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1. INTRODUCTION AND MAIN RESULTS 

Let X, XI, X 2 ,  . . . be independent random variables all of them from the 
same probability distribution with distribution function F. Consider the se- 
quence S,, : = XI +X2 + . . . + X , ,  n = 1,2, . . . , and suppose that for some 
sequences of norming constants a, > 0 and b, (n = 1,2,  . . .) the sequence 
S,/a,-b, has a non-degenerate limit distribution. 

In this note we shall find the general form of all the possible limit dis- 
tributions and for each of these limit distributions we shall give necessary and 
sufficient conditions for the distribution function F in order that S,/%-b, 
converges to that particular distribution function. 

The limit distributions are called stable distributions and- $he set of 
distribution functions F such that S,/a,-b, converges to a particular stable 
distribution is called its domain of attraction. Thus we shall identify all stable 
distributions and their domains of attraction. 

The indicated results have been developed more than sixty years ago. One 
of the earliest systematic treatments is in Paul LCvy's famous book Thiorie de 
E'addition des variables aliatoires [13]. A well-known complete description of 
the theory is the book by Gnedenko and Kolmogorov [8]. Various standard 
texts in probability theory offer an exposition of the subject, for example Brei- 
man [2], Feller [6], Dudley [4]. In these texts the theory of stable distributions 
is treated as part of the (more general and more involved) theory of infinitely 
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divisible distributions. Although infinitely divisible distributions form an 
interesting and useful subject of probability theory, the stable distributions 
have attracted far more attention, both in theoretical research (see e.g, the books 
by Zolotarev [19] and Samorodnitsky and Taqqu [16]) as well as in applied 
research (see e.g. Fama [S], Kunst [12], Mandelbrot [14], Samuelson [17]). 

In contrast to the mentioned references, in this note the theory is devel- 
oped ab initio, independent of results from the theory of infinitely divisible 
distributions, which is too complicated to be included in a standard course of 
probability theory. We have tried to present the theory of stable distributions 
in a sufficiently streamlined form for presentation in such a course. 

We"now set out to develop some preliminary results that allow us to 
formuIate the two main theorems. We start from the limit relation: 

or, equivalently, 

lirn P (Sn/a,- b, < x )  = G (x) 
n+co 

for all continuity points x of G, the distribution function of the non-degenerate 
random variable I: The first question is if it is possible to have different limit 
distributions for different choices of a,, and b,. Khinchine's convergence to 
types theorem (Feller [6] ,  Chapter VIII.2, Lemma 1) states that a different 
choice of the norming constants can only result in a limit distribution function 
of the form G (Ax + B) with A > 0 and B real. The set of all such transforms of 
G will be called the type of G. From now on when we talk about a limit 
distribution we shall mean the entire type so that no confusion is possible. 

DEFINITION 1. Any probability distribution G that can be obtained as 
a limit in (1) is called a stable distribution. 

First of all we are going to reformulate the limit relation (1) in terms of the 
characteristic functions (or Fourier transforms). Define for s E R  the charac- 
teristic functions 

. - 
m m 

# (s) : = EeisX = j eiSX dF (x) and I) (s) : = EeisY = 1 px dG (x) 

or, what is more convenient in the present setup, 

2 (t) : = 4 (l/t) and g ( t )  : = $ (l/t) 

for t E [- OO, 001\{0). By Lbvy's continuity theorem for characteristic functions 
(Feller [6] ,  Chapter XV,3) relation (1) is equivalent to 

(2) lim exp(-ib,/t)An(u,,t) = g(t), t ~ l - m ,  c~l\{O), 
n +  ao 

uniformly on neighborhoods of + co. Note that for t = f_ both sides equal 1. 

We start with a definition and a preliminary result. 
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DEFKNIT~ON 2. A positive measurable fuxlction f is regularly uarying if there 
exists a constant y ER, the index (or order) such that 

f (tx) lim-=xY for all x > 0 .  
t-.m I ( t )  

In this case we will use the notation f E Ry, A function in RG is called 
slowly varying. For positive measurable f the limit in (3) is either identically 
0 or of the form given above. 

PROPOSITION. If(1) holds, then lg (t)I2 = exp (-c ltl-")for some ol~(0 ,  21 and 
c > 0. Moreover, 

lim -log 12 (tx)l = X-= for x > 0, 
t j m  - i~g~a ( t ) l  

i.e. -1oglAl is regularly varying with index -a. 

