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V E  LADDER VARIABLES OF A MARKOV R m O M  WALK 

Abstract. Given a Harris chain (M,,)n40 on any state space 
(9, C) with essentially unique stationary measure <, let (Xn)nZO be 
a sequence of real-valued random variables which are conditionally 
independent, given (M,),,,, and satisfy 

for some stochastic kernel Q: Y 2  x 23 + [0, 11 and all k 2 1. Denote 
by S,  the n-th partial sum of this sequence. Then (M., S,),,, forms 
a so-called Markov random walk with driving chain (M,),,,. Its sta- 
tionary mean drift is given by p = Ec XI and assumed to be positive in 
which case the associated (strictly ascending) ladder epochs 

on=inf(k 1 urn-,: Sk>S,_,) for n > 1, 

and the ladder heights S: = S, for n 2 0 are as.  positive and finite 
random variables. Put M,* = M,. The main result of this paper is that 
(M:, and (M:, are again Markov random walks (with 
positive increments, thus so-called Markov renewal processes) with 
Harris recurrent driving chain (Mt ) ,> , .  The dficult part is to verify 
the Harris recurrence of (M,*),30.  Denoting by <* its stationary mea- 
sure, we also give necessary and sufficient conditions for the finiteness 
of ES. Sf, EcST and E p a ,  in terms of p or fhe recurrence-type of 
("nln>~ Or (M3n30.  - 
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1. Introduction and main result. The main purpose of this paper is the 
derivation of a fundamental result on the probabilistic structure of the sequence 
of ladder variables associated with a Markov random walk (MRW) with posi- 
tive drift. The result is used in [3] to provide a coupling proof of the Markov 
renewal theorem that in some respects improves on the one given in [I], and 
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further in [4] for the derivation of renewal theorems for a certain class of 
random walks with m-dependent increments. 

For an ordinary zero-delayed random walk (S,),,, with i.i.d. increments 
Xi,  X,, . . . with positive mean, we know that the sequence 

n 0 = O  and ( i , = i n f ( k > ~ , - ~ :  S k > S , , - , )  for n > I  

of strictly ascending ladder epochs and the associated sequence (Sa,lnaO of 
ladder heights both have again i.i.d. increments. In Markov renewaI theory, 
where (Sn),30 is governed by a temporally homogeneous_Marrkov chain 
(Mn),2,, one can also easily conclude that (Mom, CT, , ) ,~~ and (Men, Ssn)naO both 
constitu?; MRWs with positive increments, called Markov renewal processes 
(MRF's), providing all u, are a.s. finite. However, its central result, the Markov 
renewal theorem, additionally assumes the Harris recurrence of (MA,, ,, and 
the use of ladder variables for its proof in order to reduce to the case of positive 
increments further requires the Harris recurrence of (Men)., ,, which, surpris- 
ingly, does not seem to follow by straightforward arguments and which to show 
is the major purpose of the present paper. 

A precise statement of the main result, Theorem 1 below, requires de- 
scribing the basic setup in more detail: Given a measurable space (9, G) with 
countably generated u-field G and a transition kernel B: SP x (6@18) -+ 10, 11, 
8 the Bore1 a-field on R, let (M,, X,),,, be an associated Markov chain, 
defined on a probability space (a, d ,  P), with state space Y x R, i.e. 

for all n 2 0 and A E G , 3 E 23. Thus (M, + X, + depends on the past only 
through M,, and (M,JnBO forms a Markov chain with state space Y and 
a transition kernel P (x, A) 2 P(x, A x R). It can be shown that, given (Mjlj,,, 
the X , ,  n 2 0, are conditionally independent with 

for all n 2 1, 3 E 23 and an appropriate kernel Q :  Y2x23 * [0, 11. Let through- 
out a canonical model be given with probability measures P,,,,, x E 9, y E R, 
on (W, d )  such that P,,(M, = x, X o  = y) = 1. For any distribution (or 
a-finite measure) R on 9'x R put 

in which case (M,, Xo) has initial distribution 1 under PA. For x E Y and 
a-finite measures v on 9, we write for short Ex, E,  instead of E,,,, E,*,,, 
respectively, where 6, is Dirac measure at 0. Finally, P and E are used for 
probabilities and expectations, respectively, that do not depend at all on initial 
conditions. 
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The MRW associated with (M,,  X3 , ,  is defined by (M,, S,), so, where 
S, = X, +. . . +X, for each n 2 0. We always assume that (Mn)n30 is Harris 
recurrent (see Section 2) with (essentially unique) stationary measure { and 
p = Et XI > 0, in which case S, + cc PXqy-as. for every (x, y) E 9 x R. Con- 
sequently, the strictly ascending ladder epochs 

uo = inf (n 2 0: S, 2 0) and 
(1.3) 

o,=inf(k>a,-,: S k > S  ,,_, } for n B  I 

are a.s. finite under each P , ,  and the associated ladder heights S,* = Son 
well-defined pokitive random variables. The slightly ddferent debnition for 
uo appears in order to have u, = 0 in the zero-delayed case So = 0. We put 
M: = M,- for each n 2 0 and denote by v, and X,* the increments of (a,),3o 
and (S,*)n30, respectively. The essentially unique stationary measure of 
(Mz)nso, the existence of which follows from Theorem 1 (i) below, is denoted 
by t*. 

