C1. To get the last statement in the theorem assume that B c V\C. Then 
again (3.30) holds and for y E C  and Z E  V\C we have ly-zl < 2121. Hence 

p ( X  (zc) €3)  2 Cd,a 2-d-a E~ (TC) I z I - ~ - '  dz 
B 

and the theorem follows by Theorem 3.17. 

Now, at the end of this section, let us give some comments on the results 
which are obtained. One of the aims of this paper was to investigate how 
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estimates of the harmonic measure, the Green function and the expectation of 
the exit time for the bounded cone differ from those for open bounded sets with 
c'.' boundary. To simplify the discussion we focus on the estimates of the 
expectation of the exit time. If D is an open bounded set with C1-I boundary, 
the inequality (2.5) shows that Ex (7,) behaves like 8g2 (x). Unfortunately, we do 
not have sharp estimates for the bounded cone C, since the methods we use do 
not give optimal constants E and E' (in particular, E' < E). On the other hand, 
both E and E' tend to 0 when R tends to 0. Therefore, for fixed d and u there 
exists a sufficiently narrow opening 1, of the cone C such that for all A E (0, A,) 
we have E <.c1/2. Theorem 3.13 then shows that for such "narrow" cones the 
Iowbr bound inequaIity in (2.5) does not hold. To see what are the values of 
E and s' and how "small" 2 must be to have s < 01/2 we made a numerical 
calculation (based on explicit expressions for the constants). For d = 3, or = 1 
and A =  n/12 we have E = 0.34, E' .Y 0.000028 and for R = n/l80 we have 
E N 0,0015, E' N 8.4. lo-'. 

4. Green f~ncdon. In this section we obtain estimates of Green function of 
the unbounded and bounded cone. This is done by applying the results from 
the previous section. 

At first we need an auxiliary estimate for Green function for a ball. The 
following lemma is a direct consequence of estimates obtained in [15]. 

LEMMA 4.1. Let u E Wd and s > 0. There exists a constant cl = cl (d,  a) such 
that for any VEB(U, 2s) we have 

Proof. From Theorem 3.4 in 1151 we have 

for v, z ~ B ( u ,  2s), where c = c(d, a). For v ~ B ( u ,  2s) and z ~ B ( u ,  s) we 
obtain 

Hence (4.1) yields 

which gives our claim. 

Now we prove the Iower bound estimate of Green function for the boun- 
ded cone. 
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PROPOSITION 4.2. There exists a constant c2 = c2 (d, a, A) such that for all 
x ,  Y E  C/2 we have 

1 62"~) )sZ2 (y) 
Gc (x, y) 2 c, min 

P r o  of. Let x, y E C/2. Since Gc (x, y) = Gc ( y, x), we may and do assume 
that lyl 3 1x1. We will consider two cases: 4 1x1 < lyl and 4 1x1 2 lyl 2 1x1. 

At first let us assume that 41x1 < Iyl. We define U = VnB(0, lyl/Z). Let us 
notice that x E U/2.  By formula (2.1) and Theorem 3.18 (applied for U instead of 
C) we obtain . - 

We will  now proceed similarly to the proof of Lemma 3.14. Set s = (lyl sin R)/8. 
I 

We begin by considering the case 6,(y) < 2s. Let y* be the point on aV such 1 that ly - y*l = S,(y). It is easy to see that the half-line E = (z = (p, ql, . . . , 
qd-J: q1 = 0) is contained in the plane determined by points 0, y and y*. 

I 

Denote by y" the point of intersection of I and - the line determined by y, y*. Let 
y' be the point within the line segment j'y such that ly'-y*l = 2s. Since 
lj'-y*l = ly"l sin2 3 lylsinll > 2s, such a point exists and it is easy to notice 
that 6, (y') = ly'-y*!. Consequently, y E B(y', 2s) c K If z E B (y', 2s), then 
lzl 2 IyI - Iy-zl 2 Iyl -4s > lylJ2, so we have B ( y l ,  2s) c Uc. On the other 
hand, for z E B (y', 2s) we have lzl < tyl+ 4s < 2 lyl < r, so B (y', 2s) c C. Hence 