Proof.  From (2) we have 

locally uniformly near fa. It follows that 

lirn - n log ]A (an t)J = -log lg (t)] 
n+m 

for each ~ E R ,  t # 0, for which g(t) # 0. For such t it follows that 
log t)l -, 0; hence a,  -, + cx, (note that a, > 0 by assumption). Moreover, 
replacing n with n + 1 gives 

which in combination with (5) implies an+,/a, -t 1 as n + co since convergence 
in (5) is uniform on neighborhoods of infinity. Application of Lemma 9 below 
then shows that the function -log 1J.l is regularly varying and its order, say 
- E, has to be non-positive since lirn,,, -log [I (t)] = 0 by (5). DiGiding *,,, (5) by 
its counterpart for t = 1 we find 

whence log ]g (t)l/log Jg (I)] = t-" for t > 0. Since lg (t)I2 = g (t) g (- t) is an even 
function, we have log lg (t)l/log lg(l)l = Itl-" for t # 0. Note that Ig (t)t2 is a 
characteristic function as a product of two characteristic functions. 

The restriction a > 0 stems from the fact that Y is non-degenerate. Next 
we show that necessarily u < 2: the assumption a > 2 would lead to 
a non-constant characteristic function with a vanishing second order derivative 
at 0, which is a contradiction. 
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The proposition provides a partition of the class of stable distributions 
into subclasses indexed by the parameter u. 

D ~ T J O N  3. Fix a ~ ( 0 ,  21. Any probability distribution function G ob- 
tained as a limit in (1) and with characteristic function g satisfying 

is called a stable distribution with index a or an a-stable distribution. 

DEFINITION 4. The class of distribution functions F for which (I) holds with 
a limit distribution G satisfying (6) is called the a-stable domain of attraction. 

Notration: FED,. 

The classes of distributions introduced above are useful for the rest of this 
note. However, the a-stabIe distributions do not form one type. We shall see 
that we need another (skewness) parameter to describe the full class of all stable 
distributions. Note that the characteristic functions lg(t)I2 from (6) represent 
probability distributions that are symmetric about zero. 

We are now in a position to formulate the main results. Define 

U(t) :=Rel( t )  and V(t):=ImA(t) 

and for 0 < or < 2 
m 

sa = J X-'I sin xdx 
0 

and 

The constants s, and c, can also be written in terms of the gamma func- 
tion. We have for 0 < u < 2, a # 1, 

an an 1 
sa = r(1-a)cos- and ca = r(1-a)sin---. 

2 2 I-a 

In the case a = 1 one should replace the formulas with the corresponding limit 
as ol+ 1 : s, = n/2 and cl = r' (1). (- r' (1) is Euler's constan&.) 

Further we adopt the convention that the function (ta - l)/a is defined for 
aJl t > 0, aER and reads as log t for a = 0 (by continuity). Also the function 

( t)  in formula (7) below is defined to be 1 at t = 0 and (1 -a) tan @/2) is 
defined to be 2/n at a = 1 (by continuity). 

THEOREM 1. Suppose 0 < a < 2. Every a-stable distribution (or rather a dis- 
tribution type) has a characteristic function of the following form: 

with 0 < p < 1. 
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The following statements are equivalent: 
(i) FED,.  
(ii) 1 - F ( t )  + F (- t) E RV-, and there exists a constant p E [O, 11 such that 

the following tail balance condition holds: 

1 - F (t) 
lim = p. 
**m 1-F(t)+F(-tj  

(iii) 1 - U (t)  E RV-, and there exists a constant p E [0, 11 such that 

(8) lim , =R\{o}. 

Further, if any of (i), (ii) or (iii) holds, then 

1 - U(t> 
lim - 
t - ,  1 -F(t)+F(-t) - 

and 

v(t)-t-I f 0 ( i - ~ ( ~ ) - ~ ( - s ) ) d ~  
(10) lim = (2p- l)c,. 

t -  m 1-F(t)+F(-t) 

Remark  1. The parameter u is the same in the three equivalent state- 
ments of Theorem 1. The theorem is also true if one keeps and p fixed in the 
three statements. Statement (i) then reads: (1) holds with G such that its charac- 
teristic function $ is as in (7). 

