LIMITING DISTRIBUTIONS OF DIFFERENCES AND QUOTIENTS OF SUCCESSIVE k-TH UPPER AND LOWER RECORD VALUES

```
                                    BY
MARIUSZ BIENIEK AND DOMINIK SZYNAL (LUBLIN)
```

Abstract. Following the method of Gajek [3] we investigate the limiting properties of differences and quotients of successive k-th upper and lower record values.

1. Introduction. Let $\left\{X_{i}, i \geqslant 1\right\}$ be a sequence of i.i.d. random variables with common distribution function (df) F and probability density function (pdf) f. Let

$$
X_{1: n} \leqslant X_{2: n} \leqslant \ldots \leqslant X_{n: n}
$$

denote the order statistics of a sample X_{1}, \ldots, X_{n}.
For a fixed $k \geqslant 1$ we define (cf. [2]) the k-th upper record times $U_{k}(n)$, $n \geqslant 1$, of the sequence $\left\{X_{i}, i \geqslant 1\right\}$ as follows:

$$
\begin{aligned}
U_{k}(1) & =1, \\
U_{k}(n+1) & =\min \left\{j>U_{k}(n): X_{j: j+k-1}>X_{U_{k}(n): U_{k}(n)+k-1}\right\}, \quad n \geqslant 1,
\end{aligned}
$$

and the k-th upper record values as

$$
Y_{n}^{(k)}=X_{U_{k}(n): U_{k}(n)+k-1}, \quad n \geqslant 1 .
$$

Note that for $k=1$ we have $Y_{n}^{(1)}=X_{1: U_{1}(n)}:=X_{U(n)}, n \geqslant 1$, (upper) record values of the sequence $\left\{X_{i}, i \geqslant 1\right\}$, and that $Y_{1}^{(k)}=X_{1: k}=\min \left(X_{1}, \ldots, X_{k}\right)$.

Similarly, for a fixed $k \geqslant 1$ we define (cf. [6]) the k-th lower record times $L_{k}(n), n \geqslant 1$, as

$$
\begin{aligned}
L_{k}(1) & =1, \\
L_{k}(n+1) & =\min \left\{j>L_{k}(n): X_{k: L_{k}(n)+k-1}>X_{k: j+k-1}\right\}, \quad n \geqslant 1,
\end{aligned}
$$

and the k-th lower record values as

$$
Z_{n}^{(k)}=X_{k: L_{k}(n)+k-1}, \quad n \geqslant 1
$$

Note that for $k=1$ we have $Z_{n}^{(1)}=X_{1: L_{1}(n)}:=X_{L(n)}, n \geqslant 1$, (lower) record values of the sequence $\left\{X_{i}, i \geqslant 1\right\}$, and that $Z_{1}^{(k)}=X_{k: k}=\max \left(X_{1}, \ldots, X_{k}\right)$.

Let us put for $k \geqslant 1, n \geqslant 1$,

$$
\begin{array}{cl}
\Delta_{n}^{(k)}=Y_{n+1}^{(k)}-Y_{n}^{(k)}, & D_{n}^{(k)}=Z_{n}^{(k)}-Z_{n+1}^{(k)}, \\
U_{n}^{(k)}=Y_{n+1}^{(k)} / Y_{n}^{(k)}, & T_{n}^{(k)}=Z_{n}^{(k)} / Z_{n+1}^{(k)},
\end{array}
$$

and define

$$
\begin{array}{cl}
W_{n}^{(k)}=k \Delta_{n}^{(k)}, & V_{n}^{(k)}=k D_{n}^{(k)}, \\
R_{n}^{(k)}=n\left(U_{n}^{(k)}-1\right), & Q_{n}^{(k)}=n\left(T_{n}^{(k)}-1\right) .
\end{array}
$$

Gajek [3] has shown that if a df F, concentrated on the interval $S \subset \mathbb{R}$ is absolutely continuous with a pdf f and if

$$
r(x)=\frac{f(x)}{1-F(x)}
$$

is a differentiable function with a bounded first derivative, then

$$
W_{n}^{(k)} \xrightarrow{D} W_{n} \quad \text { as } k \rightarrow \infty
$$

(D-in distribution), where W_{n} is exponentially distributed with a df

$$
F_{\lambda}^{*}(x)=1-\exp (-\lambda x)
$$

and where $\lambda=r\left(x_{0}^{+}\right)$(the right limit of $r(x)$ at the point $\left.x_{0}\right), x_{0}=\inf S$, and F_{0}^{*}, F_{∞}^{*} denote the distribution concentrated at zero and the improper distribution concentrated at infinity, respectively.

