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Abstract. For the class of nonnegative random variables with 
given mean, variance, and skewness and support bound, we present 
a sharp upper bound for the expectation of rounding due to the Jeffer- 
son rule. The result gives an estimate for average extra gains due to 
rounding down payments. Arguments of four-dimensional geometric 
moment theory implemented in the proof provide tools for refined 
evaluations of rates of convergence of probability distributions and 
positive linear operators. 
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1. INTRODUCTION AND NOTATION 

The paper is organized as follows. In Section 1 we state the problem, 
discuss briefly related results and applications, and present a geometric optimal 
distance method implemented here and in the cited literature. We also in- 
troduce some notation and describe the range of reasonable assumptions for 
the problem. In Section 2 we provide geometric and analytic for5ulations of 
main results. Section 3 contains some auxiliary lemmas and proofs oT the main 
results. 

We consider the class of random variables which are nonnegative bounded 
above by a fixed possibly infinite number a, and satisfy three moment con- 
ditions EXi = mi, i = 1, 2, 3, where all mi are given. The objective of this paper 
is to determine the sharp upper bound U,(M),  M = (m,, m,, m,), for the ex- 
pected integer part of the random variable E LXJ under the mentioned support 
and moment conditions. The choice of these moments is natural. They have 
meaningful statistical counterparts: the mean rn, , variance 0' = rn, - rn? , 
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2 T. Rychl ik  

and skewness s = (m, - 3m2 m, + 2rn:)/a3. However, we prefer expressing the I 
conditions in terms of ordinary moments mi, i = 1, 2, 3, which is more con- I 

venient for the method of proof we apply and provides a simpler representation 
of final results. The function L._( is also referred to as the floor of the number 
and the Jefferson rule of rounding. 

Considering the discrepancy between the expectations of the original and 
rounded variables we obtain an estimate of average extra gains per transaction 
of commercial establishments due to rounding down payments when the basic 
statistical parameters of transactions can be evaluated. Analogous results for 
more general c-rounding procedures (which round down and up when the 
fractional part is less or greater than C E  [O, 11) under one and two moment 
conditions were solved in Anastassiou and Rachev [2] and Rychlik [13]. Our 
result allows to derive more subtle conclusions in the theory of apportionment 
which deals with problems of determining fair representations of regions and 
parties by assigning seats in parliaments fairly reflecting the vote distribution, 
allocating jobs and service facilities among administrative units proportionally 
to their population sizes and structures, etc. The Jefferson rounding is the most 
natural element of the class of divisor rules of rounding that were defined in the 
monograph of Balinski and Young [7] and proved to be the only efficient class 
not suffering from paradoxes and bias (for a recent account of the apportion- 
ment theory we refer to Balinski and Rachev [6]). Pukdsheim /10] pointed out 
that the method of Jefferson is the most suitable discretization for stratified 
sampling schemes. 

The results were established by means of the geometric moment theory 
developed in Kemperman [9]. The crucial tool of the theory is based on the fact 
that for an arbitrary probabilistic measure ,u on a measurable Rausdorff space 
F with given generalized moments Sgfid,u for some integrable functions 
A, i = 1, . . . , pn, there exists a probabilistic measure p' supported on m + 1 
points at most with the same moments. The result was independently obtained 
by Richter [11] and Rogosinsky [12]. Accordingly, the moment point 
( fi (t), . . ., fm(t)) corresponds with the degenerate measure concentrated at 
t E 5 ,  and the set of moment points for all probability measures coincides with 
the convex hull of the image of moment functions conv {( f;..(t), . . . , f, (t)) : 
t ~ 5 ) .  In our case, the image points form the space curve 

02 = {(t, t2, t3): 0 < t < a) ,  

and, in consequence, the moment problem is well stated iff 

Attaching the expected floor, we get 

(1.2) (M, ELXJ)EH~ = conv{(t, t2 ,  t3, Ltj): 0 < t < a) 

for all random variables satisfying the support and moment conditions with 
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M E  do. Hence U, (MI is the supremum of the last coordinate for all points 
( M ,  x) E X,. It can be concluded from Kernperman ([9], Theorem 5, p. 99) that 
U,  (M) is attained for all finite a and M E  A,. The result for the infinite support 
case will be deduced by analyzing solutions for a + +KO. 