Remark  2. Unlike in other texts here and in the'proof we do not treat the 
case a! = 1 separately. However, for ct # 1 the statements of the theorem can be 
simplified: line (7) reads (remember we need only one member of the type): 

$,,, (s) = exp (- (Isla - is ( 2 p  - 1) tan (oln/2) [XI"- '1). 
From Lemma 1 below it follows that in the case 0 < u < 1 (iii) is equivalent to 

1-U(t)€RV-, and V(t)-(2p-l)tan(an/2)(1-U(t)) as t + m .  

If 1 < a < 2, then (iii) is equivalent to -,- 

1 - U (t) E RV-,, tV(t) + p for some constant p 

and 
p - t V (tj - - (2p - 1) tan (a,rc/2) t (1 - U (t)) as t -+ oo . 

In view of (10) we must have p = EX, which is finite in this case. 

Remark  3. Suppose any of (i), (ii) or (iii) holds. We now indicate how to 
choose the normalizing constants a, > 0 and b, in terms of either the 
distribution function F or the characteristic function 4 (ie. in terms of the 
functions U and v). 
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The relation (1) holds with G such that the function $ is exactly as in (7) 
(i,e. this distribution and not another one of the same type) i f  we choose a, and 
b, such that 

and 

See (9) and- part (iii) -(i) of the proof. Note that the above choice of the 
sequence;a, is always possible since 1 - F (x) + F (- x) is regularly.varying. By 
Lemma 1 again, it follows that the above choice of a, and b, implies 

b, + (2p  - 1) tan (an/2) for 0 < a < 1 
and 

b, - np/a, -+ (2p - 1) tan ( ~ 4 2 )  for 1 < a < 2. 

It  follows from relations (9) and (10) that the same limit distribution is 
obtained with the alternative choices of a, and b,: 

l i m l - ( a ) ) =  and bn=nV(a,). 
n+ m 

Remark  4. The behavior of U and V at - c~ follows from (9) and (10) 
since U is an even function and V is an odd one. 

The case a = 2 is covered by the following result: 

THEOREM 2. Every 2-stable distribution (or rather a distribution type) has 
a characteristic function of the following form: 

corresponding to the normal distribution. 
The following statements are equivalent: 
(i) FED,.  

(ii) The function H, (t)  : = So u (1 - F (u) + F (- u)) du is slowly uarying. 
(iii) 1 - U (t)  E RV- and ,,? 

If (i) hoids, then as t -, ao 

(13) 1 - U (t)  -- H I  (t)/t2 

and 

where p = EX. 
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Remark. The behavior of U and V at -co follows from (13) and (14) 
since U is an even function and V is an odd one. 

Using the results of Theorems 1 and 2 one verifies easily that the stable 
distribution functions are precisely those distribution functions G such that if 
Y, Yl, Y2, .. . are i.i.d. G, then there exist constants A, > 0 and B,, such that, for 
n 2 1, (Yl + Y2 + . . . + ',)/A, -B, has the same distribution as Y 

. - 2. AUXILJARY RESULTS 

7i z. 

Before we prove the theorems we collect some basic facts about regularly 
varying functions in a sequence of lemmas. Lemmas 1-7 are standard results 
that are useful in other contexts as well. Lemma 8 (preparing for the use of 
Lebesgue's theorem on dominated convergence) and Lemma 9 (on replacing 
a sequence by a continuous variable in the limit relation) are specific for the 
present setup. 

LEMMA 1 (see [7], Theorems 1.9 and 1.10). Suppose f is a measurable 
function and there is a positive function a such that for all x > 0 

f ( t x ) - f ( t )  xY-1 
lim . =- 
t+m a( t )  Y 

where y is a real parameter. (The right-hand side is interpreted as log x for y = 0.) 
I f  (15) holds with y > 0, then a(t)  -- yf ( t)  as t -, co, both functions tend to 

inJinity, and hence f E RTj. 
If (15) holds with y < 0, then lim,, , f ( t)  = : f (a) exists and 

Hence f (m)- f ( t )  is regularly varying of order y. 
If (15) holds with y = 0, then a (t)  = o ( f  (t)) (t + CQ) and a is regularly 

varying of order 0, i.e. slowly varying. Also lim,, , f ( t)  =: f (m) exists (finite or 
+ a). I f f  (m)  = a, then f E R V ~ .  I f f  (a) < a, then f (m) - f  ( t )  is-slowly * ern vary- 
ins and a( t )  = o ( f  (m) - f  (t)) as t+ ao. 