Finally, we have to define the lattice-type-of (M,, Sn),,30. Following Shuren- 
kov [lo], the latter as well as B are called d-arithmetic if d > 0 is the maximal 
number for which there exists a function y: Y -t [ O ,  d), called a shiftfinction, 
such that 

where t @ P  is given through [ @ P ( A  x 3) = J, P (x, 3) t (dx) for A, BEY.  If 
no such d exists, (M,, Sn)n30 and P are called nonarithmetic. Our main result 
now reads as follows: 

THEOREM 1. Given an MRW (M,, S,),>, with Harris recurrent driving chain 
(Mn),BO and positive drift ,u = EE,Xl, the following assertions hold: 

(i) (M:),,, forms a Hawis chain which is further positive recurrent if the 
same holds true for (Mn),20.  

(ii) (M:, Q,),, and (M:,  S,*),> are MRP's, their lattice-type being that of 
(M,, n)n30 and (M,, S,)n30, respectively, with the same shi$ function if arithmetic. 

(iii) E,ST < GO 13 EpST < oo @ p < GO. - 

," 
(iv) Eeul < GO 23 (Mn)nbO is positi~e recurrent. 

In view of (ii) it is natural to ask for the lattice-span of (M, n),30, which 
turns out to be the period of the driving chain (Mn),,O as will be shown in the 
final section including the definition of the shift function. In case where (M,), so 
is aperiodic the latter is 0, so that (M,, II),~, and (M:, u,),~, then constitute 
I-arithmetic MRP's with shift function 0. 

The subsequent corollary collects a number of convergence results that 
follow directly from Theorem 1 in combination with well-known ergodic theo- 
rems for Harris chains or stationary sequences (see also Remark (b) below). It is 
thus stated without proof. 



COROLLARY 1. Given the situation of Theorem 1, if (M:),,30 (or even 
(Mn)nBO) is positive recurrent with stationary distribution z', then, as n + m, 

(ij pa- l S,* + E p  St P,a.s. for all x E Y ;  
(ii) EpJnu'S:-EpS:l - 0  if p < m; 

(iii) n- CT, + Ep s1 P,-a.s. for all x E 9; 

(iv) Eg~In-lo,-Epal[+O. 
If (M:),,, is further aperiodic (and thus ergodic), then additionally 

(v) I ( ~ ~ ( ( z n r  X,*)€.)-Pp(trl, XT)E.)I(+O for all x ~ y - -  
holds @was n + oo, where z, = a,-a,- a d  ( 1 .  ( 1  denotes total variation norm. 

Remark s. (a) All previous results remain true if the ladder epochs a, are 
replaced by oo (a) = a, and a, (a) = i d  {k > a, - (a): Sk - S,, - , (,, > a )  for 
n 2 1 and arbitrary a ~ ( 0 ,  co). 

(b) It is a trivial consequence of the transition structure of (M,, X,),,, 
that, given the Harris recurrence of (Mn),,,, the same holds true for 
(M,,  X,+l)n,,. Moreover, if ( is the essentially unique stationary measure of 
(M,)n3 o, then (M,,  X,, ,),, , is stationary under Pt (in the measure-theoretic 
sense if P< is not a probability distribution), and thus P ~ ( ( M ~ ,  X 1 ) ~ . )  the 
essentially unique stationary measure of (M,, X,+ Consequently, the 
validity of Theorem 1 (i) further gives the Harris recurrence of (Ad,*, v, + ,),, , , 
(M:, X,*+ ,), ,, and (MX, X,*+ ,, v,+ ,),,, as well as their stationarity under PtL. 
This can be used in combination with certain ergodic theorems for such se- 
quences to prove the convergence results of Corollary 1. 

(c) According to part (i) of Theorem 1, the positive recurrence of (M,),,, 
entails the same for (M,*),Bo. The following simple example shows that the 
converse may fail: Let (M,),,>, be any irreducible, null-recurrent Markov chain 
on No with stationary measure 5 = ( ( j ) j 2  , and X, = ltol(Mn). Then (M,, S,jn3, 
constitutes an MRW with drift ,u = Et XI = 5, > 0. Its ladder epochs occur each 
time the driving chain hits state 0, i.e., M,4 = 0 for every n 2 1. 

