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Abstract. We obtain estimates of the harmonic measure and the
expectation of the exit time of a bounded cone for symmetric a-stable
processes X, in R? (x€(0, 2), d > 3). This enables us to study the
asymptotic behaviour of the corresponding Green function of both
bounded and unbounded cones. We also apply our estimates to the
problem concerning the exit time 7y of the process X, from the
unbounded cone V of angle 1¢€(0, n/2). We namely obtain upper and
lower bounds for the constant py = po(d, «, 4) such that for all xe ¥V
we have E*(t§) < oo for 0 < p < py and E*(1f) = oo for p > pe.
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1. Imtroduction. In recent years several results concerning potential theory
of symmetric a-stable processes have been established (see e.g. [7], [8], [11]).
They extend classical potential theory of Brownian motion. Among the new
results there are sharp estimates of the harmonic measure and Green function
of symmetric a-stable processes for open bounded sets with C**! boundary (see
[15], [10]). These estimates show that the asymptotic behaviour of Green
function and the harmonic measure of these smooth sets is the same as for
a ball.

On more general Lipschitz domains the sitnation is more complicated. In
[7] the boundary Harnack principle as well as some absolute estimates of
a-harmonic functions in bounded Lipschitz domains have been obtained. The
absolute estimates of [7] (Lemmas 3 and 5) do not give a full description
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of asymptotics of a harmonic measure and may be further elaborated for
particular Lipschitz domains. We find it instructive to investigate the case of
the cone in more detail. The first aim of this paper is to study asymptotics of
Green function and harmonic measure of symmetric a-stable processes X, in
R? for the cone, especially near its vertex (x€(0, 2), d > 3). One of the main
questions is how this asymptotics depends on the opening of the cone. We
mainly focus on the case when the opening is arbitrarily narrow. This com-
plements [7] where the emphasis is put on comparing a-harmonic functions
when the domain is fixed.

We first investigate the harmonic measure and the expectation of the exit
time for bounded cones and then we obtain estimates of Green function of the
unbounded and bounded cones. We recall that similar problems have been
investigated for the Brownian motion (see e.g. [1]). We have to point out that,
in contrast with the case of open bounded sets with C**! boundary, our results
are not sharp. For further discussion we refer to the end of Section 3.

Another problem we investigate concerns the exit time 7, = inf{t > 0:
X, ¢V} of the process from the unbounded cone V of angle 2. We obtain some
lower and upper bounds for the critical value py = py(d, o, 4) such that for
all xeV we have E*(7f) < o0 for 0 < p < po and E*(t}) = oo for p > p,. The
problem of finding the constant p, has been extensively studied for the
Brownian motion. In that case Burkholder [9] proved that for p > 0 and xeV
we have E*(1f) < o if and only if p < po, where py = po(d, A) is defined in
terms of a certain hypergeometric function. Earlier, Spitzer [17] showed that
Do = m/(44) for dimension d = 2, This problem has also been studied for gene-
ralized cones and conditioned Brownian motion (see [2], [12]). For the two-
dimensional symmetric a-stable process DeBlassie [13] expressed p, in terms of
some rather complicated differential operator and obtained some estimates
of po. However, the estimates do not seem to provide information about the
behaviour of p, when A tends to 0. In our paper we treat the case d > 3 and use

“completely different methods than those used in [13]. While we do not give an

exact expression for p,, we are able to describe its asymptotics in 4 — 0.

2. Preliminaries. For xeR% r>0 we put B(x,r)={yeR" [y—x| <7}
and S(x, r) = {yeR’: |ly—x| = r}. The surface area of the (d— 1)-dimensional
sphere S(0, 1) = R* will be denoted by w; = 2n¥?/I'(d/2). For any subset
A c R°, we denote its complement by A°, its closure by A4, its interior by int (4)
and its boundary by 4. For t >0 and 4 < R? we write t4 = {tx: xe A}
and A/t = t~! A. Furthermore, we write dist(4, B) = inf{|Jx—y|: xe 4, yeB},
diam(A4) = sup {|x—y|: x, ye A} and J,(x) = dist(x, d4) for A, B< R? and
xeR% We write m(A4) for the d-dimensional Lebesgue measure of the set
A< R%. #(R% denotes the Borel o-field of R%."
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The notation ¢ = ¢(x, y, z) means that ¢ is a constant depending only on
x, ¥, z. Constants are always numbers in (0, o).

For the rest of the paper let x€(0, 2) and d > 3. By (X,, P¥) we denote the
standard [5] rotation invariant (“symmetric”) a-stable, R%-valued Lévy process
(ie. homogeneous, with independent increments), with index of stability « and
the characteristic function of the form

Eexp {itX,} = exp{—t|£]*}, EeR%t2=0.

As usual, E* denotes the expectation with respect to the distribution P* of the
process starting from xe R%. We always assume that sample paths of X, are
right-continuous and have left-hand limits almost surely. (X;, P¥) is a Markov
process with transition probabilities given by P,(x, A) = P*(X,€A) and is
strong Markov with respect to the so-called “standard filtration” and quasi-
-left-continuous on [0, o) (see [5]). The transition density of X, will be de-
noted by p(t, x, y). For the sake of brevity we will refer to this process as to
“symmetric a-stable”. The Lévy measure v of this process is of the form

v(dx) = Cyqlx|™*"%dx, where Cy,= 02" " I ((d+a)/2)n” 4> I (1—(x/2)).

For A e #(R%, we define t, = inf {t > 0: X,e A}, the first exit time from A.
It is well known that 7,, and t*7, (for t > 0) have the same law under P°.

Let f >0 be a Borel measurable function on R‘. We say that f is a-
harmonic in an open set D c R? if

f)=E f(X(r), x€eA4,

for every bounded open set A with the closure 4 contained in D.
We define the harmonic measure ©} (for D, in x, with respect to X)
by the formula w}(4) = P*(X (tp)€ ), where xeR?; A, De #(R%). When D
is unbounded, by the usual convention, P* (X (‘ED)EA) is understood as
P*(X (tp)e A; 1p < ). It is clear that supp(w}p) < D*.
~ The Riesz kernel is defined by

u(x,y)= [ p(t, x, y)dt, x,yeR’.
0
According to [5] we have u(x, y) = Aa.|x—y|*~% where
' Age =271 42 (([d—a)2) (T (/2) "
Let D be an open set. We define
Gp(x, y) = u(x, y)— f u(z, y)dwi(z), x,yeD,
De

and call G, (x, y) the Green function for D. Additionally, we set Gp(x, y) = 0.if
xe D¢ or ye D°. Tt is well known that G, (x, y) = 0 and Gp(x, y) = Gp(y, x) for

9 — PAMS 19.2
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x,yeR® If A<D is an open bounded set, then we have
2.1) Gp(x,y)= [ Gp(u, y)dwi(w) for xed, y¢A.
A¢

In particular, Gp(-, y) is a~harmonic in D\{y}. It satisfies also the following
scaling property:

Gopltx, ty) = t*"%Gp(x,y), t>0, x,yeD.

Gp(-, ) is continuous in the extended sense as a mapping from D x D into
[0, . If D, = D, are open sets, then we have Gy, (x, y) < Gp, (x, y) for every
x, yeR%,

By P? we denote the semigroup generated by the process (X,) killed on
exiting D. For t > 0 and x, ye D let pp (¢, x, y) be the transition density for the
process, i.e.

PPf(x) = E*(f(X); t <1p)= [ f(B)Po(t, x, y)dy, xeD, t>0,
D

for any nonnegative Borel f. We have p,(t, x, y) = pp(t, ¥, x) and pp(t, X, y) <
p(t, x,y) for all t >0 and all x, yeD. We also have

GD(xs y)'__ j.pD(t: X, Y)dt, X, J’ED
0.

We denote the Green operator for D by Gp. We have

Gy f(x) = Ex(t(f FX)d) = [ Go(x, ) f()dy,  xeD,

for nonnegative Borel functions f.

The potential theory of symmetric a-stable processes is enriched by the
fact that the density of the harmonic measure for a ball is given by an explicit
formula. Let xeB(0, r). The harmonic measure wjq,) for B(0, r) has the
density function P,(x, -) (with respect to the Lebesgue measure) given by the
formula

2 2\ af2

r-—iIx _

Cz __ZI_IE Ix_yl d for |y| >r,
l*—r

0 for |yl <7,

P,(X, y) =

where ¢ = I'(d/2)n~%%" !sin(ra/2) (see e.g. [16] or [6]).

More generally, it is proved in [7] that if D is a bounded open set with the
outer cone property and x € D, then the harmonic measure w3 is concentrated
on int (D) and is absolutely continuous with respect to the Lebesgue measure
on D°. The corresponding density function will be denoted by fj(z), xeD,
zeint (D). According to [7], f5(z) is C® in (x, z)eD xint(D%); see also (2.2)
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below. Similarly to the Green function, also f(z) satisfies a scaling property.
We have
f35@) =1t7% f§"(zft), t>0, xetD, zeint(tD).

Assume now that D c R? is an open nonempty bounded set, E € Z (R?) and
dist(E, D) > 0. The following formula [14], exhibiting the relation between
Green function, Lévy measure and harmonic measure, will be useful in our
further considerations:

@) . P(X(n)eE)= [ Gplx, y)f S0
S ) £l

-dzdy, xeD.
y_zld+

We note that if w%(éD) =0 for xeD, then we can replace the assumption
dist(E, D) > 0 by E c D° In particular, this applies to open bounded sets
D with the outer cone property.

We now briefly recall known estimates of Green function and harmonic
measure for bounded open sets with a C'*! boundary. At first, let us recall the
definition of these sets (cf. [18]).

A function F: R? — R is of class C!*! if its derivative F’ satisfies |F’ (x)—
F'(y)| < Alx—y|, x, ye R%, with a constant A. We say that a bounded open set
D c R® has a C'! boundary if for each xedD there are: a C'! function
F,: R*~!' > R (with A= A(D)), an orthonormal coordinate system CS, and
a constant # = n(D) such that if y =(y, ..., ¥,) in CS, coordinates, then

DAB(x, 1) = {y: ya> Fx(y1, ..., Ya—1)}nB(x, 1).

It is clear that a C!'! set D satisfies the outer cone property, and thus its
harmonic measure has the density function on int(D°).