Remark  1. For f measurable the limit in (15), if not identically zero, is 
necessarily of the given form. 

Re m a r k  2. If the limit in (15) exists and is identically 0 for x > 0 with 
QERV,, then 

for y >O, f ( t)  =o(a( t ) )  as t -r CQ, 

for y < 0, f (co) exists and f (m)- f  (t)= o(a(t))  as t -+ a. 

LEMMA 2 (see 171, Theorem 1.20). Suppose that the function f is integrable 
over finite intervals and that (15) holds with y = 0. 
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(i) Lei k:  R+ + R be a function which is bounded on [0, A] for some A > 0. 
Then as t += m 

(ii) Let k :  R+ + R be a function such that jy .r%(s)ds < 03 for some 
A, E > 0. Then 

LE& 3 (cf. Bingham et al. [l], Chapter 4). Suppose that the function g is 
integrable over Jinite intervals and that (3) holds with f positive. Assume 
g ( t ) / f ( t ) + c  3 o as t +  oo. 

(i) Suppose y > -1 in (3). Let k:  Rf + R be a function which is bounded 
on [ O ,  A] for some A > 0. Then as t -, co 

(ii) Let k: R+ + R be a function such that xY+' Ik(X)I d x  < m for some 
A, E > 0. Then 

Re mark. If the limit in (15) is identically zero, then the limit in Lem- 
ma 2 is also identically zero. 

LEMMA 4 (see e.g. Ibragimov and Linnik [lo], the proof of Lemma 2.6.1). 
Suppose g is a non-increasing function and g(t)/ f ( t)  + C E  [0, oo) as t + oo for 
some function f E RV-, (0 < a < 2). For any E > 0 there exist constants A. and 
to such that for all t 2 to and A > A, 

im 

Proof.  By the second mean value theorem for all B > A 

g (tx) g ttA) j-sinxdx = -jsinxdx for some CECA, 31, 
A f ( t)  f (0 A 

and hence 

The proof of the first statement is complete since the right-hand side tends to 
zero as A + co. The proof of the second statement is similar. 
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Next we give a version of the monotone density theorem (see e.g. Bingham 
et al. [I], Chapter 1.7.3). 

LEMMA 5. Iff (t) : = fo $ (s)  ds is regularly varying with index a > O and $ is 
monotone, then $ E RK',- I. 

In the sequel we need a modification of the above lemma. 

LEMMA 6. Suppose f is nun-decreasing. If there exists fl  2 0 and a positiue 
function o s w h  that the function 7 d&ned by f ( t )  := t-' So f ( s )ds  snti.$es 

- - T ( t x ) - T ( t )  xP- l  
T - 3- 

B 
for x > O ,  t - + m ,  

a ( t )  
then 

f (tx) - f It) xfl - 1 
+- 

P 
for x > O , t + c o .  

a ( t )  

Proof.  Define the function $ by 

It is easy to see that this definition implies 

Hence we have for x > 0 and t + co 

" 9 (ts) as f ( t x )  - f ( t )  xfl - 1 
-  itif if - +-, 

P a (0 

Since $ is non-decreasing, for x  > 1  the left-hand side is at least 

and hence 
$ ( t )  xfl-1 

lim sup - 6 
t+, t a ( t )  P ( 1 - x - I )  

This shows that lim sup,, , $ (t)/ ta ( t )  < 1 by letting x J 1. Starting with 
0 < x < 1 and applying a similar inequality we get lim id,, , 9 (t)/ ta ( t )  2 I. It 
follows that $ ( t )  - ta ( t )  ( t  + a), which combined with (17) gives 

12 - PAMS 20.1 
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Hence as t + og 

f (tx) -f (t) - - J(tx) -f(t) xfi- 1 
+o(l) -+-. 

B a ( t )  a (t) 

Remark. If the limit in (16) is identically zero, the corresponding limit for 
f is also identically zero. 

The next lemma is a special case of Feller [dl, Chapter VIII.9, Theorem 2. 