(d) Let us further point out that (M,*),,, does not need30 be aperiodic. 
A counterexample is given in C7-J where strictly ascending ladder epochs for 
sums of l-dependent indicator functions are investigated. More precisely, given 
i.i.d. Bernoulli variables Yo, Yl, . . . with P ( &  = 1) = 1 - P (Yo = 0) = p, where 
p ~ ( 0 ,  l),letXn =11y,+Y,+1)andA4,=(Y,, K+,)forn> 0.Then(X,),,,forms 
a stationary l-dependent sequence, (Mn),,o an ergodic (positive recurrent and 
aperiodic) Harris chain (see Section 2 for details), and (M,, S,),,, an MRW. 
Now observe that a ladder epoch occurs at n iff M, = (x, Y,,,) = (0, 1) or 
(1, O), and that these two states are attained in alternating order at consecutive 
ladder epochs. Hence (M,*),Bo is a Zperiodic discrete Markov chain with state 
space ((0, I), (I, 0)) and transition matrix (y A). As a consequence, unless p = 4, 
the distribution of T, under P(,,,, as well as P(,,,, does not converge to a station- 
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ary limit, but is either geometric with parameter p or with parameter l - p ,  in 
alternating order for each n 2 1. The ladder height increments X: are, of 
course, always equal to 1 here. 

(e) The hypotheses that (M,Jn3, is positive recurrent and p = EcX1 < m 
are not enough to imply E 5 ~ ,  < co as demonstrated by these two examples: 
Let (Wn,),30 be a 1-arithmetic discrete renewal process with positive increments 
Y,, which are thus independent for n 2 0 and further identically distributed for 

def 
n 2 1. Suppose v = EY, ~ ( 0 ,  a) and EYI = co. Let (M,),,, be the associated 
sequence of - forward. recurrence times, i.e. M, = WT(,,:n, where 
z(n) = inf(k 3 0: W, > nj. It is well known, see e.g. [53, that (M,JnBO fqrms an 
ergodic discrete Markov chain with state space N and stationary distribution 

= ( E k ] , , ,  defined by t, = vL1P(Y1 > k- 1). Note that M o  = Wo and that 
has infinite mean because 

We will now consider two different MRW's with the same driving chain 
(Mn),2 as just defined. In the first example, Ei ol is finite while being infinite in 
the second one. 

(1) Put So = Xo = 0 and X, = P{k,k+l,.,,)(M,) for n 2 1 and some fixed 
k 2 1. Then p = Et XI > 0 follows from p:Zf P(Y, > k)  > 0 for each k 3 1 (re- 
call that EY: = m). Plainly, the X,, are all equal to 1 if k = 1, in which case 
al = 1 and Ez a, < co trivially follow. But the latter holds true also for every 
other k 2 2. In fact, the ladder epochs are all those renewal times W, that come 
with Y,+ > k (notice Mwn = x+ SO that 

with stationary mean 

(2) If X, = x, (n/P,-, , M,) for n 2 1, then S, has zero jumps except for 
those n where a renewal takes place, i.e. when Wk = n for some k > 0. But this 
means nothing but a, = W,-, for n 2 1 providing So = X o  = 0. Hence 

The further presentation is organized as follows: The proof of Theorem 1 
will be given in Section 3 after the derivation of an important auxiliary result 
(Theorem 2) on the Harris recurrence of a related excursion chain. Some basic 
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facts on Harris recurrence and regeneration are collected in Section 2 in- 
cluding the definition of a particular regeneration scheme for (Mn)n30 which 
will be needed thereafter. 

2. Harris recurrence and regeneration. For a moment we only consider the 
Markov chain (Mn)n30 with state space (9, 6) and r-step transition kernel 
P, (P = PI). (MA,, is called Harris recurrent or just a Harris chain if it has 
a recurrence set %, i.e. P,  (M, E 93 i.0.) = 1 for all x E 9, such that for some 
ol~(0, 11, r 2 1, and a distribution q on Y the minorization condition 

- .  - .  

(2.1) %; Pp(x ; )>ug ,  for all XE% 

holds true. Given the latter condition, % is called a regeneration set because it 
induces a regenerative structure for (M,Jn3, that divides the chain into station- 
ary (possibly except for the first one) 1-dependent cycles. This has been shown 
in the fundamental paper by Athreya and Ney [6] for r = 1 in which case the 
cycles are even independent; see also [9] for a similar technique. Indeed, (2.1) is 
equivalent to the existence of a sequence ( T ~ ) , , , ~  of regeneratwn epochs, charac- 
terized through the following four conditions: 

(R.1) 0 = 2 ,  < z, < r, < .,. < KC a.s. under each PA. 

(R.2) There is a filtration (Fn),,o such that (M,J,,o is Markov-adapted 
and each z, a stopping time with respect to 

(R.3) Under each P,, x E Y, the MZn are independent for n >, 0 and further 
identically distributed with common distribution [ for n 3 1. 

(R.4) P((zn+j-~n. Mrn+j)j>o~. I s,,) = P M = ~ ( ( T ~ ,  Mj)j ,06')  Pias. for each 
n > O  and XEY. 