From Lemma 4.1 and the inequality lzl < 2 lyl (for z E B ( y', s)) we obtain 

We have SB01.,2s) (y) = 6, (y) and lyl < 2 Ix - yl (because we have assumed that 
4 1x1 < lyl). Therefore (4.2H4.4) yield 

(4.5) G,(x, y) 2 c' c,  2-2d-3" (sinai2 ll) a$2 (x) 82' ( y )  IY(1'-a12 I X - - ~ I - ~ .  
Now let us consider the case Sy (y) 2 2s. If z E B (y, 24, then 

121 2 1 yl - 2s > ly1/2 and lzl < ly1+ 2s < 2 1yl < r, so B ( y, 2s) c C n  Uc. From 
this and Lemma 4.1 we obtain 
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t 

We have 6BIy,2,, (y) = 2s = (Iyl sin 1)/4 >, 6, (y)/4 and as before lyl r 2 Ix - yl. 
Hence from (4.2) and (4.6) it follows that 

Gc (x, y) 2 c'c, 2 -2d-4a (sin"J2 A) 6g2 (x) g2 (y) 1x1"/2 -" ]yle' I X - - J J ] - ~ ,  
I When 4 1x1 < IyI, the inequality above and (4.5) give the assertion of the propo- 

sition. 
Now we assume 4 1x1 2 Iyl 2 1x1, In this case the proposition follows from 

estimates of Green function of open bounded sets with C1,' boundary. Let 
us put 

- U1 = ( z = ( Q ,  ~ 1 ,  ..., ~ d - ~ ) :  1/8 < Q < 5/4,U < q1 < 1) 
I and . 

U2 = (z = (e, cpl, . . ., ( P ~ - ~ ) :  1/16 < Q < 3/2, 0 < rpl < A). 

Let D be a fixed domain with a clll boundary such that U ,  c D c U2. Let us 
I consider the domain lyl D. We have lyl D c lyl U ,  c B (0, 3 ly1/2), so lyl D c C. 

It is also clear that x, Y E  lyl D. By the scaling property of Green function and 
i 
i the inequality (2.3) we obtain 

3 c IYI"-~ min 
1 62' (~/IYI) 66' (Y/IYI) 

Pllvl- Y/IY lr 

where c = c ( D ,  a). Let us notice that 61,1D(y) = min(d,(y), ~ ( v \ ~ ~ ~ D ) ( Y ) ) .  We 
have 6 ,  (y) < Iyl and 61v\ ly l~)  b) 2 l~1/4. Hence 6 1 y I ~  (Y) 2 min(&(y), ly1/4) 3 
aV (y)/4. But 8, ( y) = Sc ( y), so finally Y 2 8 4 Similarly, 
81,1D(x) 2 6,(x)/8, Therefore, when 4 1x1 2 lyl B 1x1, the proposition follows 
from (4.7). 

We will need the following auxiliary fact: 

LEMMA 4.3. Let D be an open nonempty bounded set with cl" boundary. For 
R E (0, a) let us define W = { z  ED? dist ( 2 ,  D) < R).  Then we have 

dz Irn < c3 ,  where e3 = c, (D, R,  a). 

Proof.  It is possible to obtain the above result directly, but it will be 
convenient to use the estimate (2.4) instead. Fix xo ED. From (2.4) we have for 
any Z E  W 

fD"" lz) a c a 2  (xo) B 
cS?/= (xo) 

ap (I) (1 + d$2 (I)) lxo - zId 6g2 (z) (1 + Rai2) (diam (D)  + R)" ' 
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where c = c ( D ,  a). It  follows that 

c a 2  (xo) dz 
1 3 J fi;"(z)dz 2 

w (1 + Ral') (diarn (D)  + R)" ! ' 

which completes the proof. 

The following proposition may be treated as the local version of the upper 
bound estimate in the inequality (2.3). 

PROPOSI~ON 4.4. Let B be an open set, B # Rd, and D c B be an open 
bounded s@ with C1,' boundary. For s > 0 d@ne U = ( Z E D :  dist(z, B\D) > s ) .  
Then there exists a constant c, = c,(B, D ,  s, a) such that for all x, y E U we 
haue 

This estimate is especially interesting for such x, y E U which are "near" 
8DndB. Of course, in general, aDna3 may be empty. 

