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Abstract. By a classical result of P. Lbvy, the Brownian motion 
(Btjtb0 on R may be characterized as a continuous process on R such 
that (B,),,, and (3;-t),,, are martingales. Generalizations of this 
result are usually obtained in the setting of the so-called martingale 
problem. This paper contains a variant of the martingale problem for 
stochastic processes on locally compact groups with independent s t i -  
tionary increments that is based on irreducible unitary representations. 
In particular, for Gaussian processes on compact Lie groups, ana- 
logues of the Uvy-characterization above are obtained. It turns out 
that for certain compact Lie groups even the continuity assumption in 
this characterization can be dropped. 

AMS 1991 Subject Classification: Primary: 60J30. Secondary: 
60G44, 60H05, 60J65, 22D10. 

t INTRODUCTION 

A classical result of Lkvy [I 11 states that an as. continuous process (B,),, 
on R is a Brownian motion if and only if the two processes (B,),,, and 
(B: -t),,, are martingales. This type of characterization carries over to very 
general diffusions or Markov processes in terms of the martingale problem of 
Stroock and Varadhan; see, for instance, C51, 1181, and [20]. 

The main result of this paper is a Lkvy-characterization for Gaussian 
processes on compact Lie groups in terms of irreducible unitary representa- 
tions. As a preparation, Section 2 will be devoted to a variant of the martingale 
problem for stochastic processes on locally compact groups with independent 
stationary increments. In that section we present generalizations of the 
welI-known fact that a process (XJ,,, on R with independent stationary in- 
crements associated with a given convolution semigroup (P~)~, , can be charac- 
terized by the fact that for all ~ E R  the processes 

are martingales (where P, ( y) : = JRePixY dp, (x) is the Fourier transform of k). 
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We shall also prove in Section 2 that our "representation-theoretic" version 
of the martingale problem is equivalent to the usual martingale problem (up to 
technical details like the underlying spaces of test functions). 

In Section 3 we restrict our attention to Gaussian processes on compact 
Lie groups and prove the following Levy-characterization: 

1.1. THEOREM. Let p be a faithful$nite-dimensional unitary representation of 
a compact Lie group G.  Let (pJ,,, be a Gaussian conuolution semigroup and 
(X,)t30 be a continuous stochastic process on G .  Then (Xt) ,3 ,  is a Gaussian 
process associated with (ptIt if and only if for z E {Q, Q @ Q) the processes 

(f 0- ' n (Xt))t> o with f lp3 : = J a (9) d ~ t  Ig) 
G 

are matrix-valued martingales. 

Moreover, the continuity assumption for the process in this theorem may 
be replaced by a stronger martingale condition. More precisely, we prove: 

1.2. THEOREM. Let G ,  q,  and (pJtgO be given as in Theorem 1.1.  Then 
a stochastic process (Xt) t30  on G is a Gaussian process associated with 
(pJtao if and only if (W (A)- % (X,)) ,>,  is a matrix-valued martingale for 
n E {e, e @ Q, e €3 a) (where Q is the contragredient representation). 

We give some examples: If G is either the torus (z E C: fzl = I), SU (2), or 
SO(n)  (n 2 3) with the usual canonical faithful representation Q, then either 
g @ g is the trivial representation or 6 = g holds. Hence, in all cases, the mar- 
tingale conditions in Theorems 1.1 and 1.2 are equivalent. We finally mention 
that, as a by-product, the proofs of the results above lead to new proofs of some 
well-known facts on Gaussian convolution semigroups; we refer to the mono- 
graph [8] for the background. 

2. THE MARTINGALE PROBLEM FOR STOCHASTIC PROCESSES 
ON LOCALLY COMPACT GROUPS 

This section is devoted to a variant of the martingale problem for stochastic 
processes on compact groups with independent stationary increments. This 
martingale problem will be stated in terms of group representations; it will turn 
out that it is essentially equivalent to its usual form. 

We recapitulate some notation. If not specified otherwise, G will be a lo- 
cally compact separable group. By M, (G) and M1 (G) we denote the Banach 
space of all signed regular Bore1 measures on G and the subspace of all proba- 
bility measures, respectively. 

2.1. Unitary representations of locally compact groups. (I) A unitary re- 
presentation n of G on some Hilbert space H is a group homomorphism 
n: G -+ U ( H )  from G into the space U (H) of all unitary operators such that, for 
all a ,  ~ E H ,  the coefficients gi+(n(g)a, b )  from G into C are continuous. The 
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set of all (equivalence classes of) irreducible unitary representations of -G will 
be denoted by e. 

