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AND FISHER INFORMATION
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Abstract. In the paper we prove that the n-th directional derivative
of a p-stable density f(x) in the direction a can be estimated by

n Cw (1-w)pKL +p)]
1Dz S < T Lf ()] ,

where 0 < u < 1, and C depends also on geometrical properties of the
Lévy measure. This inequality helps us to calculate the Fisher infor-
mation of stable measures.

Introduction. In this paper, |-| denotes Euclidean norm and (-, -) is a scalar
product in #°. We say that f(y) is a density of a p-stable vector in %
(0 < p < 2) if the Fourier transform of f(x) is of the form

[ &< f(y)dy =exp(— [ I<x, s)Pa(ds))
R4 sa-1

for a certain symmetric Borel measure a. Moreover, o is finite, positive, concen-
trated on §?~* and lin (suppo) = #°. The measure ¢ (called spectral) is unique.
Let us write
2= | Kx,s)Polds), 1(0)= inf |x[].
R sd-1 |x|=1
Notice that if 7(¢) > 0, then the Fourier transform of f(x) can be approxi-
mated by exp(—7(o)|xI?), so that f(x)eC™.
It was proved in Glowacki [3] that
C
IDZ 1) < s

for some constant C. Unfortunately, this result does not allow us to answer the
question how to estimate the derivatives using the density. Inspiration for this
question comes from the theory of admissible translates (Kakutani Theorem)
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376 M. Lewandowski

for products of measures. In order to answer the question whether
a = (ay, ay, ...) is an admissible translate of u = (f;dx)x(f2dx)x ..., where
f: are densities on %“, one has to check if

S 4 Il ffz

Our main result allows us to characterize admissible translates of infinite
product of 2-dimensional stable measures; this situation occurs in the case of
harmonizable p-stable process.

dx < 0.

- Preliminaries. For the rest of the paper, ¢ will denote the spectral measure
of p-stable measure u(dx) = f(x)dx. We will consider only finite positive Borel
measures o. '

For (o) we list some simple facts.

Fact 1. Let M be the set of all symmetric probability measures concentrated
on $?~1. The function 1(6): M — R is continuous in the weak topology.

Proof. If ¢ is fixed, the function x —>j'sd A<, s)l-"a(ds) is continuous;
hence there ex1sts x(0)e 8?1 such that

1(0) = [Kx(0), HIPods)= [ Ky, HIPd(Oxe) X O)(Y, 3),

Sd-1xgd-1

and we have
(@) < [IxPP|sPo(ds) =a (8" =1,

where d,,) denotes the unit measure concentrated at the point x(o).
Let 6, = 0, (w means “weakly”) and 1, = lim, ., , T (0,,) for a subsequence
n,. We can also assume that lim,.,, x(0,,) = X, for any xoeS?~!. Thus

5"(”"1:) X Gnk ﬁ, 5xo X O-0 and j |<ys S>'pd(5x(a,.k) X ank) S jl(x: s>|p ank (dS)
for every xeS8? 1. By the inequality

,!if;jl(y, SH d (Oxi6np X Tw) = [1<X0, SHI 00 (ds) < fI<x, )P 00 (ds),

we set 7(0o) = limt(g,,), which completes the proof.
The next result is needed only for technical reasons.

FACT 2. Let Z,, Z,, ..., Z, denote independent random variables with iden-
tical distributions equal to o (o is the normalized spectral measure). Then:

1(0)> 030 <g<1 >0 P(det(Z,, ..., Z,)| > a)=gq.
Proof. (<) If (o) = 0, then there exists xo€S8%"! such that

JIKxo, )17 0 (ds) =
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so that suppo < {xo}*. Then P(Z,e{xo}",..., Zs€{xo}*) =1, and hence
P(det(Z,, ..., Z)) = 0) =1, a contradiction.

(=) Let 7(6) > 0. We will find x4, x3,..., X4 such that x,esuppo and
X1, X2, ..., Xy are linearly independent. Recall that

suppe = {x: Ve >0, o(B(x, ¢)) > 0},

where B(x, ¢) is a ball with center x and radius &

Take arbitrary xyesuppo, x; #0. Next take weS?! such that
{w, x1) = 0. Since also [|<w, ) o (ds) > 0, there exists x, e suppo—lin {x,},
so we have found x; and x,.