It is proved in [15] that there exist conmstants c¢; =c,(D, ) and
¢y = ¢, (D, a) such that for any x, yeD

V _ 1 542 (x)ag,ﬂ(y)) Gp(x, y)
2.3) ¢, min —, <
@3) o (lx—yl” ? x—y Aso
a2 af2
<min< ld_a’ 253 (x)5bd (y))_
|x—yl |x—yl

This result and formula (2.2) give the following estimates of the harmonic
measure for D. There exist constants ¢, = ¢, (D, &) and ¢, = ¢, (D, a) such that
for any xeD and zeint(D") :

/2 a2
2.4) - C1 51{ z(x) - < fF D) < - €203 2(x) .
042 (2) (1 + %% (2)) Ix—=| 042 (2)(1+ 6% (2)) Ix — 2|

This inequality is proved in [10].
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As an application of (2.3) one also obtains the inequality

(2.5) ¢, 042 (x) < E*(1p) < ¢, 6% (x), xeD,

where ¢; = ¢, (D, ) and ¢, = ¢, (D, o) (see [15]).

In this paper we give some analogues of the inequalities (2.3)2.5) for
bounded cones.

The paper is organized as follows. In Section 3 we obtain estimates for the
harmonic measure and the expectation of the exit time for bounded cones. This
is the most technical part of the work. The results proved in the rest of the

. paper.are consequences of the estimates from Section 3. The most important

results in Section 3 are upper and lower bounds for the harmonic measure
(Theorems 3.12 and 3.18) and corresponding upper and lower bounds for the
expectation of the exit time (Theorems 3.13 and 3.17).

In Section 4 we get estimates of Green function of the unbounded and
bounded cones (Theorems 4.6 and 4.7). Of independent interest may be Propo-
sition 4.4 which may be treated as the local version of the upper bound es-
timate in the inequality (2.3). Section 5 concerns the exit time 7, from the
unbounded cone V of angle 1. In the section we obtain bounds for the critical
value po = po(d, «, A) such that for all xeV we have E*(tf) < oo for
0<p<po and E*(z}) = oo for p > p,.

3. Harmonic measure. Let us introduce spherical coordinates (g, ¢4, ...,
¢4 1) with origin 0, where ge[0, ), ¢4, ..., 0,-,€[0, ©], and @,_, €[0, 2r).
For the rest of the paper fix 1e(0, n/2) and r > 0. We define the unbounded

cone

V= {x=(Q9 Piyeees (04—1)3 Q>Os ¢IE[03 '1)}

and the bounded cone

C= {x =(Q7 P15 -5 (pd—l): QE(O: 7'), (DIE[O’ ’1)}

“and we call A the angle of C and V. It is clear that C is an open bounded set

with the outer cone property so, as pointed out in the Preliminaries, for xe C
the harmonic measure w¢ is concentrated on int(C) and has there a density

- function fZF(z) which is C*® in (x, z)e C x int (C°).

Our main aim in this section is to obtain estimates of fF(z) (when x e C/2,
ze V\C) and to see how they depend on the opening of the cone. As mentioned
in the Introduction we are especially interested in the case when the opening of
the cone is “narrow”. Our methods elaborate those used in [7] (see Lemmas 3
and 5 therein). By introducing the measures g, .. ; (x, B) and p;(x, B) below
we are able to obtain upper bound estimates for fZ(-) which in case of narrow
cones are more precise than those which can be deduced from [7].

For neZ let us put

Cn = ZBC = {x = (Qa P1y00s (Pd—l): QE(09 2"7'), (P1€[0, }')}
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and
An = Cn\cn—l = {x = (Qa P1y.ens (pd—l): QE[anlr, 2nr)’ (p1€[0, /1)}

B and B, (neZ) will denote sets belonging to % (R%).
For meZ and xeA,, let us define

p(x, B) = P*(X (xc,,.,) € B).

We write dp(x, y) for p(x, dy). p(x, B) is the probability of the event that the
process starting from x € A4, jumps directly to B when leaving C,, . We can
think of p(x, B) as the probability of a “single jump”. We shall mainly be
interested in sets B, B, V. This is reflected in the following definition.

For ieZ and xeV we set ¢;(x, B) = p(x, BnA4,;) and by induction, for
keN, iy, ..., i,eZ and xeV, we set

diy,...i (X, B) = j diy,....ic (¥, B)dp(x, y).
Ay
We may think of g;, . ; (x, B) as the probability of the event that the process
starting from xe A, goes to BnA,; after precisely k successive “jumps” to
A, Ay, ...y Ay
For ke N, m, ne Z we write

Jk(m, n) - {(il, ceey ik)EZk: il 2 m+2, ik =n, ij+1—i1 2 2f0rj = 1, cevy k—l}.
It is easy to notice that
Jerrm,n) = {1, ..., ha)€Z* 1 iy 2m+42, (ia, ..., ikr 1) €k (i1, W)}

LemMA 3.1. Let keN, m,neZ, xcA,,, B, A, and (iy, ..., i) ¢ J,(m, n).
Then we have

Proof. The proof is by induction on k. For k = 1 we have (i;) ¢ J, (m, n) if
and only if i; #n or i; <m+2 When i; #n, we have ¢;(x, B, =
p(x, B,nA4;) =0.1f iy = nand iy <m+2, then g;, (x, B,) = P*(X (z¢,,,,)€B,) =0
because B, C,cC,, ;. -

Assuming that lemma holds for k, we will prove it for k+ 1. Suppose that
Gas oo v )€ Jkr1(m, n). Then iy <m+2or (iz, ..., ix+1) ¢ Ji (i1, n). We have

Giryoniier 1 %5 B) = | Giyy.tier (¥, B)dp(x, ).
A,
If iy < m+2,then 4; = C,.; and, consequently, p(x, 4;) = P*(X (ic,.,,) €4;,)
= (. Thus the integral vanishes. When i; > m+2 and (i, ..., ix+ ()¢ J (i1, n),
our assumption gives ¢, . ;.,(y, B)=0 for yeA;, which completes
the proof.

.....

LemMa 3.2. Let ke N, m, neZ. If n—m < 2k, then J,(m, n) is empty. For

—m—k—1
n—m > 2k the number of elements of J,(m, n) equals <n r;: . )
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Proof. The first part of the lemma follows easily from the definition of
Ji(m, n). The second part will be proved by induction on k. If k=1 and
n—m = 2, the assertion is easy. Assume that lemma holds for k and all
n—mz2k. Let n—m > 2(k+1). We have

n—2k
Jiv1(m, n) = U {(i1,---,ik+1)ezk+15 iy =J, (s .- e» ke 1) €Ji (s 1)}
j=m+2
Hence
n—2k . n—2k n—i—k—1 n—m—-k—3 !
# St mm)= 3 #J(,n)= Z( ! )= 2 ( )
. " j=m+2 j=m+2 k—1 I=k—1 k—1

The last sum equals (nwm;k_z) and the lemma follows.
For keN and xeV let us define
pk(xs B) = ) Z 4i,,..., ik(x’ B)

and ¢(x, B) = z:’:l pi (%, B). We will write do (x, y) for o (x, dy). Heuristically,
pi(x, B) is the probability of the event that the process starting from xe V goes
to BnV after precisely k “jumps” of the considered type and o (x, B) is the
probability that the process starting from xeV visits BnV during these
“jumps’,.

Now we are going to find a formula which expresses the harmonic mea-
sure P*(X (tc)e’) in terms of o (x, ).

LemMmA 33. If xe€_; and B; = Cy, then the following equality holds:

o (x, By) =pi(x, B)+ | a(y, By)dp(x, y).
C-1
Proof For keN we have
Pi+1(x, By) = Z Qig,sics s (x, By)

(i1seensie+ 1)eZK+1

= . Z Z -"qil ----- ik+1(y: Bl)dp(x, y)

.....

] Y a9, BYAP(x, ) = [ pu(y, B)dp(x, y).
C-

C—1 (iz25uunsipc+ 1)62ZK .
Therefore

006, B)—p1 (6, B)= ¥ s B)= [ 3 pelx, Bdp(x, )
=1

k C_1k=1

= [ a(y, By)dp(x, y).

C-y
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LEMMA 34. Let xe C_, and B; = A,. Then we have the following formula:

P*(X (tg)e By) = o (x, By)+ | P?(X (tc)e By)da (x, ¥).
Ao

Proof, At first let xe A_;. By Lemma 3.2, J,(—1, 0) is empty for all ke N.
Hence from Lemma 3.1 we get p.(x, Ag) =0 for keN. Consequently,
o(x, Ag) = 0 and the integral in the assertion of the lemma vanishes. Let us
recall that C = C,. By Lemma 3.2, if ke N and k = 2, then J, (1, 1) is empty,
so pi(x, By) =0. Hence o(x, B;) = p;(x, By} = g1 (x, By) = Px(X(TCo)EBl)y
which proves the lemma for xeAd_;.

Now, let meZ, m< —1, and assume that the lemma is true for
x€A_qu ... U4, We will show that the lemma holds for xe 4,,—;. By the
strong Markov property we obtain for xe A,

P*(X (tc)€ By) = E*(P*"em)(X (zc)e By))
= E*(PXtcm) (X (tc)e By); X (i¢,)€B)
+ E*(PXten) (X (1) € By); X (tc,) € Ao)
+ E* (PXtcx) (X (1) € By); X(rcm)ec_l\c,,:) = I+I1+1II.
The first term in the last sum equals
I = P*(X (t¢,)€ B1) = q1 (%, By) = p; (x, By).
The second one is equal to

II= [ P’(X(tc)e By)dp; (x, y).

Ao

The third term equals
= [ P (X(z)eBy)dp(x, ).

C-1\Cm

Noticing that C_,\C, = U:,,, +, 41, we infer by induction that

= | o(y,B)dp(x, )+ [ [P (X(cc)eBy)do(y,2)dp(x,y)=TV+V.

C-1\Cm C-1\Cm 4o
By Lemma 3.3 we get
IV = j o(y, B)dp(x, y) = a(x, By)—py(x, By).

C-1

Also by Lemma 3.3 we have

V = | P*(X(tc)e By)do (x, z)— | P*(X (zc)€ By)dp; (x, 2).

Ao
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Consequently,
I+V = | P*(X(tc)eB,)do(x, 2).
Ao

Since I+1V = o (x, B,), the proof is complete.

Having Lemma 3.4 it turns out that in order to estimate P*(X (z¢)e-) it
‘ suffices to have an appropriate estimate for ¢ (x, ). We give at first some simple
| inequalities for the probability of the “single jump” p(x, *).