(2) We need the following fact on representations from Section 22 of [7]: 
Each unitary representation x of G on H can be extended to a strongly 

continuous Banach algebra homomorphism A: M ,  (G) + 3 (H) into the space of 
dl bounded linear operators B(H) on H; for ,~GM,(G),  the operator it@) is 
characterized by 

(2.1) <f(,u)aYb)=j<.n(g)aYb)d,u(g) taYbfH). 
G 

2.2. - ~~m~o~latiom semigroup. (1) A family (pt),BO c M1 (G) is called a con- 
volution semigroup if ps*,ut = for s, t > 0, po = a,, and the mapping 
[O, co[ -, M 1  (G),  t w  p,, is weakly continuous. 

(2) Let (p,),20 c M1(G) be a convolution semigroup on G. A stochastic 
process (Xr)r20 with values in G is called a process with independent stationary 
increments related to (pJ,,, if for all  EN, 0 < to < t ,  < . . . < t,, the incre- 
ments X,, X, l ,  X,, X;; l ,  . . . , X,,X;!, are independent, and if for s, t 2 0 the 
random variables X,+,;K,-I are p,-distributed. 

A process (Xt)t30 with independent stationary increments related to (p,),, , 
can be also characterized as a Markov process on G whose transition proba- 
bilities satisfy 

for s, t 2 0, XEG, and A c G a Borel set. 

2.3. Remark. Let n: be a unitary representation of G on some HiIbert 
space H, and let be a convolution semigroup on G. We shall need below 
that the operators it(pt) are invertible in B(H) for all t 2 0. This holds in the 
following two important cases: 

(1) If a is finite-dimensional, then this property holds for all convolution 
semigroups. In fact, in this case the operators f(pJ tend for t -+ 0 to the 
identity in the norm-topology. Hence E b , )  is invertible for small t 2 0. The 
general case follows from the semigroup property. 

(2) Let p E M l  (G) be a bounded, positive regular Borel measure on G, and 

&:= e-tllall -et")tao €M1 (G) 

the associated compound Poisson convolution semigroup. Then, for each re- 
presentation R of G ,  f (p,) = e-tllall - et'(fll; hence w (,ut)- ' = er 11 . e-'*) B ( H )  
exists for all t 2 0. We remark that each convolution semigroup on a discrete 
group is compound Poisson; see Theorem 4.1.5 of [8]. 

The following simple notion of operator-valued martingales will be useful 
in this paper (for a general discussion of Banach space-valued martingales 
see [12]): 
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2.4. Operator-vaiued martingales. Let H be a Hilbert space, and (Zt),30 
be a B (H)-valued stochastic process with filtration (where B (H) carries 
the weak operator topology). Then (Zt)tB is  called a B(H)-ualued martingale 
(with respect to  (Pt),30) i f  for all a ,  ~ E H  the processes ( {Z ,a ,  b))t30 are mar- 
tingales (with respect to  (E)tBO). A similar notion works for local L2-martin- 
gales. 

2.5. LEMMA. Let x be a unitary representation of G on some Hilbert space H. 
Let (pJt20 be a convolution semigroup on G such that the operators E(&) are 
invertible for all t 2 0. Finally, let (X,),,, be a stochastic process on G with 
filtration ( & J t B o .  Then: 

( 1 )  If (x,),,, has independent stationary increments associated with (p,).,,, 
then the process (72 @,)-I n (Xt))t30 is a B (H)-valued martingale with respect to 
(&)LBO. 

(2) If (7i:(pt)- ~ F ( X ~ ) ) ~ ~ ~  is a B(H)-valued martingale with respect to o, 
then 

E(<x(X,+t)a, b )  I PS) = <5(pth(X$a,  b )  for s, t 3 0 ,  a, b E H .  

P r o o f .  (1) Denote the adjoint o f  AEBIH) by A*. Then, for all 
s, t 2 0 ,  a ,  ~ E H ,  

(2) The assumptions yield that, for all s ,  t 2 0, a ,  b E H ,  

= < f ( p , ) - ' x ( X J a ,  f (pS+3*b) = <itb,)n(X,)  a ,  b) .  

By Lemma 2.5 ( I ) ,  one part o f  the following theorem is clear. 

2.6. THEOREM. Let (pJtao be a convolution semigroup on G. Assume that 
there exists a set S of (equivalence classes of) unitary representations of G with 
the following properties: 

(a) For each 7~ E S and t 2 0 ,  the operator 3 (pt)- E B ( H )  exists. 
(b )  Injectivity of the Fourier-Stieltjes transform: If p EM, (G) satisfies 

%(p)  = 0 for all R E S ,  then p = 0 holds. 
Then thefollowing statements are equivalent for a stochastic process (X,),,, 

on G: 
(1) (Xt)t,o is a process with independent stationary increments related with 

(k)t 3 0 - 
(2)  For each n: E S ,  the process (ii: (p,)- l n ( ~ , ) ) , ~ ~  is an operator-valued mar- 

tingale with respect ;o the canonical filtration of (XtL3*. 
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Proof. For the proof of (2) - (I), assume that (Xi),,, is defined on the 
probability space (52, d, P).  Denote the canonical Mtration of (Xr) tBo by 
(&)tLO. NOW fix S, t 2 0, x E S, and a, b E H. Then, by Lemma 2.5 (Z), 

Now take F ~9~ with P (F)  > 0. Define a probability measureP, on (0, d) by 

PF (A) : = 
P ( A n  F )  

p (F)  
for A E d.  