If we have chosen x;, X, ..., x,, then take welin{x,, x;, ..., x}*,
weS"1, Since [|{w, s)|Pa(ds) > 0, there exists

X,+1€8uppa—lin{x, x,, ..., X,}
and we have found x,. . This process ends when we reach r = d. Of course,

(%1, %2, ..., Xg)€A =.{(J’1a Y2, .o Ya): det[yy, v, ..., yal # 0},

and A is open in (%97, so there exist ¢, &,, ..., & such that B(x;, &) x ...
x B(xy, e5)e A. Then

P(det(Z,, ..., Z)| >0) > P(Z,eB(x1, &), ..., Z4€ B(x;, &))
=P(Z,€B(x1, &))" ... "P(Z;e B(x,, &5)) > 0.

This completes the proof.

Now we present the main tool of our proof (see [5] and [6]). Assume that
X, X,,...are iid,, P(X; 2 x)=exp(—x), x20; I, =X+ X5+ ... +X,;
d1,> g2, ... are iid, g;~N©,1); Z,, Z,, ... are iid., Z; £ ¢; moreover, (X)),
(99, and (Z;) are mutually independent. In this case, Y .. (') ' Z;g; con-
verges a.s. and

) PreA)=EP(C, S () "¢ Z,cA| T, Z),
i=1

where #(dx) = f(x)dx is a p-stable measure with spectral measure ¢ and
1/C, = | x ?sinxdx.
(1]
Since for fixed (I', Z) the series Z:D: ,(I)~'"*Z;g; is a Gaussian vector, we

will need some simple facts about Gaussian distributions.
A symmetric measure p is Gaussian (stable with parameter p =2) if

[exp(i{x*, xD)p(dx) = exp(—3 [ (x*, x)?u(dx)), x*eZ’.
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The measure u generates quadratic form on %7: for X, je %°

<£5 .)7>1 = I<f5 x> <J-)’ x>ﬂ(dx)
Then for a matrix 4 = [a;];x4 With entries a;; = {e;, ¢;);, we have

d
Ax = Y v;{x, 0> A?

i=1
for some orthonormal system {v;, ..., v;} in %% and

u = vVig1di+ ..o +UsGala,

where g, are iid., and g; ~ N(0, 1).
Observe that if

4

M=

U 9:Z;,

i=1

where Z; are arbitrary vectors from #¢ with lin(Z,, ..., Z,) = #°, then
A =[Z2]-[Z"], where [Z] is a matrix with columns Z,, Z,, ..., Z,
Let us put the eigenvalues in the following order: A2 > 12> ... > A

ProprosITION 1 (see Bierezin [1]). If

M

=2

v; A gi) =2 (Zd: Zigi),

1 i=1

and g;~ N0, 1), {vy,v,,...,05} is an orthonormal system, i, > i,> ...
= 1;>0, then

(a) A= sup <x, n)?* u(dn);
(b) A= |i|n=f1 f<x, n)? u(dn);
: d—1 \¢t

Proof. (a) and (b). We have
[ Cx, nd?pu(dn) =E(x, Yy, lig,->2 =) (x, v A2
Hence for |x| =1 we obtain A < [<x, n)?u(dn) < A}, but
f<i,n)*udn) =2} and [<vy, n)*pu(dn) = A
(c) Let A =[Z]-[Z]", the covariance matrix of p,

A2 0
A=
0 A2
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in the basis {v;, ..., v3}. Then TrA = A} + ... + A} and, by the inequality be-
tween arithmetic and geometric means,

TrA—23 M+ .. +4oy yfH- . A3 47Y/detd
d—-1 ~  d-1 g o ey

= (det 4)- (i‘ ;)d 1

) dm d
’ TrA= z a; = ZE<e,-, szg]>2
i=1 i=1 i

Hence

and

= ¥ (D<o Z)Y) = T Y. <en Zp* = I,

i=1 j
which proves (c).
The main result. Now we can formulate our result.