In this paper we extend the class of sequences of df's described in [3] weakly convergent to an exponential distribution, using lower record values, to construct a sequence $\left\{V_{n}^{(k)}, k \geqslant 1\right\}$. Moreover, we study limiting properties of the sequences $\left\{R_{n}^{(k)}, n \geqslant 1\right\}$ and $\left\{Q_{n}^{(k)}, n \geqslant 1\right\}$. The results are illustrated by examples.
2. Probability distributions of $U_{n}^{(k)}, D_{n}^{(k)}$ and $T_{n}^{(k)}$. It is well known that if a df F has pdf f, then $Y_{n}^{(k)}$ has pdf (cf. [2])

$$
\begin{equation*}
f_{Y_{n}^{(k)}}(x)=\frac{k^{n}}{(n-1)!}[-\log (1-F(x))]^{n-1}[1-F(x)]^{k-1} f(x) \tag{1}
\end{equation*}
$$

and the joint pdf of the vector $\left(Y_{m}^{(k)}, Y_{n}^{(k)}\right)$ is of the form

$$
\begin{aligned}
{ }^{(k)} f_{m, n}(x, y)= & \frac{k^{n}}{(m-1)!(n-m-1)!}[-\log (1-F(x))]^{m-1} \\
& \times \frac{f(x)}{1-F(x)}\left(\log \frac{1-F(x)}{1-F(y)}\right)^{n-m-1}[1-F(y)]^{k-1} f(y)
\end{aligned}
$$

for $x<y$, and ${ }^{(k)} f_{m, n}(x, y)=0$ for $x \geqslant y$ (see [4]). The joint pdf of $\left(Y_{n}^{(k)}, Y_{n+1}^{(k)}\right)$ is therefore
(2) ${ }^{(k)} f_{n, n+1}(x, y)=\frac{k^{n+1}}{(n-1)!}[-\log (1-F(x))]^{n-1} \frac{f(x)}{1-F(x)}[1-F(y)]^{k-1} f(y)$.

Similarly, the random variable $Z_{n}^{(k)}$ has pdf

$$
\begin{equation*}
f_{Z_{n}^{(k)}}(x)=\frac{k^{n}}{(n-1)!}(-\log F(x))^{n-1}(F(x))^{k-1} f(x) \tag{3}
\end{equation*}
$$

and the joint pdf of $\left(Z_{m}^{(k)}, Z_{n}^{(k)}\right)$ is

$$
\begin{align*}
f_{m, n}^{(k)}(x, y)= & \frac{k^{n}}{(m-1)!(n-m-1)!}(-\log F(x))^{m-1} \tag{4}\\
& \times \frac{f(x)}{F(x)}\left(\log \frac{F(x)}{F(y)}\right)^{n-m-1}(F(y))^{k-1} f(y)
\end{align*}
$$

for $x>y$, and $f_{m, n}^{(k)}(x, y)=0$ for $x \leqslant y$ (see [6]), and the joint pdf of $\left(Z_{n}^{(k)}, Z_{n+1}^{(k)}\right)$ is of the form

$$
\begin{equation*}
f_{n, n+1}^{(k)}(x, y)=\frac{k^{n+1}}{(n-1)!}(-\log F(x))^{n-1} \frac{f(x)}{F(x)}(F(y))^{k-1} f(y) \tag{5}
\end{equation*}
$$

for $x>y$.
In what follows we need the following statements concerning the distributions of the r.v.'s $D_{n}^{(k)}, T_{n}^{(k)}$ and $U_{n}^{(k)}$.

Proposition 1. The pdf of $D_{n}^{(k)}$ is of the form

$$
\begin{equation*}
f_{D_{n}^{(k)}}(u)=\frac{k^{n+1}}{(n-1)!} \int_{-\infty}^{\infty}(-\log F(u+v))^{n-1} \frac{f(u+v)}{F(u+v)}(F(v))^{k-1} f(v) d v \tag{6}
\end{equation*}
$$

for $u>0$ and $f_{D_{n}^{(k)}}(u)=0$ for $u \leqslant 0$, and its df is

$$
\begin{equation*}
F_{D_{n}^{(k)}}(z)=1-\frac{k^{n}}{(n-1)!} \int_{-\infty}^{\infty}(-\log F(s))^{n-1}[F(s-z)]^{k} \frac{f(s)}{F(s)} d s^{-} \tag{7}
\end{equation*}
$$