Then the distributions p f ,  ~ ~ + , E M ' ( G )  of X ,  and X,+,, respectively with re- 
spect td P ,  .satisfy 

As this holds for all a, ~ E H  and all nES, condition (b) implies that 
h * p r  = p L t  for all F E E ,  S, t 2 0. Hence, for all Borel sets B c G and all 
F E ~ ,  with P(F)  > 0, 

As the mapping w H (pt * axS(d (B) is a (X,)-measurable, and as 9, 3 ~(x,), we 
obtain 

P ( X ,  +t E B I E) = I' (X, + t E B I X,) = (& * axs(-)) (B) a-e. 

for all Borel sets B c K. Hence (XJ tao  is a process with independent stationary 
increments related to (pJtao as claimed. ra 

2.7. EXAMPLES. (1) If a convolution semigroup (p,),,, on a locally compact 
group G has the property that it(pJ-I E B(H) exists for all t 2 0 and all a E e, 
then conditions (a) and (b) of Theorem 2.6 hold for S : =  e. In particular, 
Remark 2.3 (2) ensures that the assertion of Theorem 2.6 holds with S = for 
any compound Poisson convolution semigroup. 

(2) A locally compact group G is called almost periodic if the set of all 
fmite-dimensional unitary representations of G separates points in G, i.e., for all 
x, y c G  with x # y there exists a finite-dimensional unitary representation 
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x and elements a, b on the underlying Hilbert space with (x(x)a, b )  
# <n (Y) a, b }  

It is well-known (see Theorem 1.3.8 of [8]) that for almost periodic groups 
G the injectivity of the Fourier-Stieltjes transform holds with 
S: = {n E e: dim R < m). Hence conditions (a) and (b) of Theorem 2.6 hold 
here for this S and for all convolution semigroups. 

(3) We give some examples of almost periodic groups: If all irreducible 
unitary representations of a locally compact group G are finite-dimensional 
(i,e., if G is a "Moore group"), then G is almost periodic by the Gelfand-Raikov 
theorem. In'particular, compact groups and locally compact Abelian groups 
a r e - ~ o d r e  groups, and hence almost periodic. Moreover, each discrete free 
group is almost periodic; see Section 22.22 (d) of [7]. For a further discussion 
of almost periodic groups from a stochastic point of view we refer to [XI. 

We next compare the martingale characterization 2.6 with the martingale 
problem due to Stroock and Varadhan [18]. For a discussion of the martingale 
problem for Markov processes see Sections 4.1 and 4.3 of [ 5 ] .  Recapitulate the 
notion that a stochastic process (Xt)tao has the cadlig property if almost all 
paths are right continuous and admit limits from the left. 

For simplicity we now restrict our attention to finite-dimensional repre- 
sentations. 

2.8. PROPOSITION. Let @Jtao be a convolution semigroup on a ZocaIZy com- 
pact group G. Let x be afinite-dimensional unitary representation of G on some 
HiEbert space H .  Then the one-parameter semigroup (it (p,)), a c B (H) admits 
a generator 

1 
F:= lim - (5(p,)-Id)€B(H). 

8-0 t 

Moreover, for each cadlcig-process (X,), a on G, the process ( E  kt)- n (Xt)), is 
a B (H)-oaiued martingale if and only if so is (n (X,) - F f, n (Xs) ds), 0. 

Proof. The existence of F is clear. For the main part of the proof identify 
H with C, i.e., elements of B(H)  are matrices (Aij)i,j=l ,...,,. Notice that all 
coefficients of (5 (K)- ' n (X,)), , , and (X: : = n (Xt) - F . jb n (XJ d ~ ) ~ ,  . are uni- 
formly and I?-bounded on compact time intervals. Hence, these processes are 
martingales if and only if they are local I?-martingales (see 4.2.3 of 1201). 