THEOREM 1. There exists a function C(-, -, *): &> — R .. such that, for every
p-stable density f(x) on #° with spectral measure o, we have

Vxed VO<a<1 VaeS? ! VneN
C(z(0), «, n)
1+x|

where D! denotes the n-th directional derivative in the direction a.

IDZ f ()l < Lf (x)]¢ ~ et o,

The idea of proof is to look at u as a mixture of Gaussian measures. Let
u=Eugrz, where prz = C, Y () ' Z;g;
i=1

and (r, %) are fixed. Let 14", Z) < < A1, Z) be eigenvalues and
(e, Z))=1 be an orthonormal basis generated by pr.z).
For A,(I', Z) and A4(I', Z) we have two lemmas.

Lemma 1. EM (I, Z) < C2E(Y,. TP < o0 for 0< B <p.
Proof. We have

o o]
Xirz=C, ) L) Zyg,
i=1
and, by Proposition 1 (a),

3 (', Z) = sup E(x, X(r,z>>2 = C: sup Z (Fi)_zlp x,Z* < ngy Z (F)_zip-
i=1

|x]=1 lx|=1i=1
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A series )-  (I')” %" is a (p/2)-stable variable (Linde [6]), so it has moments
less than p/2. This completes the proof.

Lemma 2. EA;#(I', Z) < o for B = 0. Moreover,

1
Ei;H(T, Z) < Ca wy(1-9),
where

© (28/p)+1
wp()=1+Y (d(r+1)+‘7;73)2 T

r=1
for-a and q as described in Fact 2.
Proof We have

Xaz=C Z(F) llpgz Z X (I, Z),

where
Xy (', 2)= dezl Tarr) " Zagsr Gatctr
Then "
B2 = ol By Gx, Xea) = inf 3 (6 X023 3
where
i = |xi|n=f1 Ez (x, Xip? = |xi|n=f1 c; l:;: B,z (Cae+n) "2 K%, Zagrr)?

a-1
Cp lﬂf E(I‘Z)Fd(k+1)(z {x, de+r>2)
=0
d 1 d—1
> CoTidlPy [et[Za, ...y Zgera—1])? ( d ) .

In the above we have used Proposition 1 (c) and the fact that I', is increasing.
_ Now we follow the paper of Pap [8]. Since lin(suppas) = #¢, by Fact 2
there exist « > 0 and 0 < ¢ < 1 such that

P(det[Z,, ..., Z)*>0)=¢q
Consequently,

EAi# < CE[ Y TPy, -(det[Zg, ..., Zu+a-11] e
k=0

, Let us put ¢t =infy >, (det[Zy, ..., Zy+a-1])* = a; then

| E[ Y. a2y (det[Zy, ..., Zagra-117] ~f
k=0
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[ Z (k24/-p1)(det [Zak> > de+d—1])2] . 1t=r1)

||Mg

r

8

ZEFd(ﬂ+1)_ 1t=r)=0a" ”Z rift.,-q(l—qyf” L

r=1 r=1
But EI, =k(k+1)... (k+r—1) < (k+r—1) for k, reN (see Fisz [2]). Thus
2[3 28/p+1
Erift, <E E,%,ﬁ/"})+1 (d(r+1)+?> +1
and R
0 o 25 2p/p)+1
Y ETHPy)ql—qr <14 ) (d(r+1)+?) ‘q(1—q),
r=1 r=1
whence
Eii? < Cia™ - Wy(1—9),
where
w Zﬁ 28/p)+1
VVI,(X) =14 Z (d(r+1)+7) -x", |x] < 1.
r=1

Now we have to prove the following
Fact 3. Let ¢ be a spectral measure such that ©(c) > 0. Define

U(o) = {(, q): P(det[Z;, ..., ZJl > o) =q}
and.
M, = {o: 1(0) = ¢,suppc =S*"1, ¢($* ) = 1}.