for $z \geqslant 0$.
Proof. Let us put $X=Z_{n}^{(k)}$ and $Y=Z_{n+1}^{(k)}$, where $n \geqslant 1, k \geqslant 1$. Let $g: \boldsymbol{R}^{\mathbf{2}} \rightarrow \boldsymbol{R}^{\mathbf{2}}$ be given by

$$
g(x, y)=(x-y, y)
$$

Then g maps the region $D=\{(x, y): x>y\}$ onto $G=\{(u, v): u>0\}$. Moreover, for $(u, v) \in G$

$$
g^{-1}(u, v)=(u+v, v)
$$

and

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=1
$$

Thus the pdf of the vector $(U, V)=g(X, Y)=\left(D_{n}^{(k)}, Z_{n+1}^{(k)}\right)$ is

$$
f_{U V}(u, v)= \begin{cases}f_{X Y}\left(g^{-1}(u, v)\right), & u>0, v \in \boldsymbol{R} \\ 0, & u \leqslant 0, v \in \boldsymbol{R}\end{cases}
$$

where $f_{X Y}(x, y)=f_{n, n+1}^{(k)}(x, y)$ is given by (5). Then

$$
f_{D_{n}^{(k)}}(u)=f_{U}(u)=\int_{-\infty}^{+\infty} f_{U V}(u, v) d v
$$

Thus for $u>0, v \in \boldsymbol{R}$,

$$
f_{U V}(u, v)=\frac{k^{n+1}}{(n-1)!}(-\log (u+v))^{n-1} \frac{f(u+v)}{F(u+v)}(F(v))^{k-1} f(v)
$$

and $f_{U V}(u, v)=0, u<0$, which implies (6). Furthermore,

$$
\begin{aligned}
F_{D_{n}^{(k)}(z)}= & \int_{0}^{z} f_{D_{n}^{(k)}}(u) d u \\
= & \frac{k^{n+1}}{(n-1)!} \int_{0}^{z} d u \int_{-\infty}^{+\infty}(-\log F(u+v))^{n-1} \frac{f(u+v)}{F(u+v)}(F(v))^{k-1} f(v) d v \\
= & \frac{k^{n+1}}{(n-1)!} \int_{0}^{z} d u \int_{-\infty}^{+\infty}(-\log F(s))^{n-1} \frac{f(s)}{F(s)}(F(s-u))^{k-1} f(s-u) d s \\
= & \frac{k^{n+1}}{(n-1)!} \int_{-\infty}^{+\infty}(-\log F(s))^{n-1} \frac{f(s)}{F(s)} d s \int_{0}^{z}(F(s-u))^{k-1} f(s-u) d s \\
= & \frac{k^{n+1}}{(n-1)!} \int_{-\infty}^{+\infty}(-\log F(s))^{n-1} \frac{f(s)}{F(s)} d s \int_{F(s-z)}^{F(s)} t^{k-1} d t \\
= & \frac{k^{n}}{(n-1)!} \int_{-\infty}^{+\infty}(-\log F(s))^{n-1} \frac{f(s)}{F(s)}\left\{(F(s))^{k}-(F(s-z))^{k k}\right\} d s \\
= & \frac{k^{n}}{(n-1)!} \int_{-\infty}^{+\infty}(-\log F(s))^{n-1}(F(s))^{k-1} f(s) d s \\
& -\frac{k^{n}}{(n-1)!} \int_{-\infty}^{+\infty}(-\log F(s))^{n-1}(F(s-z))^{k} \frac{f(s)}{F(s)} d s \\
= & 1-\frac{k^{n}}{(n-1)!} \int_{-\infty}^{+\infty}(-\log F(s))^{n-1}(F(s-z))^{k} \frac{f(s)}{F(s)} d s,
\end{aligned}
$$

which completes the proof.