Assume now that ((501,)-' n ( ~ ~ ) ) ~ ) ~ ~ ~  is a local L2-martingale for each i, j. 
Then all (~(xJ '? ,~ ,  are semimartingales. Stochastic integration by parts 
together with [(e-")", n(X,)'j = 0 for the mutual variations (see 7.3.1 and 
7.3.13 of [20]) implies 
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n 

= C (e-tp)'k (dz ( X J k j - ( ~ n  ( ~ ~ ) ) ~ j  dt) ,  
R =  1 

and hence n 

This yields that all components of (X:),,, are local L2-martingales. 
The converse conclusion is similar. In fact, if all components of (X:h3 are 

local I!-martingales, then all (7r (X?)$> are semimartingales for which (2.2) 
holds. I 

Theorem 2.6 and Proposition 2,s yield that the martingale problem in the 
sense of [18] is well-posed for processes with independent stationary incre- 
ments on almost periodic groups in the following way: 

2.9. COROLLARY. Let (p,haO be a convolution semigroup on an almost peri- 
odic group G. Let x be afinite-dimensional unitary representation of G on some 
HiEbert space H and a ,  ~ E H .  Then for all a ,  ~ E H  and all "coeflcients" 
f (x)  : = {n ( x )  a ,  b> the limit 

1 

Lf: = lim 1 (A- * f - f) E Cb (G) 
t-to t 

exists. Moreover, a cddldg-process (Xt) ,30 on G is a process with independent 
stationary increments associated with i j  and only iJ for each coeficient 
f us above, the process (f (XJ- 16 Lf (X,) dsba0 is a martingale. 

Proof. If f if given by f (x) = (x (x) a ,  b )  and if F is as in Proposition 2.8, 
then 

= (F-n(x)a, b ) .  

Hence, in the matrix notation, Ln: = F e n ,  and the corollary follows from 2.6 
and 2.8. s 

We finally compare Corollary 2.9 with known results for the martingale 
problem on a Lie group G. The well-posedness of the martingale problem for Lie 
groups has been derived by Feinsilver [6] and can be done so also from the 
discussion of the general martingale problem for Markov processes in [5] (use 
Proposition 4.1.7 and Theorem 4.4.1 of [5]). To describe the result, denote the space 
of all continuous functions on G vanishing at infinity by C,(G). Moreover, let 
Cg (G) be the space of all twice (from the left) differentiable C, (G)-functions. Then, 
for each convolution semigroup on G, the space Cg (15) is contained in the 
domain of the associated generator 

see Section 4.1 of [8]. Then, according to [6] or [S], the following holds: 
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2.10. PROPOSITION. Let (pt) tao be a convolution semigroup on a Lie group 
G with generator L. Let (XJtBO be a cddldg process on G.  Then ( X t ) l a ,  
is a process with independent stationary increments associated with (pt) t30 if 
and only $/or each / E c Q ( G )  the process (f (XJ-roLf  ( X d s  is a mar- 
tingale. 

2.11. Remarks. (I) All results above can be generalized to non-unitary 
representations. However, one has to assume here that the convolution semi- 
group (p,),,, on G and the representation(s) x of G have the property that the 
semigroup ( $ ( p t ) ) 1 3 0 ~ B ( H )  as defined in Section 2.1 (2) exists as a weakly 
continuous semigroup. This may be seen as a generalization of classical 
moment' conditions for (p,), , , . 

(2) All results of this section can be also extended to stochastic processes 
on hypergroups. For the theory of hypergroups we refer to the monograph [ I ] .  
In particular, an analogue of Theorem 2.6 for commutative hypergroups is 
given in [15]. A further result of this type for Markov processes on Rn related 
with Dunk1 operators is discussed in [17]. 

3. GAUSSIAN PROCESSES ON COMPACT LIE GROUPS 

In this section we reduce condition (2) of Theorem 2.6 to a subset of 
representations of G which is as small as possible. This can be achieved via ItG's 
formula for processes with continuous paths. Hence, from now on we restrict 
our attention to Gaussian processes. 

3.1. Gaussian semigroups and processes. A convoIution semigroup (j&, , 
on a locally compact group G is called Gaussian if 

1 
lim - k(G\U,) = 0 for all neighborhoods U, of e .  
t-o t 

If (bhgO is a Gaussian semigroup, then each associated stochastic process 
(XthBO on G with independent stationary increments is called a Gaussian pro- 
cess associated with (pJt  ,, . 

For an extensive discussion and examples of Gaussian semigroups we refer 
to [83. 

We recapitulate some well-known facts: 

3.2. FACTS. ( 1 )  A convolution semigroup on a locally compact group is 
Gaussian if and only if each associated process with independent stationary 
increments admits a version with continuous paths. In particular, the support 
of a Gaussian convolution semigroup is contained in the connected component 
of the group. 

For the proof of the "only if' part see Theorem 45 in [13] (or I (9.10) in 
[2]). The "if' part in ( 1 )  can be shown in the same way as Exercise I (9.18) in 121 
for G = R". 
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(2) Let G be a compact group. If ( j i r ) r B O  is a Gaussian convolution semi- 
group on G, and if g is a finite-dimensional unitary representation of G on Cn, then 

(3.1) jdet (Q B e (PJ)- I (Q B Q kt))- 1 = ~det ~ ( ~ 3 1 ~ ~ ~ ~ ~  ( t  2 01, 
where Q and dim p denote the contragradient representation and dimension of 
g ,  respectively. Conversely, if equality (3.1) holds for all irreducible unitary 
representations or some faithful unitary representation Q of G, then (pJtBO is 
a Gaussian convolution semigroup. For the proof see Section 6.2 of [8] or 
Section 4 of [4]. 