Then
sup inf —W},(l q) < 0.

aeM, @@)eU(a) (Zﬂ

Proof. In Fact 2 we have proved that, for oe M,

1
inf W;(1—q) < 0.
(a,q)€U(c) (Xﬂ £ ( q)

Let 0, M, be such that

1
inf ﬂW,,(l q)—> 00 as n—o.
(@,q9)eU(an) O

By Fact 1 we can choose a subsequence o, = g, 6o€ M (¢). From Fact 2 we
deduce that there exists o, such that

P,m(|det[Zl,..., Zd]|2>a0)>0 and P,0(|det[zl,..., Zd:”z:ao)_—"o
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P,, denotes such a measure that % (Z;) = o,. Since 6, — g, det[X;, X3, ..., X4]
is continuous, we have

lim P, (Idet[Zy, ..., ZJ)|* > 0g) = Py, (et [Z, ..., Z]* > ay),
and thus

1
limsup— W;(1—P,_(Idet[Z,, ..., ZJ]* > o)) < ©.
aﬂ B n

This completes the proof

Rccall that u( ) = Eu(r 2 (*). Denote by fir z(x) the density of a Gaussian
measure g z. If f(x) is the density of u, then we have f(x) =E f;z (x).

FacT 4. For neN, aeS§%™1,

@ Dz f(x) = ED; fir.5 (%),

and for every 0 <e< 1, x #0,

[
() D% firy 0 < T 55 frio (/1=

Proof. (a) We have

1 i» XD
firzp(X) = G ’ldexp( 2Z<” ; )

First of all we prove that

{v;, x+ta)>
A? )

Put G,(¢) such that " G, (t) = [e"]®. Therefore, G,., = k' (t)* G,(t)+ G, (t).
_ The function G,(f) is a polynomial of degree n, G,(f) = ag+a, t+ ... +a,t"
putting |G,| = |ag| +|a;|+ ... +|all, we get

|Gy+ 1l < W] |Gl +11Gy| = |G, (| +n) and |G, < (n+I|H|)".
Now

() sup [[e"]®| < (n+ 2(dlxl+1)>" where h(f) = —%Z

le|<1

W) = (—12 Co1, X)? 42t (w3, X) vy, @)+ <o, a>>,

2 A2
. , 2
_ _Z[@u xi?(v., @, <v,;12a> ]

Wl < <7 Zl(vi, x {vi, &)l +<v;, ad* < <z (IX| d+1)
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because Y {v;, a)*> =|a*| =1 and [Kv;, x> {v;, a)| < |x|. Thus

1 n
sup |[e"™]1™| < sup |G, (1)l " < |G, < ("+Ii(d IXI+1)) ,
<1 jfs1 d
which proves (x).
Now we are ready to prove (a); the proof goes by an easy induction.
Forn=1

X+ ta)— (x
S : fffz) )l_ Sz (x+ta)|=;

1 1
< G H(1+l—3(d |x|+1)).

Using the Lebesgue Dominated Convergence Theorem we get

f (x+ ta) f(x) — limE S,z (x+ta)— fir,z) (%)

t—>0 =0 t

= EDY fir.z(x)

because, by Lemma 2, 1/, has all positive moments.
Similar arguments show that

D% firizy(x +t@)— D% fir.z) (%)|
t

n+1 1 1
— l[ﬁl’,Z) (x+ ta)]("+ I)I < (n+ 1 +—= (d IX| + 1)) A—ZW

By the Lebesgue Theorem and Lemma 2 we get the desired result.
(b) For a moment denote a scalar product by

i <Uia x> <vi: y>

P s
i=1 A’i

<x7 )’>1 =

put gz (x) = exp(—3|x/}) and
gz (x+1a) = exp(—3{x+ta, x+1ta);) = exp(—3|x[f —t {x, ad, —3t*<a, a)y).