Proof. Let x, Y E  U.  For x = y the proposition holds trivially, so we may 
and do assume that x # y. By the definition of Green function we get 

We have j, u ( z ,  y )  do; (z) = Ex u ( X  ( T ~ ) ,  y )  adopting the convention (see 151) 
that u(X(zE) ,  y) = 0 for T B  = a. According to Lemma 2.4 in 1151 we have 

Hence (4.8) yields 

We next claim that 

for z  E DC except possibly on a set of Lebesgue measure zero. For z E B, (4.10) is 
exactly the definition of GB(z ,  y). For ZEB' we have G,(z, y) = 0, so we want 
to show that also the left-hand side of (4.10) equals zero. To do this we need to 
introduce the definition of regular points. 

For A f @ ( R d )  let us put TA=inf{t > O :  X,EA}. For each x€Rd ,  
Px(TA = 0) is either zero or one according to the Blumenthal zero-one law. 
A point x E Rd is called regular for A EL?# (Rd) if Px (TA = 0) = 1, and x is called 
irregular for A if Px(TA = 0) = 0. We denote by A' the set of all points which 
are regular for the set A. It is known [5 ]  that the set A\Ar is of Lebesgue 
measure zero. 
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For z E (By we have I,, u (w, y) dm; (w) = u (z, y). Since B'\(Bc)' is of Lebes- 
gue measure zero, (4.10) holds. By (4.9) and (4.10) we obtain 

(4.1 1) GB(x, Y )  = G D ( ~ ,  Y)+ S Gs(z, ~) fg (z )dz .  
DC 

From (2.3) we have 

G,(x, Y) < c 
a2 (Y) 6Y2 (4 a2 (Y) < c , where c = c ( D , c t ) .  

Ix - vld Ix-ul" 
So, having (4.1 I), it is clear that to prove the proposition it sufices to show 

where a, = a, (B, D, s, a). To obtain (4.12) we first show that there exists a 
constant a2 = az(B, D, s, a) such that for all z€B\D we have 

When 6,(y) 3 4 2 ,  (4.13) is easy. Since Z E  B\D and Y E  U, we have Iz-yl 2 s. 
Consequently, 

We now turn to the case 6,(y) < s/2. Let y* be the point on aB such that 
Iy - y*I = BB (y). We have y* €3 (y, s). Since Y E  U, the set B(y, s)n(B\D) is 
empty, which yields y* E dD. 

Now we recall one of the geometric properties of the open bounded set 
with C1ll boundary. Namely, it is well known ,(see [18]) that there exists 
a constant ro = ro (D) such that for any w E aD and r, ~ ( 0 ,  rO] there exists a ball 
B(w', r,) (with w' depending on w and r,) such that B(w', r,) c Rd\D and 
W E  aB(wr, rl) .  

Set r, = rnin(ro, s/4). Then there exists y' such that B(yJ, r,) c Rd\D and 
y*~dB(y',  rl). I f z ~ B ( y ' ,  r,), then lz-yl < lz-y*I+ly*-yl < s,so B ( y ' ,  rl) c 
B(y ,  s) c (B\DF. Since B(yJ, r,) c Rd\D, we obtain B(yf, r,) c E. 

We also need an estimate of Green function of a complement of a ball. Let 
W E R ~  and t > 0. According to Lemma 2.5 in [lo] there exists a constant 
a3 = a3(d, a, t) such that 

6"$("w,t, (4 
GP(wfi (u, 01 a3 f " - ~ l a "  lu-vld-a/2Y u, V E ~ ( W ,  t). 

Applying this estimate to GBE(yr,rr)(~,  y) we obtain 
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where a, = a, ( d ,  a, rl). Since B { y f ,  r,) c BC, we have GB(z ,  y) 6 GBc(y*,rl)(~, y). 
We also have SB(,l,,,, ( y )  = ly - y*[ = S B ( ~ ) .  Recall that Iz- yl 2 s. Notice that 
I y - y f ] d l y - y * l + l y * - y f l < 3 s / 4 < l z - y l .  This implies Iz-y'l GIz-yl+ 
+ Iy - yfI < 2 Iz- yl. Hence (4.14) yields GB (z, y) < a3 2a12 s " - ~  Sa $ (Y ) ,  which 
gives (4.1 3). 