(3) Gaussian processes on Lie groups can be characterized as unique solu- 
tions of certain stochastic differential equations in which Brownian motions on 
the associated Lie algebra appear; see [9] and [16]. 

We next show that it sufices for compact Lie groups to consider only 
f i t e ly  many representations in condition (2) of Theorem 2.6. For this notice 
that each compact Lie group admits a faithful finite-dimensional unitary re- 
presentation; see Theorem 111.4.1 in [3]. 

3.3. THEOREM. Let (p,)tBO be a Gaetssian convolution semigroup on a com- 
pact Lie group G, and let q be a faithfulJinite-dimensional unitary representation 
of G. Then the following statements are equivalent for a continuous stochastic 
process (Xt)r3 0 on G with filtration (FJtSo: 

(I) is a Gaussian process associrafed with ( ) r 8 0 .  

(2) i f x ~  ( g ,  4 €3 g ) ,  then ( f (p , ) - l  x(Xt)),30 is a matrix-valued martingale 
with respect to (StbBO. 

(3) For each irreducible unitmy subrepresentation .n of e or Q @ g ,  the pro- 
cess (it (pJ- ' n (x,)b3 is a matrix-valued martingale with respect to (%), z,O. 

P r  o of. The conclusion (1) * (2) is clear by Lemma 2.5 ( I ) ,  and (2) e (3) is 
obvious. To prove (2) - (I), we may assume that G is a compact subgroup of 
U (n) for some n E N and that p is the identity. Let (X,),, , be a continuous 
process on G satisfying condition (2). Realize the tensor product representation 
g g on ITn2 as matrices with (q @ g (x))('~)") = xi' xk'. Moreover, denote the 
generators of the semigroups @(jiJ)t20 and ((@ €31 ebt))-),30 b y  F ,  and F,, 
respectively. Let i, j, k, l ~ ( 1 ,  ..., n).  As the coordinates (X;j),,, are semi- 
martingales (cf. the proof of Proposition 2.8), ItBYs formula yields 

d (X:j X:') = Xy dX:' + x;kl dX:j + d [X!j ,  X;'] , 
where [a, -1 denotes the mutual variance. Therefore, 

(3.2) d ( ~ i j  X 3  - (F ,  - ( X ,  @ X,))('klti')dt - Xij ( d ~ : '  -(PI - XJkldt)  

-x:' (dXii- (F' XJiidt) = Hijkl (X,) dt + d [Xi', X t l j  
with 

Ifijkl ( x )  : = xij(F1 - x ) ~ ' + x ~ ' ( F ~  . x ) ~ ~ - ( F ~  ( X  @ x ) ) ~ ~ ~ ) ~ ' )  ( X  E G). 



The left-hand side of (3.2) is the differential of a local I?-martingale by con- 
dition (2) and Proposition 2.8. Moreover, as a.s. locally finite variation is pre- 
served under stochastic integration (see 5.3.5 of [20]), the right-hand side of 
(3.2) has paths with a.s. locally finite variation. It follows from the Doob-Meyer 
decomposition that (3.2) is a.s. equal to zero; see 5.3.2 of [20], Hence 

Now consider a "monomial" h on G of the type 

As h is 'holomorphic on G, the complex It6 formula applies. Hence, with 
equation (3.3), we obtain 

Moreover, h is a matrix coefficient of some finite tensor power Q@," 0 QBsb of 
p and e. Hence, by Corollary 2.9, h is in the domain of the generator L as- 
sociated with As 

is the differential of a local martingale by condition (2) and Proposition 2.8, 
equation (3.4) implies that 

(3.5) dh (XJ- Lh ( X J d t  

is the differential of a local martingale if and only if 

is the differential of a local martingale. The latter is possible if and only if (3.6) 
is equal to zero a.s. (see 5.3.2 and 5.3.5 of [20]), which means that the integrand 
disappears in this equation. 