LEMMA 7. Suppose Fa is a distribution function on [0, a). Thefunction U2 
is defined. by U2 (t) := so s2 dF,(s]. Then U, ERV, if and only if 

Remark. An integration by parts shows that the above statements are 
also equivalent to 

t" (1 - F ,  (0) 
-0 ( t - m ) .  

S (1 - Fo(s)) ds 

The following result is a modification of a result in Pitman [15]. 

LEMMA 8. Assume the conditions of Theorem 1 (iii) (or Theorem 2 (iii)) are 
satisfied. For every y > 0 there is a constant c such that for euery T > 0 and 
o < x < y  

and 

Proof.  Since the other statements can be proved similarly, we only prove 
the first statement. Note that if (8) holds with 0 < a d 1, there exists to such 
that IV(l/t)l 6 tat' for 0 < t < to < 1. Define 

x sin txdt 

li!y costxdt 1 =: L,+L2,  

< c. 

where L1 and Lz are the integrals over (0, to)  and (to, T),  respectively. It follows 
that L, is bounded if 0 < a < 1. For 1 < a < 2 it follows from (8) that 
lim,,, tV(t) =: p exists, in the case ol = 2 this follows from (13). Hence L, is 
bounded. Next we estimate L,. Integration by parts gives 

m  0 m 

V (l/t) = J sin txdF (x) = j sin txdF (x) + j sin txd (F (x) - 1) 
-03 - m  0 

m 

= t 1 K ( y) cos tydy , 
0 
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where K(y) := 1-Fly)-F(-y). Hence 

T m 

(191 Lz = 1 1 K (y) cos ty cos txdydt. 
to 0 

Using the second mean value theorem for each M > 0 we infer that there exists 
{ E 10, MI such that 

M 

11 (1 - F (y)) cos ty cos txdyl 
n v 

5 
' - = (1 - F (0)) lcos tx j cos tydy) d 2/t d 2/to for to d t G T. 

0 

Note that a similar argument holds for the integral containing F(-y). Hence 
we may reverse the order of integration in (19) to find 

m T 

L, = j j K (y) cos ty cos txdtdy 
0 to 

1 cos T {x + y) cos T fx - y) cos to (x + y) cos to (x - y) + - - 
X + Y  x-Y X + Y  x-Y 

The latter integral is bounded since 

exists as a finite (semiconvergent) integral for all real x. 

LEMMA 9 (the extension of Kendall [ll], cf. Bingham et al. [I], Chap- 
ter 1.9). Suppose 

lim sup x, = cc, lim sup x,, l/xn = 1 
n+ w n+ m 

and f is a continuous function. 
1. Suppose 0 < b < c < m and for some sequence a, 

IF* 

a,f(Ax,)+$(A.)~(O,m) f o r a l l L ~ ( b , c )  a s n h m ;  

then f varies regularly. 
2. Suppose 0 < b < c < m, the function a is regularly varying and 

lim f(Axn)-f (xn) + i~ (A) for aii A E ( b ,  c) ;  
n4s,  a(x,) 

then there exist constants c, y E R  such that 
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Proof .  The continuity of f is the key assumption. 
1. With V = (b, c) there exists a non-empty interval K such that 

V n u - ' V # O  for all UEK. If t , u t ~ K  we have 

Hence if we write f * (t) = f (ud/ f (4 for u > 0 fixed and x: = log x,, then 
f * (t +x$) converges as n -t oo for all t in a non-empty open interval J. Choose 
E > 0 and .define for k E 2, m E N the closed sets 

By Baire's category theorem (see Hewitt and Stromberg [9]), since J is 
non-empty and open, one of the sets C,,, contains an open interval I. This 
means that 

kg-E 6 f*(t+x,*) < ~ E + E  for n 2 m, ~ E I .  

Since by assumption xz -, co, xi+ - x: + 0, it follows that U, xz + I  con- 
tains an interval of the form [ t o ,  m]; hence 

K E - E  G f *(t) < ~ E + E  for all t 2 to. 

Hence lim,,, f * (t) exists and is finite and positive for all UEK, i.e. 

exists and is finite for all UEK.  It follows that the function f is regularly 
varying. 

2. In a similar way as above, using the fact that a is regularly varying we 
obtain for u > 0 fixed and all t in a non-empty open interval 

lim f Ixn t ~ )  -f ( ~ n  U) 
= $* (t). 

n-+m ~ ( x , u )  

Define for u > 0 fixed the function 
*em 

(with xX = logx, as before). Then in a similar way as above we can show that 
lim,, , f * (t)  exists and is finite. 

