PROBABILITY
 AND
 MATHEMATICAL STATISTICS
 Vol. 20, Fasc. 1 (2000), pp. 151-168

THE LADDER VARIABLES OF A MARKOV RANDOM WALK

Gerold Alsmeyer

Abstract: Given a Harris chain $\left(M_{n}\right)_{n \geq 0}$ on any state space $(\mathcal{S}, \mathcal{C})$ with essentially unique stationary measure ξ, let $\left(X_{n}\right)_{n>0}$ be a sequence of real-valued random variables which are conditionally independent, given $\left(M_{n}\right)_{n \geq 0}$, and satisfy

$$
P\left(X_{k} \in \cdot \mid\left(M_{n}\right)_{n \geq 0}\right)=Q\left(M_{k-1}, M_{k}, \cdot\right)
$$

for some stochastic kernel $Q: \mathcal{S}^{2} \times \mathcal{B} \rightarrow[0,1]$ and all $k \geq 1$. Denote by S_{n} the n-th partial sum of this sequence. Then $\left(M_{n}, S_{n}\right)_{n \geq 0}$ forms a so-called Markov random walk with driving chain $\left(M_{n}\right)_{n \geq 0}$. Its stationary mean drift is given by $\mu=E_{\xi} X_{1}$ and assumed to be positive in which case the associated (strictly ascending) ladder epochs

$$
\begin{gathered}
\sigma_{0}=\inf \left\{k \geq 0: S_{k} \geq 0\right\} \\
\sigma_{n}=\inf \left\{k>\sigma_{n-1}: S_{k}>S_{\sigma_{n-1}}\right\} \text { for } n \geq 1
\end{gathered}
$$

and the ladder heights $S_{n}^{*}=S_{\sigma_{n}}$ for $n \geq 0$ are a.s. positive and finite random variables. Put $M_{n}^{*}=M_{\sigma_{n}}$. The main result of this paper is that $\left(M_{n}^{*}, S_{n}^{*}\right)_{n \geq 0}$ and $\left(M_{n}^{*}, \sigma_{n}\right)_{n \geq 0}$ are again Markov random walks (with positive increments, thus so-called Markov renewal processes) with Harris recurrent driving chain $\left(M_{n}^{*}\right)_{n \geq 0}$. The difficult part is to verify the Harris recurrence of $\left(M_{n}^{*}\right)_{n \geq 0}$. Denoting by ξ^{*} its stationary measure, we also give necessary and sufficient conditions for the finiteness of $E_{\xi^{*}} S_{1}^{*}, E_{\xi} S_{1}^{*}$ and $E_{\xi^{*}} \sigma_{1}$ in terms of μ or the recurrence-type of $\left(M_{n}\right)_{n \geq 0}$ or $\left(M_{n}^{*}\right)_{n \geq 0}$.

1991 AMS Mathematics Subject Classification: 60J05, 60J15, 60K05, 60K15.
Key words and phrases: Markov random walks, ladder variables, Harris recurrence, regeneration epochs, couphng.