The next two propositions can be proved similarly.
Proposition 2. Assume that $F(x)=0$ for $x \leqslant 0$. Then the pdf of the r.v. $U_{n}^{(k)}$ is

$$
\begin{align*}
f_{U_{n}^{(k)}}(u)= & \frac{k^{n+1}}{(n-1)!} \int_{0}^{\infty} \frac{v}{u^{2}}[-\log (1-F(v / u))]^{n-1} \tag{8}\\
& \times \frac{f(v / u)}{1-F(v / u)}[1-F(v)]^{k-1} f(v) d v
\end{align*}
$$

for $u \geqslant 1$ and $f_{U_{n}^{(k)}}(u)=0$ for $u<1$, and its df is of the form

$$
\begin{equation*}
F_{U_{n}^{(k)}}(z)=1-\frac{k^{n+1}}{n!} \int_{0}^{\infty}[-\log (1-F(v / z))]^{n}(1-F(v))^{k-1} f(v) d v \tag{9}
\end{equation*}
$$

for $z \geqslant 1$ and $F_{U_{n}^{(k)}}=0$ for $z<1$.
Proposition 3. Assume that $F(x)=0$ for $x \leqslant 0$. Then the pdf of the r.v. $T_{n}^{(k)}$ is

$$
\begin{equation*}
f_{T_{n}^{(k)}}(u)=\frac{k^{n+1}}{(n-1)!} \int_{0}^{\infty} v(-\log F(u v))^{n-1} \frac{f(u v)}{F(u v)}(F(v))^{k-1} f(v) d v \tag{10}
\end{equation*}
$$

for $u \geqslant 1$ and $f_{T_{n}^{(k)}}=0$ for $u<1$, and its $d f$ is of the form

$$
\begin{equation*}
F_{T_{n}^{(k)}}(z)=1-\frac{k^{n+1}}{n!} \int_{0}^{\infty}(-\log F(v z))^{n}(F(v))^{k-1} f(v) d v \tag{11}
\end{equation*}
$$

for $z \geqslant 1$ and $F_{T_{n}^{(k)}}=0$ for $z<1$.
Remark. Analogous propositions may be proved in the case when F has the support $S \subset \boldsymbol{R}$.
3. Examples. We now give some examples illustrating the limit theorems formulated in Sections 4, 5 and 6.

Example 1. Generalized extreme value distributions [1].
Generalized extreme value distributions are defined by

$$
F(x)= \begin{cases}\exp \left\{-(1-\gamma x)^{1 / \gamma}\right\}, & x<1 / \gamma, \gamma>0 \tag{12}\\ \exp \left\{-(1-\gamma x)^{1 / \gamma}\right\}, & x>1 / \gamma, \gamma<0 \\ \exp \left(-e^{-x}\right), & x \in \boldsymbol{R}, \gamma=0\end{cases}
$$

and for such distributions

$$
\begin{gathered}
f(x)=(1-\gamma x)^{(1 / \gamma)-1} \exp \left\{-(1-\gamma x)^{1 / \gamma}\right\} \\
f(x) / F(x)=(1-\gamma x)^{(1 / \gamma)-1}, \quad-\log F(x)=(1-\gamma x)^{1 / \gamma}
\end{gathered}
$$

If $\gamma>0$, then $x<1 / \gamma$, and changing the variables in (6) to $t=1-\gamma(u+v)$ we obtain

$$
f_{D_{n}^{(k)}}(u)=\frac{k^{n+1}}{(n-1)!} \frac{1}{\gamma} \int_{0}^{\infty} t^{(n / \gamma)-1} \exp \left\{-k(t+\gamma u)^{1 / \gamma}\right\}(t+\gamma u)^{(1 / \gamma)-1} d t
$$

Putting $\gamma=1$ we easily obtain

$$
f_{D_{n}^{(k)}}(u)=k e^{-k u}, \quad u \geqslant 0 .
$$

Thus $D_{n}^{(k)}$ is exponentially distributed with df

$$
F_{n}^{(k)}(u)=1-e^{-k u}
$$

and $V_{n}^{(k)}=k D_{n}^{(k)}$ has the df

$$
F(x)=1-e^{-x}, \quad x \geqslant 0 .
$$

Then of course the limiting distribution of $V_{n}^{(k)}$, as $k \rightarrow \infty$, is exponential.
Now consider the distribution given by (12) with $\gamma=0$. This is the so-called Gumbel distribution. Now we have

$$
\begin{gathered}
f(x)=\exp \left(-e^{-x}\right) e^{-x}, \quad x \in \boldsymbol{R} \\
f(x) / F(x)=e^{-x}, \quad-\log F(x)=e^{-x}
\end{gathered}
$$

Thus from (6) we obtain (after changing the variables to $t=e^{-v}$)

$$
f_{D_{n}^{(k)}}(u)=n e^{-n u}
$$

and $D_{n}^{(k)}$ has the df

$$
F_{D_{n}^{(k)}}(z)=1-e^{-n z}, \quad z \geqslant 0,
$$

while $V_{n}^{(k)}$ has the df

$$
F_{k}(z)=1-e^{-n z / k} \rightarrow 0, \quad k \rightarrow \infty .
$$

Therefore in this case the limit of the sequence $\left\{F_{k}, k \geqslant 1\right\}$ is not a proper probability distribution; it may be considered as an improper distribution concentrated at infinity.