LEMMA 3.5. Let m, neZ, xeA,, B,c A, and n—m = 3. Then we have

by . dy a, 4971
> Bn "-<~. — T d d E] An ‘~<- - EH
p (x ) 2(n m)a I!,. lyld an p (x ) 2 —mz
where
b _ Cg 22d+30z and o = C: Wy—1 111 (2) 22.d+3a:
! 1 3d+a/2 1 (d_ 1) 3d+0o/2

Proof, Since C,., = B(0,2"*'r), we easily get

p(x, B,) = P~ (X (TCm+1)EBn) <P (X (TB(0.2"'+ lr))EBn)

dj (22m+2 2 |x|2)a/2dy
» (|y|2 22m+2 2)a/2 Ix yld

For yeB, we have |x—y| > 3|y|/4 and [p|2=22m+2p2 > 22n72,2_22mH 242 5

22n=43;2 Tt follows that

2ma+a+2d
p(x, B, < Sna—2a 3a+a2 39z ] j la’
which establishes the first inequality in the lemma. Consequently,

2mmapilp(x, A) < |yl dy
. Al'l

n2n

Am
= jj e I j Q_lsind_2(¢1) - Sin(q)d_z)dq)d_l e quldQ
00 .

ny

1§ e ‘d@Ism‘ 2(p1)doy S 04— In (A" 1@d—-1)71,

2" ir

which proves the lemma.
LEmMMA 3.6. Let m,neZ, xeA,, B,c A, and n—m = 2. Then we have

b tta (Ba) a A7
p(x, B)) < 2(/: Sn)a and  p(x, 4,) < ?n mya
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where

d d+ 3a/2 n—1 \a/2
by =ciitd2, g - CaWa—12""7" 2" trycdy
a b

: - B) = .
u—va=ap M= Gy

Proof. It is not difficult to check that a; <a,, by <b, and
513 Iyl ~¢dy < pa(B,). Hence for n—m > 3 we see that Lemma 3.6 follows from
Lemma 3.5. What remains it is to consider the case n—m = 2.

As in the proof of Lemma 3.5 we get

22n 2 2 ‘xIZ)a/Zdy
P(xi Bn)§ (X(TB(O 27— 1y) EB) j‘(l |2 52n=2 2)a/2 Ix— yldj:

For yeB, we have [x—y| > |yl/2 and {y|+2""'r > 2"r. Hence

:2(n—1)a,'2+d 271—1 aIZd 2{1+3o:/2
P, By <2 - (B,
2 gy =2"" 2y 20

It follows that

2n— 1 r)a/z dy
2(n—m)ab—1 X, A" s ( —
2 p( ) Jn (|_V| —on 1 r)a/?. |yEd

2ny d—ld A
@ | —2 2 [sini=2(p,)do,

2n—1r(Q——2_"T)“/2?0
wdm1(2"_1r)“/2j_4—12ﬂ*1, dQ
2"*1]'([1—1) 5 Q"/z
T N s R Y
= (2“—1 r)l—uﬂ(d—l) 1"‘0(5/2 - (d_]-)(l—{x/z)’

=

which completes the proof.

. LemMa 3.7. Let m,neZ, n—m > 2, xeAm, B, c A,. Then we have .

dy
(x,B,)<ceg|x|*¢ — —5 g
( ) 1| l é“"(lyl_z lr) /2 ly|d+ /2—e

where & = min (2/2, u; A1), uy = dw,— 129732 In(Q)d—1)"*(1—/2)" ! and
c; =c,(d, a).

Both the constants ¢ and u, are fixed in the sequel. The constant ¢ has
basic significance in this paper.

Proof Let keN and (iy, ..., iy)eJ(m, n). At first we will prove that
(31) qi,,..., lk(x B) b2(a2 Ad_l)k_lz(m_")aﬂn(Bn),

where a,, b, and u, are defined in Lemma 3.6.
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Let k = 1. Since (i;)eJ, (m, n), we have i; =n and g, (x, B,) = p(x, B,).
Hence the inequality (3.1) follows from Lemma 3.6. Now let k > 2. By Lem-
ma 3.6 and by induction we get

Ail yedi,
< a, Ad*l 2(m——i1)¢ bz(az Ad—l)k—z 2(i1—n)a L (Bn)

and (3.1) follows. ,

Let us recall that for 2k > n—m the set Ji(m, n) is empty, which yields
pi(x, Ay) = 0 for 2k > n—m. Consequently, by Lemmas 3.1 and 3.2 and for-
mula (3:1) we get

[(r—m)/2]

O'(xs Bn) = z pk(xs Bn) = Z Z qi:....,ik(x: Bn)

Zkksr;v—m k=1 (iy,...flx)eli(m,n)
€.
[(n —m)/2]
n—m—k—1
< by (B2 Y. ( - )(azz"*l)"—l.
k=1 -

The last sum is less than

n-—m+1 n—m
Z ( )(a2 Ad-l)k—l =(1+a, lld—l)n—-m < 2n—min(2)azad=1
k=1 \k—1

- The last expression equals 2"~™14“"" gince y, = g, In(2).

Now, let us assume that uy 197! < a/2, ie. ¢ =u; 1271, It follows that
0 (x, B,) < by 41, (B,)27"™¢9, For ye B, we have 2""™ > |y|/(2 |x|), and there-
fore 207 < 2%|yl*~*|x|*"= For yeB, we also have 2"~ 'r < |y|. Hence

B Iy'e—a+a/2 dy
o(x, B,) < b, 2%|x|*"® — >
% B) < b2 21 B{(ryl—z" LRy (y

‘which proves the lemma when g = u, A9 1.

Now we will prove that the lemma holds when /2 < u; 2971, ie. & = /2.

~ This follows from estimates of the harmonic measure of open bounded sets

with C*! boundary and is independent of our preceding arguments. In fact, we
will prove that the lemma is always true if we replace ¢ by a/2 (recall that
A€(0, m/2)).

Let xo = (@, @1, ..., Pa—1) be a point such that 9 =1/4, ¢, == and
consider D = B(0, 1)\B(x,, 1/4); D is an open bounded set with C*** boundary
satisfying 0edD and C,_; = 2" 'rD. Write t = 2" 'r and let ye B,\0C,_;.
By (2.4) and the scaling property of £} we obtain

3" _ bs |x/t>
! £ 332 (/1) (1 + 0% (v/0) Ix/t — y/ul*’

- W< fip(y) =
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where by = b3(D, ). We have &p(y/t) = (ly|—2""1r)/t and |y—x| = |y|/2.
Therefore
2d b3 |x]“/2

(y| =27 Lry2 |y

fé,-.(y) <
We have
P*(X(t¢,.)eBy) = | f&_,(y)dy and o(x, B,) < P*(X(zc,.,)eB,).
Bn

It follows that the lemma is true for & = a/2.

Having Lemmas 3.4-and 3.7 we can now formulate estimates of the har-
monic measure P*(X (zc)e-).

LEmMA 3.8. Let xeC_; and B; = A,. Then the following inequality holds:

dy
P*(X (1o)eBy) < ¢y |x|* 7% — )
I N T i

Proof. By the previous lemma we obtain

where ¢, = ¢, (d, o).

_ P?(X (zc)€ By) dy
2 Y < A—E .8 .
G2 [PEEIEB)ote )< e | G e
Since P?(X (tc)€By) < P?(X (tpo,) € By), the expression on the right-hand
side of (3.2) is bounded from above by

63 cdpef COUOT 1,
L U= L =

Let wus mnotice that for yed, and zeB, we have r—|y=
dist(y, B°(0, 1) < |y—zl, 1/lyl < 4/1z| and r+1y| < |z|+r. Therefore (3.3) is less
than or equal to

dy.

1 1
¢ C: 4d+u/2|x|a—ere - d
' f!l Aj,, =72 12—y Y (= [ 7o

Now we will show that for all ze B; the integral
j 2
a0 YI=1/2 |z —y1* 72
is bounded by a constant which does not depend on z. To obtain this let us put
o =1{yedo: |yl <3r/4} and Af = A,\A4,. For ye A, and zeB; we have
ly—z| = r/4. Hence
dy 4d-al2 o) 3rj4 Qd—l
] Y TN TR RS ) . PV dg
1, =172 12—y 2 (@—1/2)

dz.

d—aj2 d—1 4 d—1
4 ol (3r) Wy 0 _G/Zd' _ 3 Wy

S T | R g,
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Let us notice fhat Ag < B(0, r) = B(z, 3r) and |y|—r/2 = r/4 for ye A;. Con-
sequently,
j. dy 42 dy 12%2 @
w (VI =1/2)% |z -y~ S P seamlz—y a2

Finally, from Lemmas 3.4 and 3.7 and the above estimates it follows that

P*(X (td)e By) = 0o (x, By)+ | P’ (X (zc)e By)do (x, y}
Ao
dy

) ) e < o |x[*Er I(M P2 [yji¥ar

Using estimates of the harmonic measure proved in the previous lemma
and the formula (2.2) we will get estimates of the expectation of the exit time ..

ProPOSITION 3.9. For all xeC/2 we have
E*(tg) < c3[x|*7°r, where c3 =ca(d, o).

Proof. Using basic properties of Green operator (see Section 2) we obtain
a well-known formula

E*(cq) = E* [ 1c(X)dt = [ Go(x, y)dy.

Let us put 47 = {z€ A;: |z| > 3r/2}. For ze A} and ye C we have |y—z| < 2|z
and |y—z| < |z]+r < 5(z|—7). By (2.2) it follows that

P*(X (r)e dy) = j (x, y)j' IHadzdy

dz

—d-a/2 522
> Cy,2707 2572 E¥ (1) j (|z| PV i

On the other hand, by Lemma 3.8 we obtain

P (X (rc)e dy) S e IxI*7%r° | dz

Y (12l =)/ |z|* =/

and the proposition follows.

Using Lemma 3.8 and Proposition 3.9 with again formula (2.2) we can
estimate the density of the harmonic measure f&(z) for all ze V\C and x e C/2.
This gives an extension of Lemma 3.8.

PROPOSITION 3.10. Let xe C/2 and ze V\C. The following inequality holds:

A e
(el =7 |22

fE@) <

where ¢, = c4(d, a).
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Proof For ze A; the inequality follows directly from Lemma 3.8 with
¢4 = C5. Now let B < V\C;. By formula (2. 2) we have

(3.4) P*(X (1c)eB) = _[Gc(x y)_f |a+ad2dy

Let us notice that for ze V\C; and yeC we have |y| < |z|/2 and, consequently,
|y—2z| = |zl/2. Therefore (3.4) is bounded from above by

[ Gebx, ) dy27* Cop [ |2l ™ %dz = 2%° Cy o B (x) |21 ™" dz.
C B B

Hence Pro'ppsitioh 3.10 follows from Proposition 3.9.

Until now we were concerned with estimates of the density fF(z) of the
harmonic measure in terms of the distance |x| from x to the edge 0 of the cone.
Our next aim is to get estimates of f¥(z) which depend also on d-(x) — the
distance from x to the boundary of the cone.

Let I, be a fixed line through 0, perpendicular to the half-line

={x =(0, @1, ---» Pa—1): @1 = 0}. Fix a point x, from the line /; such that
|xo| = 1/2. Let D be a domain with C''! boundary such that

D c B(05 3/4)m{x = (Qn Pis ey (Pa—1): Py < 75/2}

and the line segment Ox, < 0D. Then take E = B(0, 1)\D; E is an open
bounded set with C''! boundary. The density of the harmonic measure for
E satisfies the following inequality (see (2.4)):
/2
i@ < ¢s 38" () . xeE, zeint(E).
042 (2) (1 + 092 (2)) Ix — 2/

The constant cs depends on E and «, but since E is fixed in each RY, we write
cs = cs(d, o).