We note that the construction of ( T , ) , ~ ~  generally goes along with 
a re-definition of (Mn)nao on a possibly enlarged probability space. We note 
further that the previous conditions for regeneration epochs are weaker than 
those stated in [I] in that we do not require here ( z ~ +  j-zn, M,"+ j)j30 to be 
independent of TO, . . ., z, for each n 2 0. A more detailed discussion of this can 
be found in 121. - 

By defining (with ( as in (R.3)) ,,- 

(A) Ef E ( M j )  3 A E 6, 
j = O  

we obtain the unique (up to multiplicative constants) a-finite stationary measure 
of (M,)n30 if 0 < r(A) < co for at least one A E  6, in which case we call (z,),,, 
regular. Such a regular sequence (z,),, , always exists and can in fact be obtained 
by using Athreya and Ney's "coin-tossing" procedure. Next, 2 = 5/ECz1 forms 
the unique stationary distribution provided Egzl < CO. In that case the chain 
is called positive recurrent. It is further called aperiodic if the distribution of 
zl under PC is aperiodic (1-arithmetic), and ergodic if it is aperiodic as well as 
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positive recurrent. The latter implies that PA (M, E -) converges to in total 
variation for each A. 

Returning to Markov renewal theory, suppose we are further given a se- 
quence (Sn)nBO of real-valued random variables such that (M, ,  Sn)n30 forms an 
MRW. Note first that then 

for every function - - .  f:  R +.R such that Er f (XI) exists. In particula?, we have 

for the drift p of (M,, 5,Jna0 provided Eg lX1l < oo. 
In order to prove Theorem 1 and the auxiliary result - Theorem 2 - sta- 

ted in the next section, it is not enough to pick any sequence of regeneration 
epochs for (M,), , ,  but rather to choose one that comes with a number of 
further properties concerning the bivariate chain (M,, X,),, ,. The existence of 
such a sequence (z,,),,, has been shown in [lj; see Lemmata 3.1-3.3 therein. 

Given 3, r and q as in (2.11, there are q-positive subsets C, D of %, some 
c E (0, cc), a filtration (Fn),,,o and a sequence (r,),,, of regeneration epochs 
such that in addition to (R.lHR.4): 

(R.5) (M,, X,),,, is Markov adapted and each zk-r a stopping time with 
respect to (9n),30. 

(R.6) XT,,+j+l)j,, and FTn-, are independent for each n 2 1. 

(R.7) P(M ,,-, EC) = 1 for all n 2 1 and [ = P(M,,E-) = q(-nD)/q(D). 
(R.8) IX,n-,+il < c for each 1 < j < r and n 2 1. 
(R.9) If P has lattice-span d 2 0 with shift function y, then 

PdS,, - y (M,) + y (M,,) E -) is of the same lattice-type and 

Ex I E  (exp (2nit ($, - So)) I M e ,  M,,)] c 1 for each 0 < ltl E l/d and x E 9. 

Indeed, C, D c 93 and c E (0, ao) are chosen in such a way  .ihat 

for all (x, y ) ~  C x D and some p > 0. Condition (R.8) will be crucial for our 
considerations in the following section. 

Let us finally note that, given any (regular) sequence (fn),,, of regenera- 
tion epochs for (Mn),30 of the form 

f a  suitable function, and (Ln),2, a sequence of i.i.d. random variables (gov- 
erning randomization) independent of the "rest of the world", one can always 
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switch to a new one satisfying (R.9) by defining zo = 0 and 

where the x,, n 3 0, are i.i.d. geometric (1/2) variables independent of the "rest 
of the world" as well. This is an immediate consequence of Lemma 3 in the final 
section and already stated here because we will use it in Section 3 for the proof 
of Theorem 1 (ii). 

3. An excursion chain md the proof of Theorem 1. The proof of Theorem 1 
is essen$ally furnished by Theorem 2 below, which states the Hania recurrence 
of a further Markov chain (M,, Z,),20, called the chain of (negative) excursions 
associated with (M, ,  S,), 3 0 .  

Let ZO = lIso,~) + So l ~ s , ~ , ,  and 

C 1 i f  S, > max Sj, 
0s j < n  

Zn = { sn- max Si otherwise 

for n >, 1. 2, = 1 means that a strictly ascending ladder epoch occurs at n, 
while 2, < 0 denotes a negative excursion of S, from the current record value 
of the random walk at n. Notice the recursive structure 

for n 3 1, which immediately implies that (M, ,  Zn)n20 forms a Markov chain 
with state space d = Y x ((- co, 01 + (1)). Let E be the associated cr-field over 
C induced by 6093. 

THEOREM 2. (M, ,  Zn)n30 forms a Harris chain which is positive recurrent iff 
the same holds true for (M,),  a o .  Furthermore, there exists a regular sequence of 
regeneration epochs (T,Jnao for both chains such that ZTn =-1 for all n > 1. 