Our next aim is to prove (4.12). From (2.4) we have 

where a&= aq(D, a). We divide the set B\D into two sets Wl = 
( z  E B\D : dist ( z ,  D) < diam (D)) and W2 = {z E B\D: dist (z, D) > diam (D)). 
By  (4.131, (4.15) and Lemma 4.3 we obtain 

at a4 c3 (diam (D))" 6g' (x) 6g2 (y) 
d 

sd Ix-yld ' 

For z E W2 we have lz - xl < 6, (z)  + diam (D)  < 2JD (2). From this and inequali- 
ties (4.131, (4.15) we get 

a (x) w2 (Y )  d z  (4.17) j Gg ( z ,  y) f$ (z )  dz < a2 a4 2" ( d i m  (Dl) 
wz Ix-yld ;21,1i-xld+t'. 

The last integral is bounded from above by w d a - l ( d i a m ( ~ ) ) - a ,  so (4.16) and 
(4.17) give (4.12) and the proposition is proved. 

Now we need the following simple estimate of Green function of 
a half-space : 

LEMMA 4.5. Let H = (x = ( x l ,  . . . , xd) € R d :  XI > 0). There exists a con- 
stant c5 = c5 (d,  a) such that for any x, y E H we have 

Proof.  From [ lo] ,  Lemma 2.4, we know that there exists a constant 
c = c(d ,  a) such that for any bal lB(z ,  r), z ~ R d ,  r >O,and allx, y ~ B ( z ,  r) we 
have 

For n~ N set z, = (n,  0, . . . , O)€Rd and r, = n. Clearly, we have B(z,, r,) c H 
and z ~ ( ~ , , ~ , )  G ZH. From (4.18) we obtain 
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By well-known results for the distribution of the exit time from the half-line of 
the one-dimensional symmetric stable process [4] we infer that for each x E H 
we have Px(zH < a) = 1. Therefore by the quasi-left continuity of our process 
X, we get lim,,, X (z~(~,,~.))  = X ( z ~ )  a.s. PX for all x E H. Hence for all x, y E H 
we have lim,,, GB(,,,r,,(~, y) = GII (x ,  y) and the lemma follows from (4.19). 

We can now state the main result of this section. 

THEOREM 4.6. There exist constants c6 = C6 ( d ,  u, 2.) and c7 = c7 ( d ,  a, R)  
such that for all x,  y E V we have 

P r o  of. The lower bound estimate follows directly from Proposition 4.2 
and the fact that G,(X, y) >, Gc(x, y), so we only have to prove the upper 
bound estimate. 

The inequality Gy (x, y) < Ad,= lx - Y I a - d  is obvious; hence it remains to 
show the inequality with the second term under the minimum. Since GV(x, y )  = 
GV(y, x), we may and do assume that lyl 2 1x1. As in the proof of Proposi- 
tion 4.2 we will consider two cases: 4 1x1 < ]yl and 4 1x1 2 lyl 3 1x1. 

Let us first assume that 4 1x1 < Iyl. We begin with the observation that 

where a ,  = a ,  (d, m). Indeed, let y* E aV be such that ly - y*l = 6, (y). It is clear 
that there exists a half-space H such that V c H and the line determined by 
0, y* is contained in JH. Therefore the inequality (4.20) follows from Lem- 
ma 4.5. 

Define U = V n  B (0, ly1/2) and notice that x E U/2. By formula (2.1), in- 
equality (4.20) and Theorem 3.12 we obtain 

Consequently, to get the upper bound estimate in the theorem (in case 
4 1x1 < lyl) it is sufficient to show that the last integral in (4.21) is bounded from 
above by C J ~ J - ~ - " / ~  , where c = c(d, M), and to notice that lyl 2 (4/5) Ix-yl. 