Let yedV, y # 0, and denote by I, the line determined by O and jy.
Consider a line I3 through y, perpendicular to [, and lying in the same plane as
I, and h,. The point y divides /5 into two half-lines. One of them, which will be
denoted by h,, is contained in V*. By h; denote a half-line beginning at 0,
parallel to I3 and with the same direction as h,.

Let T, be a fixed rotation around 0 mapping x, to y/(2|y]) and k, to hj. It
follows that the line segment 0(y/2]y|) < 0(T;, E) and T, D < V*, so we have
VnB(0, 1) < T,E.

For xe T,E and zeint((T, E)) we have

Cs 5212 (7;_ ! x)
84 (T, 1 2) (1 + 0% (T, 1 2)) | T x— T, L 2ff
_ Cs 5%213(35)
042 (2) (1 + 032 (2)) Ix — 21

(39 fEr@ =T <
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Let us define a set E(m, y) = 2"rT,E for meZ and yedV, y #0. For
abbreviation we put ¢t = 2™r. It is clear that C,=VnB(0,t)c E(m, y) <
B(0, t), and also the line segment 0, ty/(2|y|) < 0E (m, y). Now, let xe E(m, y)
and ze V\B(0, t). By the scaling property of the density of the harmonic mea-
sure and (3.5) we obtain

cs 0925 (x/1)
t* 0%2: (2/t) (1 + 6% 25 (2/1)) I/t —z/tl?
Notice that for all B< R%, 5> 0, and xeR? we have J,5(sx) = sdz(x). Thus

5Tyg(x/t) = Ogum,y (¥)/t. For ze VA B°(0, t) we also have 07 z(z/t) = (Jz|—1)/t
and 1+46¥%(z/t) = (2t)%?|z|”>. Consequently, we get

fEJIC(m,y) (Z) =t T:f,/,tE(Z/t) <

5 Sy (X) @+ L2
(el =27 rf 2 e [x— 2

(3.6) Semn (@) <

where xe E(m, y) and ze V\B(0, 2™r).

LemMA 3.11. Let k,meZ, m< —1, and xeA,, B V\Cys1, k= m+2.
Then there exist constants c¢ = c¢(d, @) and c; = c,(d, o) such that

¢y A9 52 (x)
W‘

pix, By < [ ST

(=27 L2 gt dz and p(x, A) <

Proof. Let x* be such that |[x—x* =dy(x). Of course, we have
0 < |x*| < |x] < 2™r and 0, 2™rx*/|x*| < OE (m+ 1, x*). Therefore dgg,+ 1, (x) =
Ix—x*| = 6¢c(x). From (3.6) it follows that

Cs 15%!2 (X) (2m+2 r)a,:'z
(=27 T 27— 2

(3'7) féxm+1(z) S f.‘ﬁm+ 1,x%) (Z) <

where ze V\C,,+,. The first inequality in the assertion of the lemma follows

directly from (3.7). It suffices to notice that p(x, B) = [, f&, ., (2)dz, 2" 'r < |x|

- and |z| € 2|x—z| for ze B. The second inequality follows from the first one.

Indeed, we have

cs |X|** 6¢ (x) ¢ [X|*? 6¢* (x) @ty
<

p(x, A ) < m P = — — 2 Z.
* Aj,c(lzl—2 Ly gt e @ty 4 (2 =25 2 g

In the proof of Lemma 3.6 it was shown that the last integral is i:)'ounded from
above by w;_(d—1)"1(1—a/2)"* 1971, We also have |x]¥? < r¥/(27™*|x|%?),

- and the second inequality in the lemma follows.

Now we are able to prove our main upper bound estimate for the density
of the harmonic measure of the bounded cone.
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THEOREM 3.12. Let xeC/2 and ze V\C. Then we have

82 (9 2~
5P @R

Proof Let meZ, m< —1, xe 4,, and B = V\C. By the strong Markov
property we get

(3.8)
P*(X (r0)€ B) = P*(X (tc,,, ) € B) + E* (P*<m+2) (X (zc)€ B); X (ic,,.,) € 4o)

ff@<c where ¢ = c¢(d, ).

-1
+ Y EX(PXtem:d(X (10)eB); X (tc,.,,) € Ax) = [+ 11 +111.
k=m+2
We have |x|2 < |x[¥2~*+* and |z|]—2™"1r = 8¢ (z) for ze V\C. Therefore, by
Lemma 3.11 we obtain

Ce x| 7" r* 0 (x)
3.9 1= , B) <
( ) p(x ) ‘j; 5%2 (Z) |Z|d +af2

Now we will estimate II. Noticing that if m = —1, then II vanishes, we
assume that m < —2. In order to estimate II we will divide it into two parts.
We have

H=§ | RE@dzdpx, 0+ [ fE@dzdp(x,y)=1V+V.

Ao Bn(V\Cy) Ao BnAy
For zeV\C; and ye A, we obtain
1 G 10 42'r
(2P =P 1=y = o @)z

&) < fhon(2) =
To get the last inequality it remains to notice that |z—y| > |z|/2. Consequently,

cdzdra
IV< p(x, A ) aa—u
° Bn(f[\cl) 5(!2 (2) |Z|d+ 12

Noticing that 2™ < 2*|x|*”*r*™* we obtain by Lemma 3.11

CZC7 21 +and—1 5%[2 (x) |xla/2—ara

dz.

3.10 IV < dz.

( ) Bn(V\C1) 5Z[2 (Z) |Zld+a"2

From Lemma 3.11 and the inequality f&(z) < fion(2) (for ze V\C) we get
a/2 Saf2 d(2_ [y|2\%/2

(311) v < j‘ Ce |x| 6Cl (x) j' Ca(r Iyl ) dZdy

a0 Y1 =2" L2y er2 Ly (22 =722 |z — y)*

For yeA, and zeA; we have r+|y| <|z|+r, 1/lyl <4/|z| and r—|y| =
dist(y, B°(0, 1)) < |y—zl. For m< —2 we also have [y|—2"*'r > |y|—r/2.
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Therefore, the right-hand side of (3.11) is bounded from above by
J. 1 chee 442 |x|%2 6Y2 (x)
S A () E T e P P

In the proof of Lemma 3.8 it was shown that there exists a constant
cg = cg(d, @) such that

j 2 <e
ao(VI—r/2 2 |y—zft~e2 = 7F

Hence we obtain

Vo Choscs R xR 88 ()
Sona (A=

According to (3.10) and the last inequality there exists a constant cq = ¢o(d, @)
such that

j. dz
r 3592 (2) |72

Our next aim is to estimate ITI. Let us notice that if m > —2, then III
vanishes. Therefore we will assume that m < —3. We have

(3.12) I = IV +V < co 642 (x) [x|*2

M= Y {f2@dzdp(x, ).

k=m+2 Ax B

For ye Ay, m+2 <k < —1 and zeV\C we get by Proposition 3.10

Cs Iyla:—s ra Ca 2k(u—£) ra

(3.13) @< 5%/2 ) |Z|d+a/2 = 5%/2 ) |Z|d+¢/2'

~ The last inequality follows from the fact that [y] < 2*r for ye 4;. According to
(3.13) and Lemma 3.11 we get

c42k(a g) r* d (
III < dzdp(x,
- %Jiécﬂ( Yoz 24P 05: 9)
c ridz - _
= 2K p(x, 4
S a2, )
<C4C7ra’1d_1‘sact/2(x)§ dz _Zl Jkla=e) ym=k)a_
lea/Z 352/2 @ |Z|d+a/2k=m+2
The last sum equals
-1 1_2—5(—m-—2) 28
. ma —ke _ Hma (—m—2)e S 2m(a—a)—2s .
3.14) 2 Z 2 2m=2 T2 >_1

k=m+2
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It is not difficult to see that 2°—~1 > min (2¥2—1, a, A%"'), where a, is defined
in Lemma 3.6 and is such that u; = a,In(2). Consequently, the right-hand side
of (3.14) is bounded from above by

C102™9 C10 2% |x[* 7"
Ad—l = ra—e,ld—l ?

where c;9 = ¢40(d, ®). It follows that

dz
5@ 2

I < c4cqcq02° O (x) x|~ [
B

which with (3.8), (3.9) and (3.12) proves the theorem.

Having Theorem 3.12 we can strengthen the estimate of the expectation of
7¢ which was given in Proposition 3.9. The proof is almost the same as the
proof of Proposition 3.9, so it is omitted.

THEOREM 3.13. There exists a constant ¢ = c(d, o) such that for all xe C/2
E*(tc) < c0gd? (x) x> % .

Now our aim is to obtain lower bound estimates of E* (t¢c) and f&(z). As in
the proof of the upper bound estimate we will need some simple inequalities for
a probability of a single “jump” p(x, ). For meZ let us put

A ={x=(0 @1, .., @a=1): €[2"7 ', 2°7), 91 €[0, 3/2)}.
LemMA 3.14. Let m,neZ, n—m > 2, xe€ A,, and B, = A,. Then we have

by 6%%(x) . dz a, A4 1+% 592 (x)

2(n—ma leaz/z 1:! I_ZF and P (xs An) = 2 —m)a |x|a/2 s

p(x, B,) >

where by = c22°7%379 %sin* ) and a; = Aw,_,In(2)2342723 " d-agdat2y
(d=1)"1. If xeA,, then we have
bl dz -
p(x, B,) = S § P and p(x, A,) =

Bn

a, ld—1+u
2(n—m)¢ ?

where a;, = cdwy_,1n(2)234/2-25-W+ra)2 g=d-at+2(g_ 1)=1

Proof Let r, = 2" 2rsinA. At first let us consider the case &y (x) < 7.
Let x* be the point on dV such that |[x —x*| = d,(x). It is easy to see that the
half-line | = {z = (0, @1, ..., ®4—1): @1 =0} is contained in the plane deter-
mined by points 0, x and x*. Denote by X the point of intersection of ! and the
line determined by x, x*. Let x" be the point within the line segment Xx such
that |x'—x*| =r,. Since

|X—x*| = [%]sind > |x|sind = 2™ 1rsind > 7,

10 — PAMS 192
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such a point exists and is easy to notice that d, (x') = [x"—x*|. Consequently,
xeB(x', r,) < V. If yeB(x, r,), then

] < X +7m < X427 < 2™r+2™ " 1rsind < 27y,

so we also have B(x', r,) < C,+1. It follows that

A2 —ix—x'|*¥?*dz
X, Bn = P (X TB(x Fm EBn = 7 o, *
P( ) ( ( B( )) ) é‘n(lz—x|2—"3u) /2 |z—x|”