To prove this, replace the process (XJ,, , above by some Gaussian process 
(a, related with (p.Jt,, such that the support of the initial distribution of Yo 
is equal to G. By Proposition 2.10, the associated differential (3.5) belongs to 
a local martingale. Hence, by the conclusions above, 
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for all t 2 0 a.s. It follows that for all x E G 

Therefore, the differential (3.6) is equal to zero for (X,),,,, and the differential 
(3.5) belongs to a local martingale for each h. As the functions h form all matrix 
coefficients of a11 finite tensor powers e@'ra @ @ y b  of e ,  0,  and as each irreduci- 
ble unitary representation of G appears as a subrepresentation of some of these 
tensor powers (Theorem 111.4.4 of [3j), it follows from Proposition 2.8 that 
condition (2) of. Theorem 2.6 holds. This completes the proof. rsl 

3.4 EXAMPLE. For the torus T = (ZE C: 1x1 = 11, the set of irreducible 
representations may be identified with the character group 8 = Z. Taking the 
identity as faithful representation p,  we obtain from equation (3.8) for h ( x )  = xn 
that Gaussian semigroups (pJt3 ,, on T satisfy 

fir (n) = j Z" dpI  (z) = exp { - tF,} for n E Z ,  
T 

where the coefficients F, satisfy 

Hence the solutions of (3.9) are given by 

(3.10) F ,  = c, n2 + i- c, n (n €2, c,, c, constants). 

Hence equation (3.8) is equivalent to the well-known description of the Fourier 
transforms of Gaussian semigroups; cf. Section 5.2 of [8]. For c, 2 0 and c2 E R 
in equation (3.16), there exists an associated Gaussian convolution semigroup 
(pJtao, and Theorem 3.3 leads to a martingale characterization of the associated 
Gaussian processes. It is even possible here to drop the continuity assumption: 

3.5. COROLLARY. Let c, 2 0 and c, E R. Let (Xth3 be a stochastic process 
on T suck that (exp ((c, n2 + ic, YZ) t} .X:)tao is a martingale for n E (1, 2). Then 
(Xt)t20 is a Gaussian process on T (associated with the constants c,, c,). 

Proof. Let 0 < s < t. As IX,I = IX,] = 1, we have 

E(Ix , -x ,~~)  = ~ - ~ E ( x ~ X , + X , X , ) + E ( X ~ X ~ + X ~ F ~ ) .  
Moreover, if (9t)t30 denotes the canonical filtration of (Xt)rBO, we obtain 

and, by similar arguments, E (X: Xi) = exp ((4c, + 2ic2) (t - s)) . Hence 

E(IXs- XtI4) 

= 6-8exp(cl(t-s))cos(c,(t-s))+2exp(4cl(t-s)~cos(2c2(t-s)) 

= O ( ( S - ~ ) ~ )  for S-t+0.  
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Hence, by Kolmogorov's criterion (see [lg]), (XJ,,, is continuous after re- 
striction to a subset of the underlying probability space with outer measure 1. 
Theorem 3.3 now completes the proof. a 

Corollary 3.5 can be easily extended to the d-dimensional torus Td. For 
this, fix a drift vector c : = (c,, . . ., c,) E P and a positive semidefinite diffusion 
matrix D : = (di,Ji,.= Then, according to usual conventions, the associated 
convolution semigroup dudtao c M1(Td) is characterized via its Fourier trans- 
form with 

- &(a):= jzTR1 ... ~ ~ ~ ~ d p ~ ( z ~ ,  ..., zd)=exp{t(icnr-nDni/2)) 
Td 

for n E Zd -- (Td)  A (where ' means the transpose). With this notation, the fol- 
lowing martingale characterization holds: 

3.6. COROLLARY. A stochastic process (X, : = (XzP1, - . . , Xt,d))t3 on Td is 
a Gaussian process associated with the drlrift vector c and the diflusion matrix D 
if and only for all n ~ Z d ,  with nl + . . . +nd < 2 the processes 
(exp (t (icnt + nDnt/2)) Xz . . . X:$)* are martingales. 

P r o  of. It suffices to check the "if' part. Here Corollary 3.5 yields that all 
components of X may be assumed to be continuous. Theorem 3.3 now com- 
pletes the proof. rn 

To drop the continuity assumption in Theorem 3.3 for arbitrary compact 
Lie groups, we need some preparations. Denote the trace and the transpose of 
a matrix A by trA and AT, respectively. 

3.7. LEMMA. Let e be afinite-dimensional unitary representation of a locally 
compact group G on C' with the usual scalar product. Let (pJtao be a convolution 
semigroup on G, and (Xt)tBo a stochastic process on G with filtration (FtItBo. 
Then : 

(1) If (@(pf)- l Q is a matrix-valued martingale with respect to 
(9JtB ,, then for all 0 < s < t 

(2) If ( E  (pJ- 71 (Xt)), ,, is an operator-valued martingale with respect to 
(6)rbO for =(e, e @ e, e Q Q), then 

H (s, t) : = E ({tr ((@ (XJ - e (Xt)) (@ (X.1- e (x,))~)}') 
can be written as 

H ( s , t ) = H ( I ~ - t l , O ) = A , . [ s - t l + O ( I s - t 1 ~ )  for Is-tj+O, 

where the constant A, satisfies A, = 0 if and only if 
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p r o  of. (1) Using Lemma 2.5 (2) and Q (XJ Q (XJT = Id, we obtain 

(. (e (Xt X; ' 1 ) )  = E ( E  (fr (Q (Xtl m7 I E)) 

(2) Assume 0 < s < t without loss of generality. Using.@ (X,) . Q (XSlT = Id, 
we obtain - .. 