Summing up, our original problem can be replaced by a geometric one 
consisting in determining the upper enveIope for the convex set (1.2) with 
various a. Note that (1.2) is a four-dimensional set and we cannot rely merely 
on intuitive geometric arguments applicable for planar and space objects as 
was possible in solving the rounding problems under one- or t-wo-moment 
constraints. Our reasoning is based on combining geometric and analytic ar- 
guments. Tools introduced here can be used for solving analogous three-mo- 
ment problems for other rounding rules. What is more important, they also 
enable us to improve evaluations of the rates of convergence of distributions 
with given moments in the Prokhorov metrics (see Anastassiou and Rychlik 
[4] ,  [5]h and similar results for the Uvy and Kantorovich distances can be 
obtained as well. Further possible applications in the approximation theory 
include refinements of Korovkin type inequalities of Anastassiou [I] describing 
the rates of pointwise convergence of positive linear operators to the unit one. 

Below we mainly concentrate on the most sophisticated case of noninteger 
a ~ ( 3 ,  + a). For the remaining support bounds the number of possible types of 
solutions is reduced and they can be concluded fiom the proof of the former case. 
For fixed a, we shall try to represent various ME&, as convex combinations 

k 
M = xi=,  cti T ,  where T = (ti, tp, t?) for some 0 < ti < a ,  1 < i d k < 4, so to 

k 
maximize xi=, ai Lti] . Clearly, k = 1 iff m1 = mii2 = mii3 = tl E [0, a]. Below 
we represent M as combinations of k = 2, 3 , 4  image points T E O ~ ,  
i = 1, . . ., k, with coefficient adding up to 1. For the two-point representation 
which is possible iff 

the coefficients are 

If M satisfies the equation 

then M is a point of the plane pl(Tl T2 T3) spanned by TI ,  Tz, T3,  and the 
respective coefficients are 



Finally, with no restrictions, M can be represented as M = x:=l =,aiT, with 

- - 
Observe that (1.4), (1.61, (1.7) are not coefficients of convex combinations unless 
all are nonnegative. The facts that the left-hand side of (1.5) is less or greater 
than 0 may be geometrically interpreted by saying that M is located below or 
above pl (TI T2 T,). This is no justified to rewrite (1.5) as pl (TI Tz T3) ( M )  = 0. 
Replacing M .by T E 04 there, we get ( t  - t l )  ( t  - t2) (t - t3)  = 0, which immedi- 
ately implies the following lemma that will be repeatedly referred to: 

LEMMA 1. If T, T E O ~ ,  i = 1, 2 ,  3,  then T is located below pl(T, Tz T3) fl 
t is either the smallest or the second greatest among t , tl, t 2 ,  t, . Also, t lies above 
pl(Tl T2 T3) ifl t is either the second smallest or the greatest. 

Note that the numerator in (1.7) describes the location of M with respect 
to the plane determined by Ti for j # i, and therefore can be written as 
pl (TI T2 T3 T4\ !&) (M).  A straightforward computation shows that 

In the case we let ti vary and keep the other ti fixed, this formula enables us to 
characterize qualitative changes of coefficients uj provided that we know the 
ordering of t,, t , ,  t , ,  t4, and the location of M with respect to the plane span- 
ned by the immobile T j .  The direction of change for the contribution of the 
mobile point can be deduced directly: ai increases iff T approaches M. 

In the sequel we distinguish some specific T= (t, t 2 ,  t3)  of the graph of the 
moment function. We shall write 0, 1, K, N and A for the points generated by 
0, 1, an integer k, n = LuJ and n, respectively. For convenience, we put 
E = k + 1 and, consequently, write L = ( E ,  i2, i3). 

We now describe the class of possible moment conditions. We cite here 
a classic result of the moment theory (see Karlin and Studden 181, Chapter 4) 
asserting that (1.1) holds for a = 1 iff the following matrices: 

are positive semidehite. A standard rescaling yields the conclusion that 
M for some positive a iff 
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excluding rnl = 0 and a in (1.12) for which M = 0 and A, respectively. The 
lower bound in (1.12) is attained iff X has the two-point distribution supported 
on 0 and m2/ml with probabilities cZ/m2 and mt/m,, respectively. The upper 
inequality becomes an equality 8 X has the two-point distribution supported 
on (m, a-m2)/(a-m,) and a with the following probabilities: a2/[uZ + (n - n ~ ~ ) ~ ]  
and (a - rnl)2/[u2 +(a-  respectively. This implies that the lower and 
upper envelopes &,, za of Au consist of the line segments w a n d  m, 
respectively, where T runs along the curve 01 The envelopes can be visua- 
lized as the membranes m e m ( 0 , 0 ~ )  and mem(A, 02) spanned by 02 and 
either O or A, respectively. Formulae (1.3) provide analytic expressions for the 
points of the membranes with t ,  equal to 0 and a, respectively, and t2 E [O, a] .  