For ze A, we have |z—x| < |z|+1x| < 3]2l/2, [z—X'| < |z—x|+|x—.x’| < 2|z
and r;—|x=x'| = éy(x). Therefore

p(x, B> cirif? 2737832 (x) [ |2] ™ dz.
Bn

Notice that for ze A, we have r%2|z|~* > 273%2|x|~%2 2m~magin®/2 2 Hence

(3.15)  p(x, B,) = c247342 379532 (x) |x|~¥2 2" "M gin®2 }, [ |z| % dz.
Bn

As in Lemma 3.5 we get

2np A2

;IZI“'dz=ma-1 [ o lde [ sin® 2 (p)de;.
n 0

2n-1p
Since sin ¢ > (23%/n) ¢ for @<c[0, n/4], we obtain
B 23d/2—3 Al2 B Wy—1 ln (2) 23d/2—3 /’Ld— 1
Jﬂ|z| dz > wy—; In(2) e g 0t 2dp, > PTG T)
Noticing that sin®2 1 > 2*n~*A* we get from (3.15)
ngd_l 111(2) 2311/2—30:/2—"2 5%:/2 (x) I{d—1+a
3dnd+a—2(d_1) |x|rz,‘2 2(nmm)u *

(3.16) p(x, A,) >

Now let us consider the case dy (x) > r,. When yeB(x, r,), we have

1y < [x]+7, < 2™ 17 and, consequently, B(x, r,) < C,,+1. Hence

cdr dz
(2= x> =2y |z —x|*

Since for ze A, we have |z—x| < 3(z|/2 and 75, |z] ™% > 2"~ 2%5in* ], we get
(3.18)  plx, B) =iy 2042374 [ |z 7¢m gy
Bn

> cd 247374762 (x) [x| "2 2" Mesin® 4 | |2~ dz.
B,

Hence, replacing sin*1 by 2*n~*1* we obtain
cAwy_11In(2)239272 542 (x) p4~1te

(319) p(x’ A") = 3d+and+a—2(d__1) lxlzzlz 2(n~m)zz
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Consequently, (3.15), (3.16), (3.18) and (3.19) give the first two inequalities in the
lemma.

Let us notice that if x € 4,, then &y (x) > |x|sin (4/2) = 2™ ' rsin(4/2) = rp.
Hence the third inequality in the lemma follows from (3.17) in a similar way as
the inequality (3.18). To get the fourth inequality notice that for xe A, and
ze A, we have

|z—x|? = |z|? +|x|> —2cos (¥ x0z) |z| |x] < |z|*> +[x]* < 5|z|*/4
and from (3.17) we finally get

cﬂ W41 111(2) 23d/2-2 ld*l-ﬁz
5(d+a)/2 Jrd+:z—2 (d— 1) 2(n—m)u °

p(x, Ap) > chrs 204540 || =4% 4 >

n

LEMMA 3.15. Let m,neZ, n—m =2, x€ A,, and B, c A,. Then we have

a(x, By) = ¢ 647 (%) Ix|>7% f |2/ ¥ dz,
By
where & = u A9714% uy, = clwy_(In(2)234275 5@ d- D2 gmd=at2(d_1)"! gnd
¢, =2 %a; by/(12a,) (ay, a,, by are the same as is Lemma 3.14).

Similarly to & and u; the constants ¢ and u, are fixed in the whole
paper. Let us notice that u, =5a,/8. Easy computations show that
Awg_d—1)" < af2 \/E), U, (mf2)8 1 < af(4 ﬁ), and hence & < a/2.

Proof At first we will prove that for xeA,, keN and (i, ..., i)e
Ji(m, n) we have

bl (a2 /ld—-1+a)k—1 dz

2(n —m)a I}“" lzld .

(3‘20) 4i,,..., ix (x, Bn) =

For k =1 we have i; = n and g;, (x, B,) = p(x, B,), so (3.20) follows from the
third inequality in Lemma 3.14. Now let k > 2. Let us recall that if (iy, ..., i) e
Ji(m, n), then n—i, > 2 and (i, ..., i) € Jx—1 (i1, n). By the forth inequality in
Lemma 3.14 and by induction we get

iy

- . azzl"_”“bl(azll"_”“)"_z dz
= P'(x, Ah) ylel:gl ¢1i2 ..... ik(y: Bn) = 2(,'1—",)“ 2(,,—1'1)0, ﬁ‘"w,

which proves (3.20).
Now we are going to prove that for xe 4,,, ke N and (iy, ..., i) e Ji(m, n)
we have

' /2 d—1+ayk—1
(3.21) @iy, (X, By) = a, by 832 (x)(a, A 9 | dz

ay |x|*1? 2= me FRTTN
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For k =1 we have g;,(x, B,) = p(x, B,) and (3.21) follows from the first in-
equality in Lemma 3.14 and an easy inequality a; < a,. Let k > 2. By the
second inequality in Lemma 3.14 and by (3.20) we obtain

i1 ..... :k(x Bn)> _‘.qu ..... lk(y! n)dp(x y)

iy

> p(x Au) ln-f 422 ..... ik(ya Bn)

.VE 131
a, Ad—1+a: 5%2 (x)b1 (azld—1+¢)k—2
|xla:/2 2(i1 —m)x 2(n —i1)e 3, |Zld»,

=

and (3.21) follows. Consequently, for xe€ A4,
[(n—m)/2]

(322) o(x,B)= Y Y Gue.n(x By

k=1 (i1yeees ix)eJk(m,n)
> a blfyz (—x) _df;("_m)/z] n=m—k—1 (@ A~ 1+ 1,
a |x|al 2(" m)a [Zl k=1 k - 1

Let us put ¢ = a, A" 1** and w = [(n—m—2)/4]. We have [(n—m)/2] = 2w+1
and n—m > 4w+ 2. Hence the last sum in (3.22) is bounded from below by

Zwtl 4w—(k—1)) -1 _ o <4w ) id <4w l)
()= (")

It is not difficult to show that

dw—1 3\ 2w
>
l 2/\ 1
for I < wand I, we Nu{0}. According to the remark before the proof we have
c=A*""1%28u,/5 < 1/2. Hence

225G ()7a03”

Since ¢<1/2, it is easy to mnotice that 1+3¢/2 > (14+5¢/8)®> and
(1+5¢/8) = 258, We also have & = 5¢/8, 4w > n—m—6 and (1+5/16)° < 6.
Consequently, the last sum in (3.22) is bounded from below by

1/ 3N _1f 5\ ™5 1
. _ Z >— - > -— (n— m)e
(3.23) 2(1+2c> >2(1+8c) > 552

It is clear that 2"™™ < 2|z|/|x| for ze 4,, x€ A,,, which yields
2(n—m](a’—a) 2 2—alx|a:—s’ Izls'—a.

Thus the lemma follows from (3.22) and (3.23).
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Let us notice that apart from its vertex the bounded cone C has other
“singularities” at ¥V @B (0, r) (the points for which ¢ =r and ¢; = 4). It was
not the aim of the paper to consider this kind of singularities. Therefore, in the
following estimate of P*(X (tc)e By) (where B; = A,) we consider only such
sets B; that are “far” from dVndoB(0, r).

LemMA 3.16. Let xeC_,. Then we have

dz
_ px > al2 a/2—e et [ T
P (X (TC) € Bl) () 5(! (X) le le 60(:!2 (Z) |Z|d+al2

for By  A\S, where
S={z=(e, @1, ..., @a-1): e€[r, r+(rsin1)/8), 9, €[4/2, 1)},
¢, =min(cy, ¢3)ctw, 2797523744 " sin¥2 4, ¢y =279 4 5in%2 ),
and c, is the same as in Lemma 3.15.

Proof. Set s = (rsinA)/8. At first assume B; = {zeA,: |z| = r+s}. By
Lemmas 3.4 and 3.15 we get

P*(X (t¢)e By) = o (x, By) = c1 6> (x) X2~ r* | 'l“;?;ﬁ'
By
We have |z|7%% > 27225;%2(z)sin¥2 1 for zeB,. Let us also notice that
cdwy < 1. Hence the inequality in the lemma holds for all sets B; which are
contained in {z€A,: |z| = r+s}.

Now our task is to prove the lemma for B, c {ze A;\S: |z| <r+s}. Let
us assume that xe C_,. Then choose zo€ 4,\S such that |zo|e(r, r+5). Let
yo be the point belonging to the line segment 0z, such that |y,| = r—s. Notice
that dy (yo) = sin(4/2)r/2 = s, and so B(yy, 5) = Ao. Put w = (j2o| —7)/2 < /2.
Since oy (zo) = rsin(4/2) = s, it is easy to check that B(zy, w) = A,. From Lem-
ma 3.4 we obtain

(3.29) P*(X (xc)e B(zo, W)) = [ P?(X (zc)e B(zo, W))do (%, ).
) i

For yeB(yo, s/2) we have P*(X(tc)eB(zo, W) = P’ (X (tp(yo.) € B(zo, W))-
From this and Lemma 3.15 we infer that the right-hand side of (3.24) is boun-
ded from below by

i =ly=yoly? . c1lx¥? 7% ¢ (x)

B(y0,5/2) B(zo,w) (Iz— yo|2 — 52y 2 ly—z Id |Y|d rase

(3.25) dy.

For ze B(zo, w) we have |z—yo| —S = Opy,.5 (2) < Ongo,s) (20) + 12— 2ol The last
sum is smaller than 3w < 36¢(2), s0 |z—yo|—s < 49¢(2). For ze B(zg, w) and
yeB(yo, 5/2) we also have |y—z| < 3s, |z—yo|+5 < 4s and 52— |y—y,|* > s?/4.
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Hence (3.25) is bounded from below by

cq 327 x| 7% 6% (x)r¥ /2 PR dz

22a Sa/2 34 Sd Boos/2) yB(z{,w) 5%/2 (Z) |z|d+a/2 -
i Since m(B(yo, 5/2)) = s*27wad ™" and s¥?r~ %2 > 272*sin*? 4, the lemma is
true for B, = B(zy, w) if xe C_,. Consequently, the lemma holds for all sets
‘ B, c {z€A,\S: |zl <r+s} when xeC_,.