Example 2. The Fréchet distribution.
Let us consider now the Fréchet distribution with df

$$
F(x)= \begin{cases}\exp \left(-1 / x^{\alpha}\right), & x \geqslant 0 \\ 0, & x<0\end{cases}
$$

where $\alpha>0$. Then

$$
\begin{gathered}
f(x)=\frac{\alpha}{x^{\alpha+1}} \exp \left(-1 / x^{\alpha}\right) \\
f(x) / F(x)=\alpha / x^{\alpha+1}, \quad-\log F(x)=1 / x^{\alpha} .
\end{gathered}
$$

Thus, using (11) and making the substitution $t=1 / x^{\alpha}$ we obtain for $x \geqslant 1$

$$
F_{T_{n}^{(k)}}(x)=1-x^{-n x} .
$$

It follows that $Q_{n}^{(k)}=n\left(T_{n}^{(k)}-1\right)$ has the df

$$
F_{R_{n}^{(k)}}(x)=F_{T_{n}^{(k)}}(1+x / n)=1-\frac{1}{(1+x / n)^{n \alpha}} \rightarrow 1-e^{-\alpha x}, \quad n \rightarrow \infty,
$$

and the limit distribution of $Q_{n}^{(k)}, n \rightarrow \infty$, is again exponential.
Example 3. Exponential distribution.
Assume that X_{i} are i.i.d. r.v.'s with df

$$
F(u)= \begin{cases}1-\exp \{-(u-\mu) / \lambda\}, & u \geqslant \mu, \\ 0, & u<\mu\end{cases}
$$

Then

$$
-\log (1-F(u))=(u-\mu) / \lambda, \quad f(u)=[1-F(u)] / \lambda .
$$

Then Proposition 2 implies that for $z \geqslant 1$

$$
F_{U_{n}^{(k)}}(z)=1-\frac{k^{n+1}}{n!} \int_{\mu}^{\infty}\left(\frac{v / z-\mu}{\lambda}\right)^{n} \exp (-k(v-\mu) / \lambda) \frac{1}{\lambda} d v
$$

which after the change of variables $t=\lambda^{-1}(v / z-\mu)$ gives

$$
F_{U_{n}^{(k)}}(z)=1-z^{-n} \exp (-k \mu(z-1) / \lambda) .
$$

Thus, for $z \geqslant 0$,

$$
\begin{aligned}
F_{R_{n}^{(k)}}(z) & =F_{U_{n}^{(k)}}(1+z / n) \\
& =1-\frac{1}{(1+z / n)^{n}} \exp \left(-\frac{k \mu z}{n \lambda}\right) \rightarrow 1-e^{-z}, \quad n \rightarrow \infty .
\end{aligned}
$$

4. Limiting distributions of the random variables $V_{n}^{(k)}, k \rightarrow \infty$. The theorems in this section, concerning the k-th lower record values $Z_{n}^{(k)}$, are coūnterparts of theorems formulated in [3].

Theorem 1. Suppose that X_{i} have df F and pdff, with the interval $S \subset \boldsymbol{R}$ as the support, and that $q(x)=f(x) / F(x)$ is a differentiable function with bounded first derivative. Moreover, assume that $\left\{F_{k}, k \geqslant 1\right\}$ is a sequence of distribution functions of the form

$$
F_{k}(z)= \begin{cases}1-\int_{S}\left(\frac{F(v-z / k)}{F(x)}\right)^{k} d G_{k}(v) & \text { for } z \geqslant 0 \tag{13}\\ 0 & \text { for } z<0\end{cases}
$$

where $\left\{G_{k}, k \geqslant 1\right\}$ is a sequence of distribution functions such that

$$
\begin{equation*}
G_{k} \rightarrow G, \quad k \rightarrow \infty, \tag{14}
\end{equation*}
$$

and G is a distribution concentrated at a point $x_{0} \in \partial S$. Then

$$
F_{k} \rightarrow F_{\mu}, \quad k \rightarrow \infty,
$$

where

$$
F_{\mu}(z)=1-\exp (-\mu z) \quad \text { for } z>0
$$

and

$$
\mu= \begin{cases}q\left(x_{0}^{-}\right) & \text {if } x_{0}=\sup S \tag{15}\\ q\left(x_{0}^{+}\right) & \text {if } x_{0}=\inf S\end{cases}
$$