Let us compute

&
500 0c+10) -0 = exp(—3 D) [exp (—1 (x, a)) exp(—3 2 (a, @))]”

n

= exp(—%|x|%)( X <Z> (exp(—t<x, a)1)" (exp (3£ <a, a>1))f"=7)’").
k=0
n—k even

Hence

(0.0 + 1a)20] < exp(—31xiD)- Col T Kx, @i, adP™)

k=0
n—k even
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< g,z (%) Cn( Y Ix§ |a|'i) < Cogr,zy (X Nali (D |x|’i)
k=0

k=0

Cnsll

e Spexp (=319 xf)

11
< Cuaggzrexp (=31 -0l <
1

- and, finally, .
|sz"’ f(r.z> @) < | "Is A,l, f(r 2)(\/

Now we are able to prove Theorem 1. From Fact 4 we infer that for every
O0<ex1
Cn,s ﬂ pr(—%(l _8) |xlf)
x| 22 Q)24 ...-4
Using the Holder inequality to the above inequality with p = 1/(1—¢) and
q = 1/e, we get

C A\ 1 Pl exp(—3xD) P
D) < n.e e} E 2
I a f(X)l |x| |:E<ls) /11)“6] [ (21[)""211'...'/1,1

Ci.s

where we have used the fact that

DY f(x)| <E

[Eﬂ.lle 1 }. nje—(d— 1)]c[f(x)]1 e

exp(—3x3)
(2“)6/2 }.1 e .A'd-

f)=E frznx) and frz=

Further: :
E/{%/E_l . ld—[n/e-f-d— 1] < (E/{l{(lls—l))llu (E/ld_("/e+d— l)u*)llu*

~if u(l/e—1) <p (Lemma 1) and u > 1 with 1/u+1/u* = 1.
This implies that 1 <u < e(1—e) ! p, so that we can find such u if
e(1—e)~1p > 1. Hence

O0<l—-ex< 1—L P
14+p 1+4p

To complete our proof we have to show that

(1) in-fa'eM: inflxlsl fo' (X) > 0’

(2) SUPgeM, SUP|x| < 1 SUDPgesa-1 |D$zn) fo‘ (X)l < 00, where M, = {0-: ‘L'(O') 2 5}
and f,(x) is the density of p-stable measure with spectral measure o.

The function (o, x) > f,(x) is continuous because its Fourier transform is
less than exp(—g&|x[?). Since M, is compact, inf,y, infi; <1 f5 (%) = f5, (x0) for
certain op€ M, and |x,| < 1. But p-stable densities are always positive for every
xeR.
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By similar arguments we obtain

sup sup sup |D{” f, (x)| = D5 fo (Xo)| < o0

oeM; |x|<1ageS2-1

for certain soeM,, |xol <1, and aoeS?™ L.

Applications. We will use our inequality to a problem of admissible trans-
lates. Recall that two probability measures 1, v are equivalent (z ~ v) if, for every
measurable set 4, u(4) = 0if and only if v(4) = 0. We write u Lv if there exists
A such that y(4) =1 and v(A) 0. A vector a is an admissible translate of u if

p(—a) ~ u(). - :

Let us eonsider the series )’ (X,cos2nnt+ Y,sin2nnt) in L, ([0, 1], dx),
where (X,,, Y,);%, are independent 2-dimensional variables. Since the functions
X, cos2nnt+ Y, sin2nnt belong to mutuvally orthogonal subspaces of L,, we
consider :

i X, Y,
H= HEII Un,  Where p, =% (O.'}/p S > gl (S))

on (#%)", and o, is the spectral measure of % (X,, Y,).

The problem is the following: find all vectors @ = (a;, a,, ...) such that the
measures u (- —a) and u(-) are equivalent. The question was investigated in [7]
and [10], but only in the case when u, are 1-dimensional.

For the sake of completeness we recall below some basic facts and theo-
rems (see Shepp [9]).

If u, v are any probability measures, then there exists a measure m such
that m » p and m > v (for example, m = 3(u+v)). In this case ¢ (x) = dy/dm
and ¥ (x) = dv/dm. Let us put

H(p,v) = /o () (x)dm.

Observe that H (¢, v) does not depend on the choice of measure m and, by the
Schwarz inequality, 0 < H(u, v) < 1.

TreoreM (Kakutani [4]). Put p =[], un and v = [T, va, where p, and
v, are probability measures. Then

H, 9 = T o, .