We now decompose the moment space (1.1) into smaller pieces. The rea- 
son of partitioning is that extreme expected roundings and the distributions 
that achieve them are expressed differently in various regions of A',. Since 
U, is a continuous function of moment conditions, for simplicity we consider 
closed subsets of (1.1) with nonoverlapping interiors. As we shall see, the solu- 
tions for border points of adjacent parts coincide although they are determined 
by different formulae. We first define 

(1.13) B = conv{K: k = 0, ..., n}. 

It  can be easily verified that B is a polygon with n + 1 vertices K,  0 < k $ n, 
and 3n-3 edges 1 < k < n,=, 1 < k $ n-1, and a, 1 < k < n-2. If 
k + 1 < j and n (n - j) > 0, then K J  is a diagonal of 9. Moreover, the lower and 
upper envelopes of B consist of triangles: 

n- 2 

(1.15) q= U a(KLN). 
k = O  - 

We can verify it immediately embedding B into A', and noticing that 
E c  dn, k = 1 ,..., n, and KN c zn, k = 0, ..., n-1. Consider also 

(1.16) Tk =conv(K, L, N ,  A), k = 0, ..., n-2. 

If a is noninteger, then for each k the point A lies above A (KLN), and so Fk is 
a tetragon. Each Yk has the common sides A(KNA) and A(LNA) with 
Fk-, and q, respectively (except of the extreme ones) and their bottoms go 
into the making of. Applying (1.9) and a standard linear change of variables 
we can assert that mem(N, NA) and mem (A, ~ 2 )  are the upper and lower 
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borders of 

Note that the latter membrane is a part of xa. 
We also distinguish a surfaces mern(L, KI), k = 0, . . ., n- 1, in the mo- 

ment space. The surfaces divide Aa\(9 u U::: & u N) into 2n parts with 
disjoint interiors. n + 1 of them, denoted by T o ,  , . . , Lfn, adhere to the lower 
envelope of A,, and so their bottom sides coincide with parts of 4,. The top 
side of Po is mem(l , f i ) .  Each of gk, k = 1, . . ., n- 1, is bounded above by 
a lower side A (OKL) of the polygon and mem (L, KZ). The upper cover of the 
last one consists of A (ONA) which is a side of To, and - JV = mem(N, NL). 
Observe that we can represent Pk as 

(1.20) 2, = (conv (0) LJ N ~ ) \ J V .  

The remaining sets %,, k = 0 ,  . . ,, n- 1, adhere to z,. The respective bottoms 
C& consist of a (KLA), the top sides of &, and rnem(L, KT). We. can also write 

Summing up, we propose the following partition: 

2. MAIN RESULTS 

In Theorem 1 we describe the upper bounds U,(M) for general finite a and 
all M E  A,. Decomposition (1.22) will be used to characterize specific solutions 
for moment points belonging to respective regions. For the sake of brevity, 
these will be formdated by means of geometric notions. Theorem 1 is followed 
by a comprehensive analytic presentation of the specific assumptions and 
corresponding solutions with explanatory comments. All elements of parti- 
tion (1.22) essentially contribute to A, iff a is noninteger and greater than 3. 
Otherwise, some of them either vanish or have empty interiors, and so can 
be absorbed by adjacent regions. For the specific a, we present explicitly 
maximally reduced representations of the moment space and indicate the so- 
lutions for the respective subregions in Corollary l. The case a = + co is 
treated in Theorem 2. 
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THEOREM 1. Let 0 < a  < +m. 
(i) If ME 9 (see (1.13)), then U ,  ( M )  = ml . 

(ii) If ME JV (see (1.17)), then U ,  (M) = n. 
(iii) If M E Y ~ ,  k = 0, . . ., n-2 (see (1.16)), then 

is a unique convex combination of K, L, N and A, 
(iv) I f M  E Pk, k = 0, . . ., n - 1 (see (1.18), (1.19)), then there exists a unique 

t E [ k ,  4 such that 

is a convex combination and 

(v) If ME gn ((see (1.20)), then there exists a unique t E [n ,  a] such that 

is a convex combination and 

(vi) If M E  ak, k = 0, . . ., n- 1 (see (1.21)), then there exists a unique 
t E [k, fl such that 

M = a,T+ollL+ol,A 

is a convex combination and 

Analytic representations and comments 
(i) Combining (1.6) with (1.14) and (1.151, we verify that M E P iff 

- 

(2.4) max {m2 (k + l )  - m, kl)  < m3 :,* 

k= 1, ..., n- 1 < min ( m 2 ( k + l + n ) - m l ( k l + k n + I n ) + k l n ) .  
k = 0 ,  ..., n - 2  

It is evident that E 1x1 = EX iff X is supported on integer points. Every 
M E int 9 admits nonunique solutions. 