*,.3 

Given the Harris recurrence of (M,, Zn)n30, it is easy to show the existence 
of a regular sequence of regeneration epochs (ma, such that ZTn = 1 for each 
n 2 1. It is also easily seen that (T,Jnao then forms a sequence of regeneration 
epochs for (M,) ,2, .  Hence the crucial point of the second assertion of Theo- 
rem 2 is that (%ao is again regular for (Mn)n20.  

The proof of Theorem 2 will be based on the following two lemmas. Put 
Px,= = P(. 1 M o  = y ,  Zo = z)for (x, Z)E& and p, = p,,,. Let further ( T , ) , ~ ~  be 
a sequence of regeneration epochs for (M,Jnao such that (R.lHR.9) hold true. It 
then follows from (R.4) that (M,, Z,n),zo forms a temporally homogeneous 
Markov chain. 
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def A LEMMA 1 .  For all B E CE, Q ((x, z ) ,  B) = P,,, ((M,", Z,=) E B i.o.) does not de- 
pend on (x, z ) ~  b and is either 0 or 1. 

P r o  of. Fixing an arbitrary BE E, it suffices to verify that Q ((x, z),  B) = Q (B) 
does not depend on ( x ,  z) because then, with v (k) denoting the k-th hitting time 
of B, the strong Markov property implies 

Thus Q (B)  = 0-or  p , ,  (vik) < m) = 1 for all (x, z) E b and k 3 1, which is the 
same as Q (dl = 1. 

To prove Q((x, z), 3) = Q(B),  we use a simple coupling argument: Given 
(M, ,  X,, Z,), 3o with initial conditions (x, y ,  z) and regeneration sequence 
(T,),~, as previously stated, let (x', y', z') be any other initial state vector. On 
a possibly enlarged probability space, we can then construct a chain 
(Ma, XJ,,, with regeneration sequence ( T ' , ) , ~ , ,  the same transition law as 
(M, ,  X,Jna0 and initial state (x', y') such that 

Next, given Zb = z', the sequence (Zn),20 is completely determined by 
(Mk , Xk), which in combination with (3.3) easily shows 

(Mn 9 Xn 7 3 T = (wn? XL 9 Zk)n 3 T ,  ? 

where T =  inf (n >, 7, : S, - ST, > Z ,  v fZT;)-) 

and T' is similarly defined with (S, - S,,),,,, replaced by (S, - S:;),, ,; . Namely, 
at T and T' ladder epochs occur for (M,, S,),20 and (Mh, Sk)n30, respectively, 
which gives ZT = Z;.. = 1. But the "2-sequences start from scratch each time 
they hit state 1, whence, by (3.3), indeed, Z,,, = Z;.,,, for all n 2 0 holds true. 
Finally, the assertion Q ((x, z), B) = Q (B) is now an immediate consequence of 
the fact that in particular 

- - 
(Mr. 9 Zr,)n 3 v = Z ; ) n  3 v,? $ v  

where v = inf {n 2 1: z, 2 T )  and v' = inf {n 2 I: z; 2 T'). 

LEMMA 2. There is a constant b ~ ( 0 ,  a) such that 

Px,,(Z, 2 - b  Lo.) = ~,,,(liminfZZn > -a) = 1 
n+ m 

for all (x, z ) E ~ .  

Proof. We will show the existence of b ~ ( 0 ,  m) and m 2 1 such that 



def on A,,, = {Z,-, < - b). For then combining sup,, 1 IZrn - Zrn-,I 6 1 + rc, by 
(R.81, with a straightforward generalization of Theorem 9.4.1 in Meyn and 
Tweedie [$I, we conclude that 

for all (x, Z) E 8, which in turn together with Lemma 1 further gives 

&,,(Zrn> -b  i.o.)=1 for all (x,z)E& and some b ~ ( 0 ,  m). 
. . 

FOP. k 2 0 and 1 2 1, put 

w + r - r  

%,I = XY and W,,, = sup Sj-S,,. 
j=zk+ 1 t k + l < j G ~ ~ + ~ - r  

By (R.61, the'(XaL, K.3, k 2 1, are identically distributed under each p,,, with dis- 
tribution PC((&,,,, W,,JE.}. Moreover, p > 0 and (2.3) give Eg < IEtX, -= m. 
Next, by another appeal to (R.8), 

on A,,,, because no ladder epoch occurs at z, - r + j ,  1 4 j < r. A ladder epoch 
does not either occur at 5,  + 1, . . . , z, + , - r on 

implying 

on that event. On Bf, we will make use of 

(3.7) Zrn+,-r-Zr, 2 - Y n , n + m ,  

which holds because - Y,,,,, bounds the maximal possible negative excursion 
between zn + 1 and zn+, -r. We further have - 

i'ir 

P(W,,,+,<O, ZTn= 1 I PTn-,)= 0 a.s. on A ,,,, 

which together with lZrn - Zrn-,l < rc on that event gives 

{Wn,n+m G -Zr,-r-r~}nAn,rc c BnnAn,rc {W,,n+m < -Zrn-,.+r~)nA,,,,. 