Moreover, pLv if and only if H(u, v) = 0. If phy ~ vy n=1,2, ..., then p ~ v if
and only if H(u,v) > 0. |
The Kakutani Theorem implies that if u, ~ v, then ulv or p~v.
Now we repeat some observations of Shepp [9]. Let u be a measure on %2
with density ¢(x), and @(x) >0 for almost all x with respect to Lebesgue
measure. Since

Hg, p( —a) = [Jo ) o(x—a)dx = [ /o) /o (x—a)dx,
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\/q; € L, (dx), we have by Parseval’s identity

[Vo ) ox—a)dx = 2n) 2 (/o) (/o (x—a)

=(2m) "2 | cos{x, a) |(@/?) |2 dx.
QZ

But
1—H(u, p( —a)) =@m)~2 | (1 | (1—cos<a, x))[(9'?) | dx)
R2 R2
< C | (a, x)*|(p"?) |* dx
. 2
=C Iz(i <x, ay (@Y?))(i{x,a) (@"%) ) dx
—C‘“D (p”zlzdx—C_fI: 1/2:| dx _Cj(Da(p(p)
with
_1 o extta)—e(x)
C_81r2 and D,¢ —}E%_.
Thus, if p=T]", ty ¢a=du/dx, a = (ay, az,...), and
¥ 5§ Cotl i <,

then the measures u (- —a) and p are equivalent. The quantity {((D, ¢)?/¢)dx is
called the Fisher information.

Now we are ready to prove the following

THEOREM 2. Let p, be 2-dimensional symmetric p-stable measures with spec-
tral measures o,, 1 <p<2. Additionally, we assume that ¢,(S)=1 and
-inf, 7(0,) > 0. Then a = (ay, a,, ...) is an admissible translate of u if and only if
Y, lal* < oo

Proof. First we prove that if g is an admissible translate, then ael, (N).
Let u=Y"_ p,on (#*". Take any sequence of non-zero vectors in %2,
say (), define T: (#2)" — &", where for x = (x;, X3, ...)e(#2)"

T®=<< yl 3x1>’<La x2>’--->,
|y1l oy [y2lo,

and {, -) denotes scalar product; |y, o; > 0 because inf,t(s,) > 0. Since T is
measurable and linear, we can define

ur(d) = u(T &) = T,
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and

) = (T (W)= [] (- ~T@),

n=1

where

-1
Hy, (4) = #;(<% > (A)) and T(@=(T@, ).
Measures pu,, are 1-dimensional p-stable with unit spectral measure (equiv-
alently, for every n, [ u, (dx) = exp(—|t|")). Further, measures p$ and pr
on #" are also equivalent (as images of equivalent measures). Hence
(T (@)1, T(@),, ...) is an admissible translate, and using Proposmon 8 from
Zinn [10] we infer that

<yia l>
i=1 lyxla'.

for every sequence (y,, y,,...). Putting y; = a; we get

@ 2
(ais ai) < ®©
i=1 lai|§i
Since |aJZ, < |a)?, we obtain also Y. (a;, a)) < 0.
Now we prove that if Z:‘;l {(a;, a;) < o0, then a = (a,, a,, ...) is an admis-
sible translate.
By (*) we have to calculate

D s 3 2 2
j'( ai ¢l) l | i|2 I(Da;/lad (Di) l
We will prove that

sup sup [P L 2 4y <o if only infr(o) > 0.

aelS

From our inequality (Theorem 1), if we take 0 < a < (p—1)/2p, we get

(Do)’ C(z, o)
e &< Twmple®

where 0 < u < (p—1)/(p+1).

Let k be any number such that k> (1+p)(p—1) and u = 1/k. Then
k* > 1, where 1/k*+1/k = 1. Using the Hoélder inequality with k and k*,
we get

QPP gy = o) [ +1|x|)2 o (91 dx,

K
Sty (1+| Lo e (j (1+—||)2'°‘d") (o (91 dx)' " < oo

12 — PAMS 19.2
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because

Ide<oo and j(o(x):l

Finally,
' D, @’ 1 e
supj' ., —= " dx < (fml)—ﬁdx C(T (O'i), u)

aes i

and (Fact 3)
. sup  C(t(6), u) < 0

t{o;) Zinf t(an)

This completes the proof.
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