(ii) The condition M E  JV is equivalent to 
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Clearly, E 1x1 = n iff X is supported on [n, a]. Interior points of N admit 
nonunique solutions. 

(iii) If M E int Fk for some k, then this is a nontrivial combination of A and 
P E  A (KLN).  Since A lies above pl (KLN), so does M. Likewise we check that 
M is located above pl(KNA) and beneath pl(KLA) and pl(LNA). These, to- 
gether with (1.6), yield that the conditions 

(2.6) max (m, (k + E +  n)- ml (kl+ ka + In) + kln, 

are equivalent to M E  Fk7 k = 0, . . . , n - 2. The representation of M by means 
of vertices of 5, is unique and (1.7) is used for calculating the respective 
coeficients. The ultimate formula is huge. 

The existence of points appearing in statements (iv)-(vi) of Theorem 1 will 
be proved in Lemma 4 of Section 3. Below the following analytic expression: 

for M ~ m e m ( L ,  KZ) will be implemented. 
(iv) Cases k = 0 and k 3 1 will here be treated separately. The former has 

simpler representations of assumptions and solution, and by far easier proof. 
Case  k = 0. Notice that Y o  = At1, and so M E  Y o  iff (1.9) or, equivalent- 

ly, (l.lOH1.12) with a = 1 hold. Here 

. Case  k 2 1. Then  ME^^ 8 
(2.10) 0 < ml d 1,  

m9 m2(k+E)-ml kl if m2 2 ml(k+l)-kl, (2.12) - d m 3 <  
m2 Im2 -(lml - m2)2/(I - ml) otherwise, 

k = 1, . . ., n- 1 (cf. (1.12), (1.18), (1.19), (2.4) and (2.7)). The solution is suppor- 
ted on 0 , l  and 



Bounds for the expected Jeflerson rounding 9 

with weights described by (1.6) and 

(v) We have r n ~  =Yn iff (2.10H2.11) with k  and 1 replaced by n and a, 
respectively, and 

m2(n+a)-ml na if mz 3 rnl(n+a)-nu, 
m2 

. . 
am2 + (m, - nml)2/(m, - n) otherwise, 

hold (cf. (1.6) for (t,, t,, t,) = (0, n, a), (f.12), (1.20), and (2.5)). Then for 

(see (1.6)) we have 

which is attained for the distribution supported on 0, n and t with the weights 
determined by (1.6) (see (2.2)). 

(vi) For k = 0, ..., n-1 it follows that  ME%^ iff 

k < m1 < a, 
rnax{rn:, ml(E+a)-la) 4 m2 < m l ( k f  a)-ka, 

Emz -(Eml -rn2)2/(E-ml) if mz < ml (k+ I) - kl, 
mz(k+E+a)-rnl(kE+ka+Ea)+kla otherwise 

(cf. (1.12), (1.21), (2.6), and (2.7)). The support of the solution consists of points 

I and a (cf. (IS)), and the respective probabilities a,, at and a,, and U,(M)  can 
be calculated by means of (1.6) and (2.3), 

COROLLARY 1. (i) if 0 < a < 1, then Aa = JV (cf. Theorem 1 (ii)) and 
U, ( M )  = 0 for all M. 

(ii) If a = 1, then A', = Po and Theorem 1 (iv), case k = 0, can be applied. 
(iii) If 1 < a < 2, then 

and for M for the consecutive subsets of the partition, the statements of Theo- 
rem 1 (ii) and (iv)-(vi) hold true. 
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(iv) If 2 < a < 3, then 

and the respective solutions are presented in parts (iiHvi) of Theorem 1. 
(v) If u a 2 is integer, then (1.1) can be written as 

(when a =<2, B = ~ ( 0 1 A )  can be dropped), and the assertions of Theorem 1 (i), 
(iv), and (vi) hold for the respective three summands. 

Analytic counterparts of the statements of Corollary 1 can be found in the 
comments on the parts of Theorem 1 they refer to. 

For a = + c~ we have M E  A!, iff only the lower bounds in (l.lO)-(1.12) are 
satisfied. We see that A, has a lower envelope mem(0, &I) = uo<t<mm, 
and two side borders, and is unbounded above. We split it as follows: 

Here R = conv (K : k = 0, 1, . . .) represents the limit set of the increasing 
family of polygons for a + + co, whose points satisfy 

m2 > max m,(k+l)-kl, 
k = 0 , 1 .  ... 

m3 2 max m2(k+l)-mlkl, 
k = 0 , 1 ,  ... 

or (2.15) with equalities in (2.16) and (2.17). Formulae (1.18H 1.19) and 
(2.10)-(2.12) describe z k ,  k = 0, 1, . . . Finally, Vk, k = 0, 1, . . ., arise from re- 
spective ek as a -+ + m. The relation M €Vk is characterized by 

-- 

Geometrically, each is an unbounded above set with bottom mem(L, KZ) 
adhering to LZk, one vertical side touching 8, and the other belonging to the 
border of A,. 