It remains to consider the case xe A_,. This is left so far aside since we
could not apply (3.24) because o (x, 4p) =0 for xe A_;. We only give main
ideas of the proof in this case. Choose s, zq, yo and w as in the case xe C_,. Let
us adopt the notation from the proof of Lemma 3.14. In that notation
r—_; =27 3rsinA. As in Lemma 3.14 at first assume Jy (x) < r_,. Consider the
ball B(x', r_,) = C and notice that for ze B(x', r_,) we have |z| < |x|+2r_; <
3r/4, so B(x', r—1)nB(yy, s/2) is empty. Consequently, by the strong Markov
property we have

(3.26) P*(X (1c)€ B(zo, W)) = E*(PXt2r-0)(X (1) € B(zo, W)))

j‘ P(X(TC)EB(ZOa )) r-;(x_x,s y_x,)dy
B(yo,s/2)

\%

For ye B(yo, 5/2) we have [y—x'| < 2[y|, so
042 () B2 (x) [x|¥2 % sin%2 A

,2d+¢x|yld+¢ = 2d+3rz|y|d+rz—s’

327) P,_,(x—x,y—x)=

Now assume dy (x) > r—, and consider the ball B(x, r_;) = C. As before,
B(x, r—1)nB(yo, 5/2) is empty and we get

(328) P*(X(zc)eB(zo, W)= [ P’ (X(zc)eB(zp, W)P._ (0, y—x)dy.

B(yo,s/2)
. For ye B(y,, 5/2) we have
cdrey 2 642 (x) |x|*? ¢ sin¥/? A
(329) Pr—1(0’ y—x) = 2d+a|y|d+a = 2d+4¢ |y|d+a—a’

From inequalities (3.26)(3.29) it follows that P*(X (tc)€ B(zo, w)) is bounded
from below by (3.25) with ¢; replaced by c;. This proves the lemma.

We can now formulate a lower bound estimate of the expectation of the
exit time from the bounded cone C.

THEOREM 3.17. There exist a constant ¢ = c(d, , A) such that for all xe C/2
| E*(10) > ¢ (x) >~

As a constant ¢ one can take ¢ = ¢y C;14797% where ¢, is from Lem-
ma 3.15.
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Proof. The proof is almost the same as the proof of Proposition 3.9. Let
us put Ay = {ze€A,: |z| > 3r/2}. For ze A} and yeC we have |y—z| > |z|/4.
From (2.2) it follows that

' dz
E*(1¢)Caod®™® | — = 2 j'Gc(x, y) j ‘H_adzdy P*(X (1c)e AYy).
Ay |z] —z]

On the other hand, by Lemmas 3.4 and 3.15 we get
P*(X (zg)e AY) = o (x, A1) = ¢y 8 (x) x>~ ¢ _|'|z|”d *dz

and the theorem follows. -

The foliowing theorem is our main lower bound estimate of the density of
the harmonic measure of C.

THEOREM 3.18. We have

. C’ 5«;{/2 (JC) leajz—a’ re
f&E@) = 5?2 (2) |zld+a/2

for all xeC/2 and ze V\(CUS), where ¢ =c'(d, a, i) and

S={z=1(0, ¢1,..., a-1): 0€[r, r+(rsin })/8), @, e[4/2, V)}.
Moreover, the inequality is true for all ze V\C when 642 (2) is replaced by |z|"/*.

As a constant ¢’ one can take ¢’ = min(c,, ¢C,,2797%), where ¢, is from
Lemma 3.16 and ¢ is from Theorem 3.17.

Proof. For ze A;\S the inequality follows directly from Lemma 3.16.
Now let B <« V\C,;. By formula (2.2) we have

(3.30) P*(X (tc)eB) = ch(x D) j IMdzdy

For yeC and ze V\C; we have |y—z| < 3|z|/2 and |y —z| < 3d¢(z). Therefore

dz

Px(X(’L'C)EB) Cda2d+a/23 d— a:Ex TC)IW

Applying Theorem 3.17 we see that the inequality in the theorem is true for
ze V\C,. To get the last statement in the theorem assume that B = V\C. Then
again (3.30) holds and for yeC and zeV\C we have |y—z| < 2|z|. Hence

P*(X (t)€B) > Cya 2™ *E*(z) [ |2| 4 " dz
B

and the theorem follows by Theorem 3.17.

Now, at the end of this section, let us give some comments on the results
which are obtained. One of the aims of this paper was to investigate how
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estimates of the harmonic measure, the Green function and the expectation of
the exit time for the bounded cone differ from those for open bounded sets with
C'! boundary. To simplify the discussion we focus on the estimates of the
expectation of the exit time. If D is an open bounded set with C''! boundary,
the inequality (2.5) shows that E* (zp) behaves like 642 (x). Unfortunately, we do
not have sharp estimates for the bounded cone C, since the methods we use do
not give optimal constants ¢ and &' (in particular, ¢ < g). On the other hand,
both & and &' tend to 0 when A tends to 0. Therefore, for fixed 4 and a there
exists a sufficiently narrow opening A, of the cone C such that for all 1e(0, 4¢)
we have ¢ <.a/2. Theorem 3.13 then shows that for such “narrow” cones the
lower bound inequality in (2.5) does not hold. To see what are the values of
¢ and ¢ and how “small” A must be to have & < «/2 we made a numerical
calculation (based on explicit expressions for the constants). Ford =3, a =1
and 4 =7/12 we have &~ 0.34, ¢ ~ 0.000028 and for 1 = n/180 we have
&~ 0.0015, & ~84-107%,

4. Green function. In this section we obtain estimates of Green function of
the unbounded and bounded cone. This is done by applying the results from
the previous section.

At first we need an auxiliary estimate for Green function for a ball. The
following lemma is a direct consequence of estimates obtained in [15].

LeMMa 4.1. Let ueR" and s > 0. There exists a constant ¢; = ¢, (d, a) such
that for any ve B(u, 2s) we have

_f Gpu2s) (U, 2)dz = ¢y 5% 6Y2 25 (v).
B(u,s)

Proof. From Theorem 3.4 in [15] we have

1 57!(%4,23) (U) 5%(%4,.%) (Z))

lo—z?"* lo—z|

(4.1) GB(M,ZS) (U, Z) > Cmin(
for v, z€ B(u, 2s), where ¢ =c(d, a). For veB(u, 2s) and. zeB(u,s) we

obtain

1 1 > 5%.,2@(")
Iv_zld—a /(4s)d—a = 4dsd—a/2

Hence (4.1) yields

5?!(?;,2;) (v) 67)’(?1,25) (2) > 5%(%,23) (v) 5%/
lv—2z|¢ - 445t

and

{ Gauze(v, 2)dz > c479s2 74552 1 W) wad ™1 5%,
B(u,s)

which gives our claim.

Now we prove the lower bound estimate of Green function for the boun-
ded cone. ‘
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PROPOSITION 4.2. There exists a constant ¢, = ¢, (d, o, A) such that for all
x, yeC/2 we have

0¢* (x) 6¢* (¥) (min (1l Iyl))“’ 2 “*') _

1
Ge(x, )= c min( —
¢ V2 M\ Zyi== T x—yf  \max(ix], yl)

Proof. Let x, ye C/2. Since G¢(x, y) = G¢c(y, x), we may and do assume
that |y| = |x|. We will consider two cases: 4|x| < [y| and 4|x| > |y| = Ix].

At first let us assume that 4 |x| < |y|. We define U = VnB(0, |y|/2). Let us
notice that xe U/2. By formula (2.1) and Theorem 3.18 (applied for U instead of
C) we obtain

@42 Gclx,y) J Gele, y) f5(2)dz
UI:
> ¢ 8> (x) IxI 7% |yl 27% | Gel(z, y)lel ™ dz.
Ue

We will now proceed similarly to the proof of Lemma 3.14. Set s = (|y| sin A)/8.
We begin by considering the case dy (y) < 2s. Let y* be the point on 6V such
that |y—y*| = 6y (y). It is easy to see that the half-line [ = {z = (¢, @1, ...,
©4_1): @1 = 0} is contained in the plane determined by points 0, y and y*.
Denote by j the point of intersection of / and the line determined by y, y*. Let
y' be the point within the line segment jy such that |y’'—y*| = 2s. Since
|§—y*| = |P|sin A > |y|sin 4 > 2s, such a point exists and it is easy to notice
that 8y (y") = |y'—y*. Consequently, yeB(y',2s) < V. If zeB(y', 25), then
|z} = lyl—ly—z| = |yl —4s > |yl/2, so we have B(y',2s) = U°. On the other
hand, for ze B(y', 2s) we have |z| < |y|+4s < 2|y| <, so B(y', 2s) = C. Hence

4.3) [ Gz, Y2l™47"dz > [ Gpy,a9(z, y)lzl ™" dz.
UC

B(y',s)

From Lemma 4.1 and the inequality |z| < 2|y| (for ze B(y', 5)) we obtain

4.4 I GB(y 2s)(z Nz~ d-adz 22797 %¢ v~ d-a a/ztu(y 25)(}’)

B(y',s)

We have 8,25 () = dc(y) and [y| < 2|x—y| (because we have assumed that
4]x] < |y|). Therefore (4.2)-(4.4) yield

@45)  Ge(x, y) = ¢ ¢ 272473 (sin¥? 2) 6¢ (x) 8¢ (y) x|~ |yl =2 [x —y| 7.
Now let us consider the case doy(y)=2s. If zeB(y, 2s), then

lz| = y|—2s > [y|/2 and |z| < |y|+2s < 2]|y| <1, so B(y,2s) =« CnU". From
this and Lemma 4.1 we obtain

46) | Gelz, y)lzl™* %dz
Uec

_f Gay.29 (2, Y)lzI™ medz 22740 Iy~ d-e 1/2511(;: 29 (9)-

B(}’ 5)
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We have 05,25 (¥) = 25 = (|y|sin 1)/4 > 6c(y)/4 and as before [y| < 2}x—y|.
Hence from (4.2) and (4.6) it follows that

Ge(x, y) > c'ey 272474 (sin™? 1) 8¢ (x) 6F2 (y) Ix|*2 ™ [y =2 [x — y| 7.

When 4 |x| < |y|, the inequality above and (4.5) give the assertion of the propo-
sition.

Now we assume 4 |x| > [y| = [x|. In this case the proposition follows from
estimates of Green function of open bounded sets with C'-! boundary. Let
us put
LT Ui={z=1(2 ¢1,.--» 0a-1): 1/8<0<5/4,0< ¢, <1}
and

Uz = {Z = (Q, D1y eeey qu_]_): 1/16 << 3/2, 0< P < A}.
Let D be a fixed domain with a C'! boundary such that U, = D < U,. Let us
consider the domain |y| D. We have |y|D < |y| U, = B(0, 31y|/2), so |y|D < C.
It is also clear that x, ye|y| D. By the scaling property of Green function and
the inequality (2.3) we obtain

47 Gc(x, ¥) = Gypp(x, y) = YI* 7 Go (x/Iyl, y/1¥))
1 042 (x/I1y) 6% (y/ Iyl))
Ayl =yl e/l =iyl

_ cml-n( 1 , Sfin () Ol (J’)),
Ix—y)¢~® Ix—yl*

=>c |y|“““min(

where ¢ = ¢(D, ). Let us notice that dy,p(y) = min(dy (y), dgr\yipy () We

have 8y (y) < |yl and &, p) (¥) 2 |yl/4. Hence 8y, (y) = min (Jy (), [y|/4) >

dy(y)/4. But Oy (y)=6c(y), so finally 6,p(y) = dc(y)/4. Similarly,

Ojyip () = d¢(x)/8. Therefore, when 4|x| > |y| > Ix|, the proposition follows
from (4.7).