3. PROOF OF THE MAIN THEOREMS 

Proof of Theorern 1. We first prove the equivalence of (i), (ii) and (iii). In the 
part (iii) -(i) of the proof we obtain the characterization (7) (see (45)). 
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(i) +- (iii). It follows from (2) that for all real t  + 0 

(20) lim n log X (LZ, t)- ib,/t = log g (t), 
n+ m 

and hence 

lim aR (a,, t )  = - Re (log g (t)), 
n +  m 

and 

(22) lim nI (a, t )  - bn/t = Irn (log (t)), 
. - .  m - r  m 

. ~ where R ( t )  =TL Re log R (t) and I (t) = Irn log A ( t )  (Re and Im denote the real 
and the imaginary part, respectively). Note that there exists a unique version of 
log R (log g) satisfying log ll (t) 4 1 (log g (t) -, 1) as t + cn (see e.g. Feller [6], 
Chapter XV). 

Application of Lemma 9 (note that a,, + a, a,+ Jan -+ 1 (TI + co) as in the 
proof of the Proposition) shows that the function R is regularly varying and 
- Re(1ogg (t)) = It1 -" for t # 0. 

Next we focus on (22). By setting t = 1 we get 

lim n1 (a,) - b, = Irn log g (I), 
I n'm 

i and hence 

i 
Combining this with (21) for t  = 1, we get for all real t # 0 

I 

(23) 
t l  (a, t )  - a, I (a,) t Im log g (t) - Im log g (1) 

litq - - =: z(t). 
,-tm anR(a,J - Re log g (1) 

In a similar way, by Lemma 9 this implies 

where C E  R is a constant. Since R E  RV-,, it follows from Lemma 1 that c = 0 
or, if c + 0, then y = 1 - E .  Using the fact that I is an odd function we now have 

We have now (iii) with 1 -U replaced with R and V replaced with I. 
Since for complex z, lzl < 1/2, 

(ez- 1 -z[ < 1zI2, 
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we have 
In (a,) - 1 -log A (a31 < llog a (a,)l 

for n sufficiently large. From (21) and (22) we obtain 

It follows that 

(27) lim nl-logA(a,)-l+A(a,)l = 0; 
n-t m 

. - .  

hence we-may replace -1ogA in (20) with 1 -A. Consequently, we can repeat 
the above argument with -Re log 1 replaced with 1 - U and Im log A replaced 
with V to obtain (iii). 

(ii) -(iii). Define the functions W and K by 

H(t) := l -F( t )+F(- t j  and K(t):=l-F(tj-F(-t) .  

First we prove that 

~( t)-1- i tp1 S o ~ ( s ) d s  
lim = -sa+i(2p-l)c,. 
t-+m H (t)  

Now for any A > 0 

~ ( t ) -  1 -i t- ' f ,~(s)ds 

H (0 

A H(tx) A K (tx) A K (tx) 
= -5sinx-dx-iJ(1-cosx)-dx+iJ-dx 

o H(t) 0 H (t) 1 H(t) 

* H(tx) " K(tx)hrm Y 
- J sinx-dx+i j cosx- 

A H (t) A H (0 

Take E > 0. By Lemma 4 the last two integrals are less than E for t > to and 
A > A,. For fixed A > 0 the first three integrals converge by Lemma 3 to 

Now (28) follows if we take A + oo. By separating the real and imaginary parts 
in (28) we get the limiting behavior as t -+ + co in (9) and (10). The limiting 
behavior as t + - m foI10ws since U is an even function and V an odd one. 
Obviously, (9) implies that 1 - U E RV-/_, (since H E  RV-,). Note that s, # 0 for 
0 <a < 2. Now (10) implies that for x > 0 

tx V (tx) - I ~ K  (s) ds 
Iim = (2p-l)caxl-a 
z* m tH (t) 
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(use H E  RV-,). Combination with (10) gives 

(29) lim 
txV(tx)-tV(t) - -  ' K ( l s I d s =  (Zp-l)ca(xl-'-l). 

t tH(t) I H (t) 