In order to estimate the last integral in (4.21) we divide V\U into three sets 

w1 = {z E V :  121 E ( I Y I / ~ ,  3 1~1/41), 

Wz=(zeV:  IzI~(3ly1/4,2lyl)) and W 3 = { z ~ V :  IzI>2Iyl). 
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For abbreviation let us put 

For z E Wl we have Iz - yl 2 iy1/4, so 

Let us notice that W, c B ( y ,  3 Jyl) and 6, (2 )  3 ly1/4 for z E W2. Hence we ob- 
tain 

4a/2 4d + a/, 

S 
dz - 4d+a ud 

' 2  ' lYy/2 3d+a/2 1 ~ l d + u / 2  d-a12 
Blv,31Yl) Iz-yl 3d(u/2) l y l d + a / 2  ' 

For z E W3 we have Iz - yl B 1z1/2 and &(z) 2 )z1/2. Therefore 

This proves the upper bound estimate of GV(x, y) in the case 41x1 < lyl. 
Now let us assume that 4 1x1 3 Iyl a 1x1. In this case the upper bound 

estimate of GV(x, y) follows from Proposition 4.4. As in the proof of Proposi- 
tion 4.2 we put 

U 1  = {Z = (4, cpl, . .., qd-,): 118 < Q < 5/4,0 < ql < 1) 
and 

U 2  = ( z  = (Q, cpl, . . ., ( P ~ - ~ ) :  1/16 < e < 312, 0 < cp, < 1). 

Let D be a fixed domain with a C1*' boundary such that U ,  c D c U,. Let us 
also put U = {z E D: dist (z, V\D) > 1/16}. It is easy to check that x/lyl E U and 
y / l y l ~  U. By Proposition 4.4 and the scaling property of Green function we 
obtain 

Gv(x, Y) = I Y ~ " - ~  GV(XIJYI, yllyl) 

This completes the proof of the theorem. 

As a simple corollary to the results proved in this section we can formulate 
lower and upper bound estimates of the Green function of the bounded cone C. 
Since apart from its vertex the bounded cone C has other "singularities" at 
W n a B  (0, r), we state our estimates of Gc (x, y) only for x, y E C/2. 
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THEOREM 4.7. There exist constants c8 = cs (d ,  a, A) and c, = c9(d, a, A) 
such that for all x ,  y ~ C / 2  we have 

Gc (x , y) 3 cs min 

Gc (x, y) G min 

Moreover, the upper bound remains true for all x ,  y E C we replam 
c5g2 ( X I  6g2 (0 by G"J (x) SaJ2(y). 

The lower bound estimate follows from Proposition 4.2 and the upper 
bound estimate follows from Theorem 4.6 and the inequality Gc(x,  y) 6 
G,(x,  y). Using formula (2.2) and Theorem 4.7 one can obtain estimates of the 
density of the harmonic measure of the bounded and unbounded cones. For 
example, one can obtain some estimates of the growth of f t ( z )  when x E C/2 is 

. fixed and z E Vc tends to the vertex of the cone. 

5. Exit time. It is easy to check that Ex (z,) = co for x E T/: This follows for 
example from Theorem 3.17. The aim of this section is to investigate for which 
p ~ ( 0 ,  I), Ex($) is finite for X E  T/: Theorem 3.2 in [3] gives an analytic con- 
dition for the finiteness of F(tF). This theorem, which is an analogue of the 
classical result of Burkholder [9], states that for any region D c Rd, x ED and 
p ~ ( 0 ,  1 )  we have Ex(zg) < co if and only if there is a function u which is 
a-harmonic on D and u(x) 2 Ixlpa for all x.  We found it difficult to check this 
last condition. Instead we give in this section direct estimates of the critical 
value p, = po (d, a, A) such that for all x E V we have Ex($) < co for 
0 < p < po and Ex (z;) = m for p > p,. This is done by applying our previous 
results. 

Throughout the whole section we assume that r = 1 in the definition of the 
bounded cone C, i.e. C = V n B ( 0 ,  1). As in Section 3 we put Ck = 2kC = 
V n B ( 0 ,  2k) for k = 0, 1 , 2, . . . Before formulating our main result of this sec- 
tion we will prove two auxiliary lemmas. 

