PROBABILITY AND MATHEMATICAL STATISTICS Vol. 20, Fasc. 1 (2000), pp. 151–168

THE LADDER VARIABLES OF A MARKOV RANDOM WALK

Gerold Alsmeyer

Abstract: Given a Harris chain $(M_n)_{n\geq 0}$ on any state space $(\mathcal{S}, \mathcal{C})$ with essentially unique stationary measure ξ , let $(X_n)_{n\geq 0}$ be a sequence of real-valued random variables which are conditionally independent, given $(M_n)_{n\geq 0}$, and satisfy

$$P(X_k \in \cdot | (M_n)_{n \ge 0}) = Q(M_{k-1}, M_k, \cdot)$$

for some stochastic kernel $Q: S^2 \times \mathcal{B} \to [0, 1]$ and all $k \ge 1$. Denote by S_n the *n*-th partial sum of this sequence. Then $(M_n, S_n)_{n\ge 0}$ forms a so-called Markov random walk with driving chain $(M_n)_{n\ge 0}$. Its stationary mean drift is given by $\mu = E_{\xi}X_1$ and assumed to be positive in which case the associated (strictly ascending) ladder epochs

$$\sigma_0 = \inf\{k \ge 0 : S_k \ge 0\},$$

$$\sigma_n = \inf\{k > \sigma_{n-1} : S_k > S_{\sigma_{n-1}}\} \text{ for } n \ge 1,$$

and the ladder heights $S_n^* = S_{\sigma_n}$ for $n \ge 0$ are a.s. positive and finite random variables. Put $M_n^* = M_{\sigma_n}$. The main result of this paper is that $(M_n^*, S_n^*)_{n\ge 0}$ and $(M_n^*, \sigma_n)_{n\ge 0}$ are again Markov random walks (with positive increments, thus so-called Markov renewal processes) with Harris recurrent driving chain $(M_n^*)_{n\ge 0}$. The difficult part is to verify the Harris recurrence of $(M_n^*)_{n\ge 0}$. Denoting by ξ^* its stationary measure, we also give necessary and sufficient conditions for the finiteness of $E_{\xi^*}S_1^*$, $E_{\xi}S_1^*$ and $E_{\xi^*}\sigma_1$ in terms of μ or the recurrence-type of $(M_n)_{n\ge 0}$ or $(M_n^*)_{n\ge 0}$.

1991 AMS Mathematics Subject Classification: 60J05, 60J15, 60K05, 60K15.

Key words and phrases: Markov random walks, ladder variables, Harris recurrence, regeneration epochs, couphng.

THE FULL TEXT IS AVAILABLE HERE