THEOREM 2. Let a = + m. 
(i) If M €93 (see (2.15H2.17)), then Urn (M) = m,, which is attained by any 

distribution supported on integers and satisfying the moment conditions. 
(ii) If M E  LZk for s o m  k = 0, 1, . . ., then the conclusion of Theorem 1 (iv) 

holds (see also (2.8H2.14)). 
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(iii) If M E V ~  for some k = 0 ,  1 ,  ..., then 

which is attained asymptotically for the distributions supported on 1, a + +a, 
and t (a) + t = (ml E-rnz)/(l-ml). 

Each limit distribution of case (iii) has two support points E and t ,  provides 
the upper bound for the mean-variance conditions (see Rychlik [ 1 3 ] )  and does 
not satisfy the third one. . . 

t 

3. PROOFS 

Lemmas 2 and 3 can be expressed more generally in forms suitable for the 
abstract moment theory. Lemma 2 was proved by Anastassiou and Rychlik 
([3], Lemma 1). The statement of Lemma 3 was a basic argument in the proof. 
This was formulated and verified in the proof of the former, but we display it 
here, because this will be referred explicitly in the sequel. 

LEMMA 2. A distribution attaining the maximal expected rounding U, ( M )  for 
a moment point M of an open A!' c A,, Mn 02 = IZI, is a mixture of dis- 
tributions attaining U,(Mi) for some moment points Mi of the border of A'. 
Accordingly, the subset of support points of the distributions with maximal expec- 
ted roundings for border points contains that for the inner ones. 

LEMMA 3. Consider distributions pp, ,UQ supported on [0, a]  and generating 
moment points P, Q, respectively. Suppose that M = mP+(1 -m) Q for 0 < a < 1. 
Take a point R E  PM and a respective distribution jiR attaining U,(R). Then 
replacing aflp + ( 1  - m) p~ by jjiR + (1 - j) p~ with j3 satisfying PR + (1 - B) Q = M 
does not result in decreasing the expected rounding. 

LEMMA 4. Let 0 5 x < y <a. 
(i) If M E  convXY, then there is T E X T  such that M E  A (XTY) .  

(ii) If M E  conv (0) u xY, then there is T E X? such that M E A (OTY). 
(iii) If M ~ ( c o n v  (0) u ~ ? ) \ c o n v ~ x  then there is T EX? such that 

M E A (OXT). '.n? 

(iv) Replacing 0 by A in the assumptions of (ii) and (iii) yields M E  A(XTA) 
and M E A(TYA), respectively, for some T E x?. 

Proof.  (i) Consider the vertical line segment PX containing M whose 
end-points P and Q belong to the lower and upper envelopes mem(X, xY) 
and mem(Y, x'?) of c o n v x x  respectively. Since P EXR, Q E SY for some 
R, SE x?, M E  conv(X, R, S, Y). Consider the ray YM' running down 
from Y through M, A(XRS) and the lower envelope of c o n v x x  and denote 
the piercing point of the envelope by K Since M E W  and VEXT~O~ some 
TEX?, we can write M EA(XTY). 
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(ii) The sides of the hull we analyze are A(OXY), and mem(0, X-v, and 
mem(Y, x*. For any M located therein, the half-line OM" leaves the hull at 
some P E Wr mem(Y, X-V for some TE X? SO that M E  A (OTI'). 

(iii) We can repeat the above arguments, substituting rnem(X, X* for 
mem(Y, xnv. 

(iv) can be proved similarly. a 

LEMMA 5. Let M E M ~ ,  let ZE[O, a] befixed, and x, yf[O, a] vary so that 

(i) Ifx, y < z and x increases (decreases), then y increases (decreases) and 
a, decreases (increases). 

(ii) If z z x, y and x increases (decreases), then both y and a, increase 
(decrease). 

Proof.  Applying (1.6) we establish the dependence of y on x :  

It follows that 

We claim that the numerator of (3.1) is positive once z is extreme. To show this 
we refer to the probabilistic interpretation of moments: 

is the Schwarz inequality for a random variable X < z with respect to the 
probability law generated by (z- X)/E (z- X) if z is maximal, and for X 2 z 
with (X-z)/E(X-z) otherwise. Positivity of (3.1) implies that the directions of 
changes of x and y(x) are the same. 