By using this we obtain upon setting ZT,,-r = z 

(3.8) ((S~,+m -r-S=.)+ I %n-r) 

+ 2 E((Szn+,-r-Sr.) lpvnrn+,,,< -2 - l .~ )  I e n - r )  

- -+ - Ey ST,,-r f~rv , , , ~<  - Z - ~ C ~  a.s. 
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Similarly, 

Next Eg S,, -, 2 E5 S,,- rc = np- PC -+ rn as n + rn allows us to pick a suf- 
ficiently large pn - - .  so that.. 

Given such m, we can further fix b >, rc large enough such that, -by monotone 
convergence, 

and, upon using Ec Yo,, < a, 

(3.13) ~ c ~ , , ~ ~ ~ , , m ~ - ~ - r c l < r c  for all z < b .  

By combining (3.5H3.13), we finally obtain on A,,, c A,,, with z = Z T n - ,  

which is the desired conclusion (3.4). 

P roo f  of Theorem 2. Given ( T , , ) , ~ ~  with associated filtration (Fn),,, 
such that (R.lj(R.9) hold true, Lemma 2 and p > 0 yield the existence of some 
b  > 0 such that qo = To = 0 and 

m = inf{zk > T,-l+r: Z,,-, 3 - b ) ,  

T , = i n f { k > q , :  Sk-Stln > b + r c )  - 
for n 2 1 are a.s. finite (Fdn30-times under each p,, .  By (R.8), we the~infer that 
Z,,, 2 - b- rc ,  which in turn implies Z,,, = 1 for all n > 1. We further see with 
the help of (R.6) that, again under each p,,,, the M,, are independent for n 2 0 
and identically distributed for n 2 1 with common distribution = P ( M , ,  E-). 
The same follows for the bivariate sequence (MTn,  ZT,)n30, the common dis- 
tribution for n 2 1 being A@&, 

From these facts we can easily conclude that (T,),,, forms indeed a sequence of 
regeneration epochs for (M,,  Z n ) , 3 0 ,  and thus Harris recurrence of the latter 
chain. 

11 - PAMS 20.1 



To prove the asserted equivalence choose now any regular sequence 
(7JR$0 of regeneration epochs for (M,, Zn)n30 so that 

Ti - 1 
def * # = E ~ (  l{lMj,j.ZjlE.))y <Ef ~ ( ( M T , ?  Z T ~ ) ~  

j=O 

forms the pertinent essentially unique a-finite stationary measure. We note that 
the previously defined T, need not be regular. Now (T,&30 also forms a se- 
quence of regeneration epochs for the marginal sequence (M,JnaO for which we 
only note concerning (R.2) that M,,,, depends on (M, ,  23 only through M,,. 
As a cogsequence, TI must be if (M3,, , ,  is null recurrent. To corn- 
plete the proof of the equivalence it is therefore enough to show 8, TI < cc if 
( M J , , ,  is positive recurrent, which we assume hereafter. We denote by its 
stationary distribution. 

Define 
n 

Nn (A)  = l{(lwj,zj),~~ AEE,  
j =  1 

and N ,  = N,(Y x {I}), the number of strictly ascending ladder epochs up to 
time n. As the first step, we show 

liminf nu' N ,  2 c as. for some c > 0; 
n+ m 

here and in the foIlowing "a.s." means "~,,,-a.s. for all (x, z) E 8". To that end, 
put Xk = X , A U ,  where a is so large that p'ef  EeX;  > 0. Assume that 
Sn, Z',, Nh, a; have the obvious meanings and observe that each ladder epoch 
a; for (S;),>,, is also one for O .  Hence N, 2 Ni .  Now consider the event 

Put z' (b)  = inf { la  2 cr,: Sb -Sob > b )  for b > 0. Since (Sb)n30 has a positive 
recurrent driving chain (MAn3,,, straightforward arguments yield n - I  S ,  + p' 
a.s., and then further - 

z' (b) 1 
- + , E (0, co) a.s. (b -, a). 

b P 

On the other hand, we have 

{W, < p' n/2a} c { max (S$ - Snb) < ,u1n/2) c (z' ($42) > n} 
1 d j d n  

by the boundedness of the X i ,  and therefore 

P,,= (A)  < @,,, (lim sup b - l z' (b) > 2/pt)  = 0 a.s. 
b+m 
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Consequently, 

As the second step, we next prove the existence of a set A, E (3 such that 

(3.15) #(Ao x (1)) E (0, a) and liminf n- N, (Ao x {I}) > 0 a.s. 
n-r m 

Since 4 is c-fi.fite, we can find a partition (A,),,, of Y _such that 
4 ( A ,  x { l ] ) ~ @ ,  m) fur all k 2 1. By the ergodic theorem, 

n 

lim n-I N ,  ( B  x R) = lim n -  ' 11,,,,, = [ ( B )  a.s; 
n +  m n - m  j = 1  

for all B E G .  Hence we can choose kl  sufficiently large such that . 