We will need the following auxiliary fact:

LeMMa 4.3. Let D be an open nonempty bounded set with C*-' boundary. For
Re(0, ) let us define W = {zeD: dist(z, D) < R}. Then we have

dz
——— < C3, Where ¢3 =c3(D, R, d).
-,:‘;:-6%2 (z) 3 3 3( )
Proof. It is possible to obtain the above result directly, but it will be

convenient to use the estimate (2.4) instead. Fix x,€D. From (2.4) we have for
any ze W

¢33 (xo) N 5% (xo)
552 (z)(1+ 832 (2)) Ixo—zI*  8%2(2)(1 + R¥2)(diam (D) + R)"’

5°(2) 2
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where ¢ = ¢(D, «). It follows that

c64? (xq) i dz
(1+ R*?)(diam (D) + R) w 98> (2)’

12| fr@dz >
w

which completes the proof.

The following proposition may be treated as the local version of the upper
bound estimate in the inequality (2.3).

PROPOSITION 4.4. Let B be an open set, B+# R°, and D < B be an open
bounded set with C*'* boundary. For s > 0 define U = {zeD: dist(z, B\D) > s}.
Then there exists a constant ¢4 = c4(B, D, s, a) such that for all x, ye U we
have
oF* () 04> ()

=yt

This estimate is especially interesting for such x, ye U which are “near”

dDNOB. Of course, in general, dDNJB may be empty.

Gp(x,y) S ca

Proof. Let x, yeU. For x = y the proposition holds trivially, so we may
and do assume that x # y. By the definition of Green function we get
(4.8) Gp(x, Y)—Gp(x, y) = [ u(z, y)dop(2)— | u(z, y)dwi(2).

De Be
We have [, u(z, y) dwj(z) = E*u(X (zp), y) adopting the convention (see [5])
that u(X (tp), y) = 0 for 73 = c0. According to Lemma 2.4 in [15] we have

E*u(X (zp), ) = E*(EX*®u(X (z5), y)) = | [ u(w, y)dw} (w)do} (2).

De B

Hence (4.8) yields
49)  Gp(x, )—Gp(x, y) = | (u(z, y)— [ u(w, y)doi(w)) /5 (2)dz.

pe Be
We next claim that
(4.10) u(z, y)— | u(w, y)doj(w) = Gg(z, )

, Be
for ze D except possibly on a set of Lebesgue measure zero. For ze€ B, (4.10) is
exactly the definition of Gy (z, y). For ze B° we have G(z, y) = 0, so we want
to show that also the left-hand side of (4.10) equals zero. To do this we need to
introduce the definition of regular points.

For Ac#(R% let us put T,=inf{t >0: X,eA}. For each xeR’
P*(T, = 0) is either zero or one according to the Blumenthal zero-one law.
A point xe R? is called regular for Ae 2 (R%) if P*(T, =0) = 1, and x is called
irregular for A if P*(T, = 0) = 0. We denote by A" the set of all points which
are regular for the set A. It is known [5] that the set A\A" is of Lebesgue
measure Zero.
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For ze(B°)" we have | 5o 4 (W, Y)dwk(w) = u(z, y). Since B°\(B?Y is of Lebes-
gue measure zero, (4.10) holds. By (4.9) and (4.10) we obtain

(4.11) Gs(x, y) = Gp(x, y)+ | Gy(z, y) 5 (2) dz.
DC

From (2.3) we have
8% (x) 652 (3) _ 0H>(x) 9§ (¥)
7S¢ d
, x—yl Ix—yl
So, having (4.11), it is clear that to prove the proposition it suffices to show
) . 5::12 x) 5% 2
(4.12) § Gelz, ) 3 (dz < a M
B\D lx—yl

where a; = a, (B, D, s, a). To obtain (4.12) we first show that there exists a
constant a, = a,(B, D, s, «) such that for all ze B\D we have

(4.13) Gp(z, y) < a2 037 ().

When d5(y) = s/2, (4.13) is easy. Since ze B\D and ye U, we have |z—y| > s.
Consequently,

GD(xa y) ¢

, where ¢ =c(D, a).

Ay Ajq 5ﬂ2 » 202 Ayq 5%2 »
o , < A ]
=y S @Ry S S

We now turn to the case dz(y) < s/2. Let y* be the point on 4B such that
ly—y*| = d5(y). We have y*e€B(y, s). Since yeU, the set B(y, s)n(B\D) is
empty, which yields y*edD.

Now we recall one of the geometric properties of the open bounded set
with C'! boundary. Namely, it is well known (see [18]) that there exists
a constant roy = ro (D) such that for any we oD and r; €(0, ro] there exists a ball
BW, ry) (with w' depending on w and r,) such that B(w, r;) c R®\D and
wedBW, ry). '

Set r; = min (ro, s/4). Then there exists y’ such that B(y', r;) = RA\D and
y*e€0B(y', r1).IfzeB(y, ry), then z—y| < |z—y*|+|y*—y| < 5,50 B(y', r{) =
B(y, s) = (B\D). Since B(y', r,) = R"\D, we obtain B(y, r,) < B

We also need an estimate of Green function of a complement of a ball. Let
weR? and t > 0. According to Lemma 2.5 in [10] there exists a constant
as = as(d, o, t) such that

GB(Za y) <

5%(%1»,:) (v)

GB"(w,t) (u, U) < das lu—w.|“/2 lu—vld_alz,

u,veB(w, 1).

Applying this estimate to Gge,,)(z, ¥) We obtain

6%(&',»'1)(}")

(4.14) Goeyn (2, Y) < a3 lz—y¥? lz—yi 2
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where a3 = a3 (d, a, ry). Since B(y', r;) < B, we have Gg(z, ¥) < Gpeyr,ry) (2, V).
We also have dpy .,y (V) = |[y—y*| = dp(y). Recall that [z—y| > 5. Notice that
ly—=yl<ly—y*+Ily*—y| <3s/d <|z—yl. This implies |z—)|<|z—y|l+
+|y—y|<2|z—yl. Hence (4.14) yields Gg(z, y) < a32%%2s*~46%2(y), which
gives (4.13).

Our next aim is to prove (4.12). From (2.4) we have

a4 0% (x) .
, zeD
592 @) (L+ 85> (@) Ix—2zl*
where ay, = a4(D, a). -We divide the set B\D into two sets W, =

{ze B\D: dist(z, D) < diam (D)} and W, = {zeB\D: dist(z, D) > diam (D)}.
By (4.13), (4.15) and Lemma 4.3 we obtain

(4.16) § Ga(z, ¥) f5(2)dz < a0, 647 () 0%* (x)s™7 | 05> (2)dz
Wi

Wi

(4.15) 5@ <

b

< 9284¢3 (diam (D))" 55 (x) 55> (»)
h s =y

For ze W, we have |z—x| < dp(z)+diam (D) < 20 (z). From this and inequali-
ties (4.13), (4.15) we get

a 0§ (x) 64> () | dz

|x—y|d wzlz_xldﬂl

4.17) | Gs(z, ) f5(@)dz < a; a4 2*(diam (D))
W2

The last integral is bounded from above by w, o~ ! (diam (D)) *, so (4.16) and
(4.17) give (4.12) and the proposition is proved.

Now we need the following simple estimate of Green function of
a half-space:

LeMMA 4.5. Let H = {x = (xy, ..., Xxj)€R*: xy > 0}. There exists a con-
stant ¢s = c5(d, o) such that for any x, ye H we have

0% (x)

Gugx, )< c5s— 5.
H( y) X¢Cs lx_yld_,/z

Proof. From [10], Lemma 2.4, we know that there exists a constant
¢ = c(d, &) such that for any ball B(z, r), zeR% r > 0, and all x, yeB(z, r) we

have
50: 2
(4.18) Gpen (X, ) <c ben )

bo—yl= 7%

For neN set z, =(n, 0, ..., 0)eR? and r, = n. Clearly, we have B(z,,r,) < H
and 7p, ) < Tp- From (4.18) we obtain

6%(22,.;,.) (x)

(419) GB(Zn,rn) (x’ y) <c Ix _yld_a/z b X, Y€ B(Zm rn)'
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By well-known results for the distribution of the exit time from the half-line of
the one-dimensional symmetric stable process [4] we infer that for each xe H
we have P*(ty < o0) = 1. Therefore by the quasi-left continuity of our process
X, we get lim,_, , X (Tpe,.r,)) = X (tg) a.s. P* for all xe H. Hence for all x, ye H
we have lim,, o, Gpg, (%, ¥) = Gyx(x, y) and the lemma follows from (4.19).

We can now state the main result of this section.

THEOREM 4.6. There exist constants ¢ = cg(d, x, ) and c; =c,(d, o, 1)
such that for all x, yeV we have

Asa 0P (x) 097 (y) (min (il Iyl))"" 2 _")

GV'(x, y) = CG;Hin(

—y""%  x—yf \max (x|, [y

o Asg 892 (x) 6:/2(y)<min (x, |y|)>“/2-£>

Gy (x, y) < min e .
v 9) Qx—ﬂ““ 7 =yl \max(lx], lyl)

Proof. The lower bound estimate follows directly from Proposition 4.2
and the fact that Gy (x, y) = G¢(x, y), so we only have to prove the upper
bound estimate.

The inequality Gy (x, y) < A, |x—y|*~? is obvious; hence it remains to
show the inequality with the second term under the minimum. Since Gy (x, y) =
Gy (y, x), we may and do assume that |y| = |x|. As in the proof of Proposi-
tion 4.2 we will consider two cases: 4|x| < |y| and 4|x| = [y| = |x|.

Let us first assume that 4|x| < |y]. We begin with the observation that
b))
eyl
where a; = a, (d, 2). Indeed, let y* € 0V be such that |y—y*| = d,(y). It is clear
that there exists a half-space H such that ¥V < H and the line determined by
0, y* is contained in JH. Therefore the inequality (4.20) follows from Lem-

ma 4.5.

Define U = Vn B(0, |y|/2) and notice that xe U/2. By formula (2.1), in-

equality (4.20) and Theorem 3.12 we obtain '

421)  Gy(x,y) = | Gy(z, y)dwp(2)
Ue

(4.20) Gy(z, )< a z, yeV,

—EM—E|q4]E o dz
< 05#2 (x) |x|a/2 £2 I_Vl a 51}2 (y) V{ft 5%42 (Z) ]Z|d+a/2 |Z _yldﬁufz *

Consequently, to get the upper bound estimate in the theorem (in case
4]x| < |y|) it is sufficient to show that the last integral in (4.21) is bounded from
above by c|y|~¢~%2, where ¢ = c(d, «), and to notice that |y| = (4/5)|x—y|.