In the proof of the latter statements of (i) and (ii) we use geometric ar- 
guments. Actually, we only examine the case (i), the other can b~ handled in 
much the same way. Suppose that xi < yi = y(xi) < z, i = 1, 2, and xl < x,. 
Let stand for the points of X ~ K  such that M E  m, i = 1, 2. Note that Tl and 
T2 belong to the lower and upper envelopes of c o n v x y ~ .  The half-line ZM" 
runs downwards and intersects convJf& crossing first the upper envelope at 
T2, and then the lower one at TI. The contributions of Z in the convex rep- 
resentations of M by Xi, and Z are IMTI/(IZMI+]MTI), i = 1, 2. Clearly, 
the latter is smaller as required. rn 

P r o  of of The  o rem 1. (i) Observe that a natural bound E 1x1 G rnl 
becomes equality iff X is supported on integers only. This is equivalent to 
saying that the respective moment point M can be represented as a convex 
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combination of K for all integer k contained in [0, a], which simply means that 
M E P .  

(ii) Another trivial bound is E LXJ d esssup LXJ < n. This is attained iff X 
is supported on an arbitrary subset of In, a]. This is possible M E N .  

Analogous solutions appeared obviously in the respective problems sub- 
ject to two-moment conditions. We shall further use the solutions of the re- 
maining cases of the two-moment problem. Anastassiou and Rachev [2] proved 
that all combinations of 0, n and a attain the maximal expected floor rounding 
for the pairs of. moment conditions (m,, m2) and jm,, m,) they satisfy. They 
remain optimal when we add the tbird condition which they obey. Accordingly, 
for every MEA(ONA) a unique combination of 0, n and u attains U,(M) .  
By simiIar arguments we conclude from Rychlik El31 that, for an arbitrary 
M ~ m e m ( L ,  K^L) = U k e t ,  ,m and some k = 0, . . . , n - 1, U. (M) is attained 
by a properly chosen combination of respective t and 1. 

(iv) Case  k = 0, The border of TO consists of the upper side mem(1, 6i) 
on which the optimal expected rounding is achieved by combinations of a sin- 
gle t E [0, 1) and 1, and the lower one mem (0,61) wbich has the unique (and so 
optimal) representation by two-point mixtures of 0 with various t ~ ( 0 ,  11. Sup- 
pose that M ~ i n t  Po. By Lemma 2, U,(M) is attained by a distribution on 
some ti E [0, 1) and 1. Since 1 has only a non-zero rounding, we should look for 
a convex combination 

with maximal a,, where S is a convex combination of Si E 61 \{I) such that 
M E  fi. Arguing as in the proof of Lemma 5 we conclude that a, is maximized 
if S E ~ C  go for a unique t ~ ( 0 ,  1). 

(iv) Case k > 1. The upper envelope of Pk has two pieces: A (OKL), where 
the combinations of the points generating the vertices provide the maximal 
expectation of rounding, and mem(L, KX) on which mixtures of 1 with single 
t E [k, I) are optimal. The lower one is uniquely represented by-pairs 0 with 
T E KT. Lemma 2 implies that the distribution achieving U, ( M )  for-M E int 9, 
is supported on at most four points among 0, ti E [ k ,  I) and 1. Below we consider 
all possible combinations. 

(a) We start with treating a specific representation 

By Lemma 4 (ii), (3.2) is possible with a, = 0 and the other coefficients being 
positive. However, elk may be positive as well: increasing slightly t, we raise 
a(OTL) so that M is located between K and a(OTL). Therefore, we assume 
that M is an inner point of the tetragon conv (0, K, T, L) and letting t vary we 
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observe the respective changes of expected Jefferson rounding: 

by (1.5) and (1.7). Due to Lemma 1, T and M are situated beneath pl (OKL), and 
hence the numerator in (3.3) is negative and fixed. The denominator is positive 
and decreasing for i/2 < k < t < I. It foIIows that (3.3) is a decreasing function 
of t. 

We increase E (t). slipping Tdown aIong KX as far as possible, i.e. until 
a(OTL) absorbs M.  Moving T upwards would decrease E (t)  and lead to two 
possible ultimate cases: either M E  A (KTL) if ME conv KZ or M E A (OKT) 
otherwise (cf. Lemma 4 (i), (iii)), These conclusions become more apparent as 
we observe the movement of the projection point P  of LM" onto n(OKT), as 
e varies. For t increasing, P approaches m, and M E A ((BTL) when finally 
P E V .  In the remaining cases P moves towards and m, respectively. 