LEMMA 5.1. There exists a constant c = c (d ,  a)  such that for all x E C/2 and 
k E N we have 

Px  (X ( z ~ ~ -  E V )  G c21L('-') and Ex (T~,) < ~ 2 ~ .  

Proof. By Theorem 3.12 and the scaling property of the harmonic mea- 
sure we obtain 
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where c = c (d ,  a). To get the first inequality in the lemma it suffices to show 
that the last integral is finite, To obtain this we divide this integral into two: 
one over (2C)\C and the other over V\(2C). We have 

and 

S 
dz 2"J2 dz 

- 2-=/2 a-l (Jjd. 

V\(2C) (z) I Z I ~ + = ~ ~  I tl"t'- 
V\(ZC) 

The second inequality in- the lemma follows directly from Theorem 3.13. In- 
deed, horn Theorem 3.13 and the scaling property of the exit time we obtain 

EX(rCk) = 2 k a ~ x / Z k ( ~ C )  =G C Z ~ ~ ( X ( O - ~ ~ ~ ( ' - ' )  < ~ 2 ~ ,  where L: = c(d, E). 

Observe that for DeB(Rb) we have 

We also have the following reverse inequality. 

LEMMA 5.2. Let D be an open bounded set. There exists a constant ci = 
cl (d, a, rn (D)) such that for all x E D we have 

P r o  of. Let us recall (see Section 2) that p, (t, x ,  y)  is the transition density 
for PF, the semigroup generated by the process killed on exiting D. Obviously, 
we have p,(t,  x ,  y) < p ( t ,  x, y). According to [19] there exists a constant 
c2 = c2 (d, a) such that p(t, x, y) < ~ , t - ~ l "  for a11 x, y€Rd and t > 0. 

For x,  ED and t > 0 we have 

It follows that 

I1 - PAMS 19.2 



Hence 

Let us take t 3 1 such that c2 m(D) t-*ja < 112. Since Px(zD > s) is not 
increasing, we obtain 

. - 
which- completes the proof. 

We can now formulate the main result of this section. 

THEOMM 5.3. There exists a constant p, = p ,  (d ,  a, A) E [1/2, 1)  such that 
for all XE V we have F ( z $ )  < o~ for 0 < p  < po and Ex(rg)  = m forp > po. The 
constant p ,  satisfies the following inequality: 

Let us note that an immediate concIusion from this theorem is that 
po tends to 1 when I tends to 0. 

P r o  of. The fact that if p > 0 is fixed, then Ex(zF) is either finite for all 
x E V or infinite for all x E V is not difficult and well known. Indeed, this holds 
not only for the cone V but for an arbitrary open set. The statement that this is 
true for an arbitrary open region and p ~ ( 0 ,  1) follows from the above-men- 
tioned Theorem 3.2 in [3]. 

At first we will prove that p ,  2 (a - &)/a. Let x E C/2  and p E (0, 1). We have 

By the Holder inequality we obtain for  EN 

From Lemma 5.1 we get 

where c = c ( d ,  a). 
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It  follows that 
m 

Ex(z{ )  < c 2 k ( E - a + p a ) + E x ( ~  8. 
k =  1 

Of course, Ex ($1 is finite. Hence if E -a +pa < 0 (i.e. p < (ol - E)/E) ,  then we 
have F ( z { )  < a. This proves that p, 3 (a - &)/a. 

Now we are going to show that p ,  < (a- &')/a. W e  will need the following 
equality: 

which holds for an arbitrary nonnegative random variable Y and all p > 0. Let 
x E C/2,  p E (0, 11 and n E N .  We have 

where e ,  = c ,  (d ,  ol, 1). The last inequality follows from Lemma 5.2. By Theo- 
rem 3.17 we obtain 

a12 -e '  

Ex/" (rc) L ed3" (--) 1 --I = c8g2 ( x )  I x ~ ~ ~ ~ - ~ '  nE'-'¶ where c = c (d ,  a ,  A).  

It follows that 

This inequality holds for an arbitrary n E N, so if E' - a + pa > 0 (i.e. 
p > (a -&')/a), then we have Ex(zP,) = a. This proves that p ,  < (CI -E')/oI. 
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