lim sup n - ' N, (( U AR) x {I)) ,< [( U Ak) < pJ/6a a.s. 
n+ m k > k ~  k > k l  

By combining this with (3.14) and upon setting A. g' u::, A,, we obtain 
$(A, x (11) < oo as well as 

which together give (3.15). 
Finally, since n-I T, + gC TI and n-I NT, (Ao x {I)) + c$ (Ao x {I)) < ao 

a.s, by the strong law of large numbers for random walks with stationary 
l-dependent increments (use the l-dependence of the cycles for the latter asser- 
tion), we conclude that 

od > lim n - I  NT,(Ao x 11)) 2 (lim n-I T,)-(liminfT'i1 N,,(Ai x (11)) 
n+ m n-m n-cm 'I! 

2 (pf /6a)  Ec TI, 

and hence i'i < m. 
It remains to prove the existence of a regular sequence of regeneration 

epochs (T,)n30 for both (M,, Z,),z,O and (M,JnbO such that ZTn = 1 for all 
n 2 1. To that end notice first that Y x (1) forms a recurrence set for 
(M,, Zn)nBO, and thus contains a regeneration set %x {I); see Theorem 5.2.2 
in [8]. Clearly, 3 can be chosen such that { (93) E (0, a), where 5 denotes the 
essentially unique stationary measure of (Mn)nBO. Let (Tn),3, be the resulting 
regular sequence of regeneration epochs when using Athreya and Ney's "coin- 



-tossingn procedure. It is easily seen that the T, are also regeneration epochs 
for (M,),307 but we must still verify their regularity for the latter chain, i.e. the 
existence of some A E  6 such that 

We will do so for A = a. Consider the MRW (M,,, S,,)n30 with positive 
Harris recurrent driving chain (MTJm3 o,  where zo = 0 and z, denotes the k-th 
visit of to 3 for k 2 1 .  The stationary distribution 01 (M,n)n&o is 
= 5 (-n%)/t (%). Let (M,, Z:),,, be the associated excursion chaiin. Although 
(Z:),30 and (Z,,),20 are generally different sequences, we have 2: = 2," if 
ZTn = 1, and thus T, = z,,(A) for suitable g,. It is easily checked that ( Q , ) , ~ ~  
forms a regular sequence of regeneration epochs for (M,", Z:)nB O, the regulari- 
ty following from 

We know from the previous part of the proof that (MT, Zr),30 is positive 
recurrent because this is true for (Mr,,)n30. Consequently, ETOdl el < a, which 
together with (M E %) = 1 further yieIds 

that is the desired result. 

P r o  of of Theorem 1. (i) Notice first that it suffices to prove the asser- 
tions for (M,*),,, because then the same follows immediately for the other 
three chains when observing that, for each n 2 I, (X,*+, , v, + ,) depends on 
M,h and the history (Mj*, Xj*, v ~ ) , ~ ~ , ,  only through M,*. 

We know now by Theorem 2 that (M,, Z,),,, has a sequence (T,),bo of 
regeneration times, with associated filtration (Fn),3, accordiag to (R.2), such 
that each T, is also a ladder epoch a,:, say, for (M,, S,),30..dt follows that 
(T,*),,30 forms a sequence of regeneration times for (M:),,, with associated 
filtration (S0r3,,, because T,* is clearly a stopping time with respect to that 
filtration and ZTn = 1 for every n 2 1. This proves the Harris recurrence of 
(Mn*)n b 0 - 

If(M,),bo is positive recurrent, i.e. Ec T,  < a, = P(MTl E-), then T: < TI 
implies ET TT < a. Combining this with M 5  = MT,, i.e. b = P(Mg; E a), we 
conclude the positive recurrence of (M:),30. 

(ii) Using the strong Markov property, we infer that (M:, and 
(M,*, a,,),3o both constitute MRP's. Hence it remains to verify the lattice-type 
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assertions. Let d denote the lattice-span of (M,, S,),,, and d* that of 
(M:, S,*),20 with associated shift functions y and y*, respectively. Since the 
latter process forms a subsequence of the former one, we have d* 2 d. 

For the reverse inequality suppose d* > 0 and note first that 

for all n 3 1. On the other hand, recalling the final paragraph of Section 2, we 
may assume without 1oss"of generality that (T,),, , satisfies (R.9) in-addition to 
(R. lHR.4). consequently, 

for all 0 < It1 < lid and x E 9, and thus 

for all 0 < It1 < lid. Now (3.16) and (3.17) together show that d* < d, i.e. 
(M, ,  S,),,, and its subsequence (A$,*, S,*)n30 do indeed have the same lat- 
tice-span d. The simple argument (use the telescoping structure of condi- 
tion (1.4)) that they must then also have the same shift function y can be 
omitted. 