Summing up, we proved that the combinations of 0, k, t ,  1, and 0,  k, t ,  
and k, t ,  1 provide smaller expected rounding than that of 0, t, and I. Below we 
show that each other possibility is inferior with respect to one of the above 
mentioned. 

(b) Consider the combinations of ti 3 k, possibly including 1 and not in- 
cluding 0. They generate M E  conv KL. Analysis similar to that in the proof of 
the case k = 0 shows that the best combination (excluding 0) is that of k, I and 
some s in (k, I )  which can be further improved by taking 0, t  E [k, I )  and I, as we 
concluded above. 

(c) Now we start from a distribution supported on 0 and t , ,  t,, t ,  E [k, E ) ,  
el < t, < t,, say. Then M E  @' for some P E A  (TI T, T,). We increase the expec- 
ted rounding by bringing P nearer to M. For this purpose we lower A (Ti T, T,). 
By Lemma 1, this can be achieved by increasing - t, or decreasing - t,. In any case 
we proceed until P reaches an edge, either TI T2 or TI T3, respectively, This 
shows the advantage of reducing one of t i ,  say t,. By Lemma 5 (ii), we can 
further increase the contribution of P by decreasing both t,, t ,  so that 
M EA(OT~ T,). If M ~ c o n v ~ ? ,  the edge TT, will ultimately a&9b  it, and we 
arrive at a combination analyzed in subcase (b). If M $ c o n v ~ ~ ,  we stop when 
t ,  reaches k, i.e. TT, E mem(K, ~1). This is a combination treated in sub- 
case (a). Anyway, we get more using (2.1). 

(d) It remains to analyze distributions on 0, I and some k < t < s < 1. 
Then for some PEA(OTS) we have 

with 0 < at, Boy f i t ,  Ps < 1 ,  Po + f i t  + f i s  = 1. We aim in increasing 
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To this end we keep P fixed and decrease t and s simultaneously so the P still 
belongs to A(OTS). By Lemma 5 (ii), Po decreases and P,+& increases. Since, 
moreover, or, does not change, (3.4) actually becomes greater. We now verify 
the limitations of this approach. If M ~ c o n v ~ l ,  then for some t > k we get 
P E TS and M E  a (TSL), and we can go to the desired claim through (b) and (a). 
If M E ~ ~ \ c o n v ~ l ,  we eventually reach a combination of 0, t = k, s ~ ( k ,  1 )  and 
I, which was analyzed in (a). 

(v) 9, is located among mem (0, ~2), A (QNA) and mem (N, ~1). 
Optimal distributions for the border moment points are supported on 
0, t ~ [ n ,  a], and 0, pa, a: and n with t~ [n, a], respectively. Lemma 2 implies 
that the optimal distribution for M ~ i n t P ,  is supported on 0 and some 
t i  E [n , a]. We have 

for some S E N ,  and we aim at maximizing (1 -a,)n. We obtain minimal 
a. choosing S closest to M. Such an S should be an element of - N and have 
a representation S = E, N + a, T for some t E (n, a). 

(vi) Case: a is  integer.  Every Q, is bounded by A (KLA), mem (L,  KZ) 
and mem(A, KX), with the respective supports (k, E, a), ( t ,  E) and Is, a) of 
optimal distributions for some t, s E (k, I). Accordingly, the optimal distribution 
for a moment point lying inside %k is supported on a and some si E [k, 11. Here 
a is necessary since M ~ c o n v ~ l  otherwise. If we take a and two or more 
si from [k, I )  (including E or not), we obtain M EB for some S ~ i n t c o n v ~ ~ .  
This segment crosses mem(L, ~1). By Lemma 3, we increase the expectation 
of rounding once we replace the combination of si by a pair t, 1 such that 
E ~ m e m ( L ,  KX) and a cross each other, because the pair is optimal for 
M E TL. 

(iii) and (vi). Case: a is noni  n t eger. We consider M from the region 
situated above A(ONA), a(KLN), k = 0, ..., n-2, m e m ( ~ ,  f~), k = 0, ..., n-1, 
and beneath xa = mem (A ,  02). We can write A4 E m, where T E  conv~ijr 
and S E convN2 \N. These moment points are generated by distributions sup- 
ported on 10, n] and (la, a], respectively. However, the half-line from 
S towards M crosses a(ONA) first. Due to Lemma 3, the distribution gene- 
rating S can be replaced by one supported on 0, n, and a. Hence the only 
distribution on (n, a] which is of interest is that concentrated at a. 