In order to estimate the last integral in (4.21) we divide V\U into three sets

Wy = {zeV: |zle(ly|/2, 3|yl/4]},
Wy ={zeV: |zle(Blyl/4, 2|y)} and W= {zeV: |z| =2]y|}.
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For abbreviation let us put

dz

I,= z —22? i=1,2,3.
vi[, 8F* (2)[2l* T2 |z =yl 2"
For ze W, we have |z—y| = |y|/4, so
d+aj2 gd—af2 3d-gj2 ., 3|yl/4 -1
I, < 2d+a/2 ! a2 adzz < 2 2d 2 e 72 dg
T2 yle 7 g, 692 (2) Iyl iz (@ —y1/2)

23d—a:/2 Wy |¥l/4 dQ 23d+a/242 W4
Wyt o @ (L—a2)yt

Let us notice that W, = B(y, 3|y|) and 8y (2) > |y|/4 for ze W,. Hence we ob-
tain

I < 4::/2 4d+u/2 dZ _ 4d+a oy
2= |y|a/2 3d+a/2 |y|d+a/2 B3l |Z_y|d—a/2 3d (“/2) |y|d+a/2 *
For ze W; we have |z—y| = |z|/2 and Jy(z) = |z|/2. Therefore
24dz 1
I; <

B(0,2]y) |Z|2d+a/2 2«1/2 (d + CX/2) |y|d+¢1/2 .

This proves the upper bound estimate of Gy (x, y) in the case 4|x| < |y|.
Now let us assume that 4(x| = |y| = |x|. In this case the upper bound
estimate of Gy (x, y) follows from Proposition 4.4. As in the proof of Proposi-

-tion 4.2 we put

Up={z=0(, @1, ..., Pa-1): 1/8<0<5/4,0<¢, <1}
and
Uy={z=10(9, ®1,---» Pa—1): 1/16 <0 <3/2,0 < ¢, < A}.
Let D be a fixed domain with a C** boundary such that U; = D = U,. Let us
also put U = {zeD: dist(z, V\D) > 1/16}. It is easy to check that x/|y|e U and

y/lyle U. By Proposition 4.4 and the scaling property of Green function we
obtain

Gy (x, ¥) = Y""* Gy (/131 y/1¥))

e PN ) _ 5 652 0)
| e/l =yl =y’
This completes the proof of the theorem.

< ¢4l

As a simple corollary to the results proved in this section we can formulate
lower and upper bound estimates of the Green function of the bounded cone C.
Since apart from its vertex the bounded cone C has other “singularities” at
0VNoB(0, r), we state our estimates of G¢(x, y) only for x, ye C/2.



370 T. Kulczycki

THEOREM 4.7. There exist constants cg = cg(d, &, A) and cqg = co(d, o, A)
such that for all x, ye C/2 we have

Age  0*(x)5E%(y) (min (x, | y|)>a/2 —e‘)

Gclx, y) = cg min(

x—yli=*  |x—y* \max(|x|, |y])
[ A 582(x)6%2 () {min (i, )2
Ge . y’smm(lx—yr’-“’ T (max(|x|,|y|)> )

Moreover, the upper bound remains true for all x,yeC if we replace
0U* (x) 8¢ (y) by 9> (x)d9%(y).

The lower bound estimate follows from Proposition 4.2 and the upper
bound estimate follows from Theorem 4.6 and the inequality G¢(x, y) <
Gy (x, y). Using formula (2.2) and Theorem 4.7 one can obtain estimates of the
density of the harmonic measure of the bounded and unbounded cones. For
example, one can obtain some estimates of the growth of f¥(z) when xe C/2 is
fixed and ze V* tends to the vertex of the cone.

5. Exit time. It is easy to check that E*(zy) = oo for x € V. This follows for
example from Theorem 3.17. The aim of this section is to investigate for which
pe(0, 1), E*(z}) is finite for xe V. Theorem 3.2 in [3] gives an analytic con-
dition for the finiteness of E*(t{). This theorem, which is an analogue of the
classical result of Burkholder [9], states that for any region D < R?, xe D and
pe(0, 1) we have E*(}) < oo if and only if there is a function u which is
o-harmonic on D and u(x) > |x]?* for all x. We found it difficult to check this
last condition. Instead we give in this section direct estimates of the critical
value po = po(d, @, ) such that for all xeV we have E*(t}) < oo for
0 < p < po and E* (1) = oo for p > p,. This is done by applying our previous
results.

Throughout the whole section we assume that r = 1 in the definition of the
bounded cone C, ie. C=VnB(0,1). As in Section 3 we put C, =2*C =

" VnB(0,2) for k=0, 1, 2, ... Before formulating our main result of this sec-
tion we will prove two auxiliary lemmas.

LeEMMA 5.1. There exists a constant ¢ = c(d, o) such that for all xe C/2 and
keN we have

P*(X (tc,.,)eV) <c2*™® and E*(z¢,) < c2*.

Proof. By Theorem 3.12 and the scaling property of the harmonic mea- )
sure we obtain

P*(X (z¢,. )€ V) = P (X (10)e V)

-4

we dz dz
< C2'(k—1)(s--tz)
V{C 5?2 (Z) Iz|d+a/2 = .‘.

X

sc 2k—1

V\cazj2 (@) |z|4 /2
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where ¢ = c¢(d, a). To get the first inequality in the lemma it suffices to show
that the last integral is finite. To obtain this we divide this integral into two:
one over (2C)\C and the other over V\(2C). We have

2 d—1
dz Q Wy

| Y cw—C o< P
: <2c!>\c5°c’/2(z)lzl”“’2 d{(Q“I)"’ze‘”""2 ¢S 122

; and
! dz 242 dz

- < I
. >
V\(IZC) 5?2 (Z] |z|d+a/2 V\(j;’.C) 1Z|d+¢

The second inequality in the lemma follows directly from Theorem 3.13. In-
deed, from Theorem 3.13 and the scaling property of the exit time we obtain

E* (1) = 2% E¥?" (1) < c2%|x|P 72 2Ke~® < ¢2%,  where ¢ = c(d, a).

Observe that for De % (RY) we have

=2"2g 1,

o 1 :
E*(tp) = | P*(tp > s)ds = [ P*(1p > s)ds, xeR".
0 0

We also have the following reverse inequality.

LEMMA 5.2. Let D be an open bounded set. There exists a constant ¢, =
c1(d, &, m(D)) such that for all xeD we have

1
[ P*(zp > s)ds = ¢, E*(1p).
0

Proof. Let us recall (see Section 2) that pp (¢, x, ) is the transition density
for PP, the semigroup generated by the process killed on exiting D. Obviously,
we have pp(t, x, y) < p(t, x, y). According to [19] there exists a constant
¢y = ¢ (d, @) such that p(t, x, y) < c,t™%* for all x, yeR? and t > 0.

For x, yeD and t > 0 we have

IPD(S; X, Y)ds = I jpD(s_ts X, Z)pD(t3 Z, J’)dZdS
t t D

= j.pD(tzv Z, y)IpD(S—ta X, Z)deZ = jpD(ta Z, J’)IPD(Sa X, Z)deZ
D t D 0

[ po(t, 2, ¥)Gp (x, 2)dz < ¢, t ™4 [ Gp(x, 2)dz = c;t~ %" E*(zp).
D D
It follows that

IPx(TD>S)ds= j pD(Sa X, }’)dyds
t t

[ § po(s, x, y)dsdy < com(D)t™ % E*(zp).

'D

,s
T

11 — PAMS 19.2
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Hence

j‘P"(rD > 5)ds = TPX(’CD > s)ds—oj?Px(rD > 8)ds = (1—cym(D)t~9%) E*(tp).
0 0 :

t

Let us take t > 1 such that c,m(D)t~%* < 1/2. Since P*(tp > s) is not
increasing, we obtain

1 t 1
[P*(xp > s)ds > 1j'P"('cD > s)ds > —E*(1p),
o to 2t

which’ qomialétes the proof.
We can now formulate the main result of this section.

THEOREM 5.3. There exists a constant py = po(d, a, A)€[1/2, 1) such that
for all xe V we have E*(t}) < oo for 0 < p < po and E* (%) = oo for p > po. The
constant pq satisfies the following inequality:

Let us note that an immediate conclusion from this theorem is that
po tends to 1 when A tends to 0.

Proof. The fact that if p > 0 is fixed, then E*(z}) is either finite for all
x eV or infinite for all xeV is not difficult and well known. Indeed, this holds
not only for the cone V but for an arbitrary open set. The statement that this is
true for an arbitrary open region and pe(0, 1) follows from the above-men-
tioned Theorem 3.2 in [3].

At first we will prove that p, > (x—¢)/o. Let xe C/2 and pe(0, 1). We have

E*(p) = Z E* (i} v = 1¢, > T ) H E* (iF; v = 1¢,)
k=1

< ), E*(tk,; tc, > Tc._ )+ E* (zh).
k=1

By the Holder inequality we obtain for ke N
E*(t8; Tc. > Touoy) = E* (18, Lie, > 1, )
< (B*(@@)) (B (52, )" < (B o) (P (X Gy )e V)
From Lemma 5.1 we get
| (E o)) (P(X o )e V) | S e2raeaion o et

where ¢ = c(d, a).
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It follows that
E.x(rf,) < c Z 2k(£_¢+p“)+Ex(’L"é).

k=1
Of course, E*(t%) is finite. Hence if e—a+pa < 0 (i.e. p < (x—¢g)/), then we
have E*(z§) < co. This proves that p, > (x—¢g)/o.
Now we are going to show that p, < (x—¢')/a. We will need the following
equality:

o0
EYP=p [tP71P(Y > 1)dt,
V]

which holds.for an arbitrary nonnegative random variable Y and all p > 0. Let
xeC/2, pe(0, 1] and neN. We have

E*(c}) = E* (che) = " E¥" (1) = nP*p [ P71 P*" (z¢ > t) dt
0
1

> n?p [ P (¢ > t)dt > cq pn™* E¥" (1),
0

where ¢, = ¢, (d, o, A). The last inequality follows from Lemma 5.2. By Theo-
rem 3.17 we obtain
%\ ] @2 —# o
E*"(1¢) = c6%? (;) - = cod? () |x|">~*'n" "%,  where ¢ =c(d, a, 4).

It follows that
E* () > cc; pog? (x) 72 n¥ ot re,

This inequality holds for an arbitrary neN, so if &—a+pax>0 (ie.
p > (a—¢£')/u), then we have E*(t}) = co. This proves that p, < (x—¢&')/a.
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