H (s, t)' = E ((2n - tr (p (X, Xi ') + e ( X ,  X; I ) ) )  ') 
= 4n2 - 4n E (tr (g (X, X; l) + Q (X, X; I))) 

+ E ({tr (e W t  x; '1 + e (xs x; I))} 2, 

= 4n2 - 8n Re E (tr (e (X, X; '1)) + 2 Re E (tr (Q @ Q (Xl X; I))) 

If we apply part (1) to Q ,  q  Be, and Q @ @, we obtain 

For x E ( Q ,  Q @ Q ,  e @ a), denote the generator of the semigroup ( E  (pt)),,, 
by F,. A power series expansion of exp (tF,j = E(pt) in equation (3.11) leads to 
H(s,  t ) =  A , ( t - ~ ) + O ( ( t - s ) ~ )  for t - s + O  with 

As A, = 0 is equivalent to Idet exp (F,],)14'" = ldet exp {F,.,)I. ldet exp (FeB,-)I, 
the lemma follows. e 

3.8. Remarks. Before we proceed with the main application of Lem- 
ma 3.7, we mention that Lemmas 3.7 and 2.5 lead to an alternative proof of 
parts of Section 3.2: 

(1) Let @t)t 3 o  be a Gaussian convolution semigroup on some locally com- 
pact group G. Then, for any finite-dimensional unitary representation p of G, 

In fact, it is clear from the definition of a Gaussian semigroup that the 
image (~(b)), , ,  of a Gaussian semigroup (,ut)t,, is a Gaussian semigroup on 
some unitary group U(n). As 

(tr ((A - 3) OT)) 
is the Euclidean distance on U(n),  it follows from the definition of a Gaussian 
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semigroup that, for any Gaussian process (X,), 3, associated with ( P ~ ) ~ , , ,  the 
function H of Lemma 3.7 satisfies H(s,  t )  = o (Is- tl) for 1s - tl -+ 0. Equality 
(3.12) is now a consequence of 2.5 and 3.7. 

(2) Let (pJtzo be a convolution semigroup on a compact group G. If(3.12) 
holds for each irreducible unitary representation Q of G or some faithful one, 
then each associated stochastic process with independent stationary increments 
is continuous on a set with outer probability one. 

In fact, let (Xg),,, be such a process with independent stationary incre- 
ments. Then Lemmas 2.5 and 3.7 imply that, for each irreducible representation 
Q of G on - some Hilbert space H, with faithful trace tr,, 

Hence, by Kolmogorov's criterion, (Q (X,)),, , is continuous with outer proba- 
bility one. The faithful case is now clear. Otherwise, remember that G admits at 
most countably many (equivalence classes of) irreducible representations. 
Hence G may be regarded as a compact subgroup of nQ irreducible B(%), and 
the statement follows. 

Theorem 3.3 now leads to the following extension of Corollary 3.5: 

39. THEOREM. Let (pt)tao be a Gaussian convolution semigroup on a com- 
pact Lie group G. Let Q be a faithful,$nite-dimensional unitary representatiopl of 
G. Then the following statements are equivalent for a stochastic process 
an G with filtration (9Jt3,: 

(1) (Xt),>, is a Gaussian process on G related to (pJtb O. 

(2) If x E (g, q Q g, Q Q a), then (ff(pt)-' x (x~)) ,~,  is an operator-valued 
(9Jt o-rnartingale. 

(3)  I f n  is aa irreducible representation of G contained in q,  Q Q, or Q @J g, 
then ( E ( ~ ~ ) -  ' Z ( X ~ ) ) ~ ~  ,, is an operator-valued martingale with respect to ,. 

Proof. In view of Lemma 2.5 and Theorem 3.3, it suffices to check that 
a process (X,),,, on G with property (2) or (3) is continuous with outer proba- 
bility one. But this follows from Lemma 3.7 and Kolmogorov's criterion in the 
same way as above. 

3.10. EWLE. The unitary group SU (2) admits exactly one (equivalence 
class of an) irreducible unitary representation Q, of dimension n for each n E N, 
see Section 11.5 of [3]. In particular, Q, is the identity with Q, Q q, = Q ,  O g, 
and Q, = Q, . Furthermore, Q, is the usual covering map from SU (2) onto 
SO(3). As el  is the trivial representation (which carries no information), 
Theorem 3.9 leads to: 

3.11. COROLLARY. Let (pt)t30 be a Gaussian convolution semigroup on 
SU(2). Then a stochastic process (XJt3* on SU (2) is a Gaussian process related 
to if and only if the processes (@,, (pt)- - Q ,  (Xt))t30 are operator-valued 
martingales for n = 2, 3 .  