In order to see that (Ad,*, a,),,, and (M,, n),,o are of the same lat- 
tice-type, we note first that the latter process contains the former one as a sub- 
sequence. Moreover, (T,),,, and (T:),,, are again sequences of regeneration 
epochs for (M,, n),, , and (MX, a,),,,, respectively. Hence the necessary ar- 
guments are the same as before involving the application of (R.9) for (M,, n),, , 
instead of (M,, S,),, o. We do not supply the details again. 

(iii) If p = E,X, = E c S T l  < a, then ST < SF; = STl clearly implies 
EtST < m. For the converse it suffices to note that X :  < S,, = ST Pt-as. 

The second equivalence follows directly from E<* ST = Ec S;: = Eg ST, = 

Et XI = p, where (2.4) and Sg; = S,,: - - S T ,  have been utilized. <," 

(iv) Here the assertion follows from Eg* a, = EF a,: = Eg TI, where again 
(2.4) has been used. 

4. The lattice-type of (M,, n),,,. Our purpose of this final section is to 
determine the lattice-type of the MRP (M,,  n),,,, and thus of (M,,  D,),~,  

according to Theorem 1 (ii). The key is provided by the foIlowing lemma which 
characterizes the lattice-span of an arbitrary MRW (M,, Sn)n,o with Harris 
recurrent driving chain via geometric sampling. It is essentially a sharpened 
reformulation of Lemma A.6 in [3]. 
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LEMMA 3. Let (M,, Sn)n20 be an MRW with Harris recurrent driving chain 
(MJnao and lattice-span d~ [0, a]. Let 5 denote the stationary measure of 
(Mn),20 and q be an independent (under each P,) geometric (1/2) variable. Then 

(4.1) d- l= in f ( t>O:  E X I ~ ( e x p ( 2 x i t S J I M o , ~ , ) I = 1  for some XEY) 

= inf {t > 0: E, I E  (exp (2nitS,,) I Mo , M ~ ) I  = 1 for <-aEmost all x E SP) , 

Proo-f.. It is evident that the first infimum is not bigger than the second 
one, which in turn is not bigger than d-l. On the other hand, it .is shown in 
Lemma A.6 in [3] that 

Ex ( E  (exp (2xitS,) ( M o ,  M,)( = 1 for some x E 9' and t > 0 

implies d-I  < t, whence (4.1) follows. 

Now consider an arbitrary Harris chain (M,,),,,, let d E N  be its period, 
and denote by go, . . . , Vd- its cyclic dasses indexed in the correct transitional 
order. Put gk,,, = Vr for all k E N and define 

Notice that it is enough for the following result that go, . . ., %,-, , and thus 
also y~ are only determined up to <-null sets. Notice further that y, = 0 in the 
aperiodic case (d = 1). 

LEMMA 4. Given a Harris chain (M,),3, with period  EN, the associated 
MRP (M,, n)n3 is d-arithmetic with shifit function y,. 

Proof. Let d* denote the lattice-span of (M,, n),,,. From the equality 

E ( e 2 n i ~ ~  I Mo, M,) = 2 eZnitnp(q = n I M,, M,) 
n> 1 

9" 

and the obvious fact that P (q = kd + r I M,, M,) = 0 PS-a.s. for all k E N o  and 

r = 0, . . . , d - 1 on the complement of {(M,, MJ E A.), A. x;;d~: W j  x qj + ., 
we infer that 

and then 1E(e2"i"d ( Mo, MJ( = 1 PC-a.s. showing that d* 2 d with Lemma 4. 
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To get the reverse inequality, let us denote by y the shift function of 
(M,, n),,, and by [ any probability measure equivalent to 5 .  Then 
PC (? - y (Mo)  + y (M,) E d* Z) = 1 in combination with (4.2) and the indepen- 
dence of q and (Mn)nBO gives 

= C 2-kd-r  j ~ X P  (2ni (r - Y (Mo) + Y (MM + r H / d s )  
(r.k) * (08) [(Mo.Mkn + r ) ~ A r )  

x exp (2~ikd/d*) dPS, 

which can only hold true if exp (2xikd/d*) = 1 for all k~ N, which in turn yields 
that d* is a factor of d, in particular d* < d. Together with d* 2 d from the 
previous part we thus obtain the asserted d* = d. The reader can easily check 
that y, is a pertinent shift function. 

Remark. Let us finally take another brief look at Janson's [7] example 
mentioned earlier in Remark (d) of Section 1. There (M:),30 is Zperiodic on 
the state space ((0, I), (1, 0)) and (M:,  S:), = (M:,  n)n 30. Hence the latter 
process has lattice-span 2 and shift function y (0, 1) = 0 = 1 - y (1, 0). Theo- 
rem 1 (ii) in combination with Lemma 4 shows now that (M,, S,),,, is also 
2-arithmetic, the shift function being an extension of the afore-mentioned one 
by setting y (0, 0) = 1 - y (1, 1) = 1. Finally, the obvious aperiodicity of (M,), &, 

implies that (M,,  n),2 ,, and therefore (M: , G,),, , is 1-arithmetic with shift 
function 0. 
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