Note that the integral on the left-hand side converges to 

by Lemma 3. Now (8) follows since 1 - U satisfies (9). - - 

(iii) -(ii)..rn this part of the proof c denotes a constant which may take 
daerent values at each occurrence. In order to prove the results in this part we 
make use of Lkvy's inversion relation 

valid for all x, x + h for which F is continuous. See e.g. Chow and Teicher [3]. 
Note that the above integral is to be understood as the limit as A + m of the 
integral over (-A, +A). A similar remark holds for the other inversion 
integrals below. Using the relation (301, the equality + ( t )  = A(l/t) = U(l/t)+ 
+iV(l/t) and the fact that 

" sin x n J -dx = -, 
O X  2 

we obtain the following inversion formula for H: 

2 "  1-U(l/t) 
H(x) = - j sintxdt, x > 0 .  

no t 

-First we prove that H is regularly varying with order - u. For t $ 0 define 

where H ,  (t) = st xH (x) dx = $ fi H(&) du as in Theorem 2 (ii). By (31) it 
follows that 

2 " 1 - U(l/s) =;I J x sin sxdsdx. 
0 0  s 

From Lemma 8 it follows that we may reverse the order of integration, and so 

2 "  sin ts - ts cos ts 
1 )  = - 1 - 1  9 ds .  

no 
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Since this integral is absolutely convergent, by Fubini's theorem we have 

(32) 
Z m *  sin xs - xs cos xs 

= ; J - W / s ) ]  s3 
dxds 

0 0 

2"O 2 (1 - cos ts) - ts sin ts 
= - J (1 - U(l/s)) 

s4 
ds. 

n o  

Hence 

H,(t) = 27 1-U(t/s)2(l-coss)-ssins - . 
s4 

ds. 
- t3(1 - U(t)) X 0 1 - U(t1 

Since 1 - U is regularly varying with index -a, in view of Lemma 3 (substitute 
s = x-l) the right-hand side converges to 

As a consequence, H2 E RV3 -, By the monotone density theorem (Lemma 5) it 
follows that H l ~ R V 2 - , ;  then HERV-, .  In order to prove the tail balance 
condition we need an inversion relation for K. As for the inversion relation for 
H we obtain 

(33) 
2 " V(l/t) 

K(x)-K(y) =;I - (cos tx - cos ty) dt, x, y > 0; 
o t  

hence by Lemma 8 the function 

2 v (lit) 
K(x)-; I - cos txdt 

o t  

is constant for x > 0. The constant is necessarily 0. This follows by taking the 
limit as x + co and applying the Riemann-Lebesgue lemma in (18). See e.g. 
Feller [6], Chapter XV.4. For y > 0 we have 

Y 2 a, V(l/t) 
v n  

K,(y) := j ~ ( x ) d x  = -J J- cos txdtdx 
0 no0 t 

2 V(l/t) 2 V (l/t) sin ty = - J  J-costxd~dt = -J-- dt. 
n o 0  t n o  t t 

Interchanging the order of integration is justified by Lemma 8. Now we inte- 
grate once more, use (34) and Lemma 8 to find for t > 0 

1 * 2 " v (l/s) (1 - cos st) 
Kl(t) : = ; [ ~ ~ ( y ) d y  =- 1 ds. 

0 nt  0 s 
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It follows that for b, t  > 0 

(35) 
K, (bt) - K, {t) 2 btsV(bts)- tsV(ts) a(ts) 

= - j - (1 -cos(s- l ) )  as, 
a ( t )  n o  a (ts) a  (0 

where a ( t)  : = t ( 1  - U (t)). 
Taking the limit as t + co, using (8) and Lemmas 1, 2 and 3 we find for 

x > 0 

lim 
R1 ( tx ) -K l  ( t )  x l i a -  1 

= C 
t+-m a (t)  1-a ' 

Application gf Lemma 6 then shows that 

It follows from (9), since HERV-,, that as t + co for x > 0 

Adding both sides of (36) and (38) we obtain for x > 0, as t -+ a, 

t 7 1 - F ( t s )  
-=- 1 

ds -, c 
I a @ )  1-a ' 

In view of (9) this implies 

For x > 1 the left-hand side is at most 

Hence 

1 - F ( t )  x l - a - l  
lim inf 2 c -,,, 

t +m 1 - F ( t ) + P ( - t )  ( 1 - ~ ) ( x - l ) .  