Martingale chmacterizations of stochastic processes 403 

3.12. EXAMPLE. The orthogonal group 50(3) has exactly one (equiv- 
alence class of an) irreducible unitary representation g, of dimension 2n - 1 
for  EN; see Section 11.5 of 131. In particular, Q, is the identity with 
Q~ @ e2 = el @ e2 @ e3 and Q, = q,. Hence Theorem 3.9 leads to: 

3.13. COROLLARY. Let (p , ) jgO be a Gaussian convolution semigroup on 
SO (3). Then a stochastic process (X,),,, on 50 (3) is a Gaussian process related 
to (A),, , and only if the processes (& (pj)-' . Q, (X,)),, , are operator-valued 
martingales for n = 2 ,  3. 

3.14. Re marks. (1) If q is a real, faithful, finite-dimensional unitary re- 
presentation on  a compact Lie group G ,  then @ = Q always holds, i.e., in this 
case the martingale conditions (2) and (3)  in Theorems 3.3 and 3.9 are equiva- 
lent, respectively. Concrete examples are given by the identity representations 
of the rotation groups SO(n) .  

(2) Similarly to Corollary 3.6 for the multidimensional torus, Corollaries 
3.11 and 3.13 can be extended to finite mixed direct products of the groups T, 
SO (3), and SU (2 )  by taking Q as the associated direct product of the correspon- 
ding identity representations. It turns out again that in this case the continuity 
assumption in Theorem 3.3 can be completely omitted. 

In the end of this paper we extend Theorem 3.3 to arbitrary compact groups. 
Recall that each compact group G is (isomorphic to) the projective limit of 
compact Lie groups; see Section 28.61 of [7 ] .  This means that there is a directed 
system (HAEA of compact normal subgroups of G with Ha c Hg for a 2 /3 such 
that G / H ,  is a Lie group for each a, and such that 0 ,  Ha = ( e )  holds. For a E A 
we denote the canonical homomorphism from G onto G/Ha by pa. 

3.15. THEOREM. Let ( p J f 3 ,  be a Gaussian convolution semigroup on a corn- 
pact group G. Assum t h t  the systems and @,),, are given as above. 
Then the following statements are equivalent for a continuous stochastic process 
(XX)t> 0 on G :  

(1)  (Xt ) ,3  is a Gaussian process related to (&, . 
(2) For each CCE A there is a faithful Bnite-dimensional unitary represen- 

tation Q, of G/Ha such that for .n, E {Q,, Q, @ g,) the process 

is an operator-valued martingale with respect to the canonical Jiltration of 
(Xth 3 0. 

Proof.  Due to Lemma 2.5, it suffices to prove (2) * (1). Assume that (2)  
holds. Then, for each a E A ,  (p,(p,))t,o c M1 (G/H,) is a Gaussian semigroup on 
G/Ha.  Hence, by Theorems 3.3 and 2.6, (pa  (X,)) ,> ,  is a Gaussian process on 
G/H,,  and 

((e 0 P,)"(P,) - . (e 0 P,) ( X t ) ) , > ~  

13 - PAMS 19.2 
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is an operator-valued martingale for each finite-dimensional unitary represen- 
tation Q of G/H,. As this holds for all a, and as each finite-dimensional unitary 
representation 7~ of G takes the form .z = Q o pa for suitable u and Q, it follows 
from Theorem 2.6 that (XJt3, is a Gaussian process related to (pJt30. 

Theorem 3.9 can be extended in a similar way; we leave this to the reader. 
We only mention that Corollary 3.6 can be extended to the infinite-dimen- 
sional toms T'" in the obvious way. 

3.11. Remark. Theorem 3.3 can be extended from the setting of faithful 
finite-dimensional unitary representations of compact Lie groups to arbitrary 
faithful ,finite-dimensional representations of locally compact groups. In fact, 
for the proof it sdlices to study the group GL(n,  R) with the identity represen- 
tation. In the proof one now proceeds as in the proof of Theorem 3.3 except 
that one has to take test functions h~ Cg (Rn2) (which are contained in the 
domain of the generator associated with (p,),30). The result then follows with 
Proposition 2.10. We remark that one has to be careful in this proof with 
respect to the following two points: One needs that all second moments 
JGL(fl,,, x i j d f i ( x )  exist as continuous functions in t 2 0 for the Gaussian con- 
voluhon semigroup {p,),3, under consideration. Moreover, one has to take real 
tensor products in condition (2) of Theorem 3.3 (as the test functions h above 
are R-differentiable only). 
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