(iii) (cont.) Suppose that ME Fk, k = 0, . . . , n - 2. The optimal distribution 
for M is a mixture of ones concentrated on [0, n] and {a), where the former 
has a moment point SEAM" that lies between M and &,, and is optimal for 
S among the distributions on [0, n] (see Lemma 3). Observe that AM" runs 
first above conv$N, then through c o n v ~ l  u { ~ ] \ c o n v ~ ? , ,  where the support 
points n, 1 with some t E [k, I )  are optimal among distributions on [0, n] (see 
(vi), case: a is integer), and pierces A (KLN). There is no need to follow the path 
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of AM" further, because we know the optimal distribution supported on [0,  a] 
for moment points in A ( K L N )  and we can replace it for the distributions 
optimal for S located below. 

In conclusion, we can confine ourselves on the distributions supported on 
a single t  ~ [ k ,  I), 1, n, and a. For various choices of t, the expected rounding 
takes the form 

E ( t)  = kat (0 + la* ( t )  + n la, ( t )  + or, (t)]  = k + ( t)  + ( n  - k )  [a, (t) + ol, (t)] 

Our purpose is to show that E( t )  is nonincreasing, which wouId-imply that the 
cornbination'of k, 1, ra and a is optimal for M E & .  It suffices to show that 

(3.5) E' It) = U; ( t )  + (n - k) [a:, (t) + U: (t)] < o 
for k 4 t < 1, where 

or; (t) = 
PI ( L N A )  

(l-t)2(n-l)(a-I)' 

a; ( t )  = PI (LN-4) (MI 
(a-t)'(a-i)(a-n) 

(cf. (1.8)). Observe that T,  and so M are located beneath pl(LNA) (see Lem- 
ma I) ,  and hence 

(3.9) pl ( L N A )  (M) < 0 .  

Using (3.6H3.9) and simple calculations, we represent (3.5) equivalently as 

Note that we only need to check (3.10) for k = 0, because this is expressed in 
terms of differences and we can simply subtract k from t and each parameter of 
(3.10). .- 

Our reasoning is therefore reduced to proving 

l ( 1  l ) > ( l - t ) 2  1 ( ~ - t ) ~  1 
- - 
ra n-1 a-1 n-t n-1 a - t  a-1 

for given 2 < n < a < n + l  and all 0 < t < 1. We check (3.11) for t  = 0 and 
show that the derivative of the right-hand side is negative. Substituting t = 0 
yields 

a-n (a-n)(a2+an+n2-a-n) 
B 

n(n-l)(a-1) n2 (n - 1) a2 (a - 1) 
P 
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which can be reduced to a2 2 a+n. This is satisfied for all a > n when n 2 2. 
Differentiating the right-hand side of (3.11) we obtain 

-2(1 - t ) [ ( n - t ) - 3 - ( a - t ) - 3 ] ,  

which is negative when t c I and t < n < a. 

(vi) C a se: a is no  n in  t e ge r (cont.). We are left with the task of determining 
the solutions for the moment points contained among A (KLA), mem (L, K X )  
and mem(A, K?,) for some k = 0, . . ., n- 1. The solutions for the borders are 
known: their supports sum up to some ti E [k, 1 ), E and a. Standard arguments 
lead to the conclusion that any combination of ti and 1 can be replaced by 
a unique pail' t ,  I such that % E mem (L, KX] and A4 E n. This completes the 
proof of Theorem 1. rn 

P r o o f  of Theorem 2. (i) The universal bound rn, for the expected 
roundings is attained by the distributions supported on integers. It suffices to 
consider four-point distributions. Three first moments of all four-point dis- 
tributions on nonnegative integers coincide with 9 = lim,,,B,, where 
Pn denotes the polygon constructed for A,. Consequently, for given M E B  
there is a possibly large but finite a such that M is a convex combination of 
four K i  with all ki < a. 

(ii) Observe that once k 6 n- 1 for some a, the solution for M E Yk does 
not change with the increase of a. None four-point distribution with the mo- 
ment point ME & (which has a bounded support by some a) provides greater 
expected rounding than one defined in Theorem 1 (iv). 

(iii) If ME c, then there is a sufficiently large a, such that M E  9, for all 
a > ao. As ca increases, U,(M)  does as well. Any sequence p,,,, rn 2 1, of 
four-point distributions satisfying the moment conditions can be replaced by 
one whose elements, defined in Theorem 1 (vi) provide Uam (M) for a, + i- co such 
that 

SLx] (dx) < Uam (M) for a11 rn. 

It is a simple matter to determine the limiting values of the support point 
t ~ ( k ,  l ) ,  coefficients a,, a,, a,, and the extreme expected Jefferson-rounding. 

. '9,- 
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