Letting x J 1 then gives 

lim inf 
1 - F (t) 

2 c.  
t+, 1 - F ( t ) + F ( - t )  

Starting with 0 < x  < 1  in (39) and applying similar inequalities we obtain 

where c equals the constant in (40). 
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(iii) - (i). Define the sequence a,, n = 1, 2, . . . , such that 

Note that this is possible since 1 - F (t)+ F (- t) is regularly varying. Moreover, 
a, + co as n + m. By (9) we have, since 1-UERV-,, 

(42) limn(1-U(ra,t))=Itl-" for a11 tgR,  t#O.  
n+ m 

Define the sequence b,, n = l , 2 ,  . . . , by 

Then as n + for all t E W, t # 0, by (9) and (42) 

l a . t v ( a n t ) - o n V ( ~  I ~(an)-a; 'J?~(s)ds 29-1 
N - +- -- 

El (a,) 
C,. 

t a (1 - u a ) )  t S a  ts, 

Substituting relations (8) and (10) on the right-hand side we find 

(43) 
l t y a -  

R +  OO l -a  

Combining (42) and (43) we get 

i ( 2 p  - 1) ltll-u-l 
(44) lim n(1-l(a,t))+ib,/t = Itl-"- 

n+ m tsu l-a  

We want to prove that 

(45) lim A" (an t )  exp (- ib,/t) 
n+ m 

Now for lzl < 112 we have 18- 1 -zl < 1zI2. In particular, for fixed t ER, t # 0, 
there exists no such that for n > no 

Iexp(-l+i(a,t))-~(a,t)( < 11-ll(a,t)12, 

and hence 

So it is sufficient to prove that n 11 -R. (an t)I2 + 0 as n + CO. This follows from 
(42) and (43). 
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Roof of Theorem 2 
(i) * (iii). Following the reasoning of the proof of Theorem 1, part (i) = 

(iii), we find that 1 - UERV-,. Since (24) now holds with y = - 1, application 
of Lemma 1 (or its extended form from Remark 2 following the lemma) shows 
that lim,,, tl(t) =: co exists. Hence (25) holds with c possibly 0 and the 
right-hand side equals 

z (t) = t Imlogg (t)- Irn log g (1) = - c (It1 - - 1). 

Since - Re log g (t) = t-2, t # 0, we have 
. - 

I g(t) = e ~ p ( - t - ~ + i t - l ( c ~  +c41tlf1)}, 

where c3 and 12, are constants. Since any bounded continuous function w with 
w(0) = 1 is a characteristic function only if for all x and E > 0 

(see Feller [6], Chapter XIX.21, we must have c4 = 0 (see Steutel [18]). Hence 
Il.(t) = g(t-') = exp (- t2) and (24) holds with c = 0. Remark 2 following Lem- 
ma 1 now shows that lim,,, tV(t) =: p exists and (12) holds. 

(ii) * (iii). By Lemma 7 (take Fo(t) = 1 -H(t), t 2 0), tZH(t)/H, (t) -+ 0 as 
t + a. Note that 

A (t) - 1 - ip/t + H1 (t)/t2 

H l  (t)/t2 

( t ~ ) ~  H (tx) sin x - x (tx)' H (tx) sin x 
= - j  dx- J - ax 

0 Hl(t) x2 1 HI (4 x2 

' ( t ~ ) ~  K (tx) cos x - 1 ( t ~ ) ~  K (tx) cos x - 1 + i j d x f i  j dx. * Hl (t) x2 1 Hl(t) x2 

Application of Lemma 3 shows that the integrals on the right-hand side all 
tend to.zero as t +a. Now (13) and (14) follow by taking the red-and imagina- 
ry part and (iii) follows from (ii), (13) and (14). .ern 

(iii)-(ii). Compared to the corresponding part in the proof of Theo- 
rem 1 we have to integrate once more in order to get an absolutely convergent 
integral. For the function H, defined by H3 (t) = So H ,  (s) ds an expression simi- 
lar to (32) can be given. A similar calculation shows that H I  is slowly varying. 

(iii) *(i). With the sequences a, and b,, n = 1, 2, . . ., defined by 

nH1(an)+l as n + m  and b.=np/an, 
a: 

the proof is similar to the proof of the corresponding part of Theorem 1. We 
omit the details. 
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