Proof. Put $g(x)=\log F(x)$. Then using Taylor's formula and the differentiability of q we obtain for $z \geqslant 0$

$$
\begin{aligned}
\log \frac{F(v-z / k)}{F(v)} & =\log F(v-z / k)-\log F(v)=g(v-z / k)-g(v) \\
& =g^{\prime}(v)\left(-\frac{z}{k}\right)+\frac{1}{2} g^{\prime \prime}\left(v-\frac{\theta z}{k}\right)\left(-\frac{z}{k}\right)^{2}=-q(v) \frac{z}{k}+q^{\prime}\left(v-\frac{\theta z}{k}\right) \frac{z^{2}}{2 k^{2}}
\end{aligned}
$$

where $0<\theta<1$. Thus

$$
\begin{equation*}
1-F_{k}(z)=\int_{S} \exp \left\{q^{\prime}\left(v-\frac{\theta z}{k}\right) \frac{z^{2}}{2 k}\right\} \exp (-q(x) z) d G_{k}(v) \tag{16}
\end{equation*}
$$

Define

$$
\begin{equation*}
H_{k}(z)=\int_{S} \exp (-q(v) z) d G_{k}(v) . \tag{17}
\end{equation*}
$$

Now the assumption $\left|q^{\prime}(x)\right| \leqslant M$ for $x \in S$ and (16) together imply that

$$
\begin{equation*}
H_{k}(z) \exp \left\{-\frac{M z^{2}}{2 k}\right\} \leqslant 1-F_{k}(z) \leqslant \exp \left\{\frac{M z^{2}}{2 k}\right\} H_{k}(z) \tag{18}
\end{equation*}
$$

From (14) and (17) we get

$$
\begin{equation*}
H_{k}(z)=E \exp \left(-q\left(Y_{k}\right) z\right) \rightarrow \exp \left(-q\left(x_{0}\right) z\right), \quad k \rightarrow \infty, \tag{19}
\end{equation*}
$$

where the random variable Y_{k} has the df G_{k}. Thus (18) and (19) imply that

$$
F_{k}(z) \rightarrow 1-\exp (-\mu z), \quad k \rightarrow \infty
$$

where μ is given by (15). From (13) it follows that $F_{k}(z) \rightarrow 0$ if $z \leqslant 0$, which completes the proof.

Theorem 2. Suppose that F, f and q are as in Theorem 1. Then

$$
\begin{equation*}
V_{n}^{(k)} \xrightarrow{D} V_{n}, \quad k \rightarrow \infty, \tag{20}
\end{equation*}
$$

where V_{n} has the exponential distribution with df

$$
F_{\mu}(x)=1-\exp (-\mu x)
$$

and $\mu=q\left(x_{0}^{-}\right)$and $x_{0}=\sup S$.
Proof. By Proposition 1, the distribution function of $D_{n}^{(k)}$ may be rewritten as

$$
F_{D_{n}^{(k)}}(z)=1-\int_{S}\left(\frac{F(v-z)}{F(v)}\right)^{k} d G_{k}(v)
$$

where

$$
G_{k}(x)=\frac{k^{n}}{(n-1)!} \int_{-\infty}^{x}(-\log F(y))^{n-1}(F(y))^{k-1} f(y) d y
$$

is the df of $Z_{n}^{(k)}$. Therefore $V_{n}^{(k)}$ has the df

$$
F_{V_{n}^{(k)}}(z)=1-\int_{S}\left(\frac{F(v-z / k)}{F(v)}\right)^{k} d G_{k}(v)
$$

Since

$$
G_{k}(x)=\frac{1}{(n-1)!} \int_{-k \log F(x)}^{\infty} u^{n-1} e^{-u} d u
$$

condition (14) is valid with $x_{0}=\sup S$. Thus Theorem 1 implies that

$$
F_{V_{n}^{(k)}} \rightarrow F_{n}, \quad k \rightarrow \infty
$$

where

$$
F_{n}(x)=1-\exp (-\mu x), \quad x \geqslant 0
$$

which is equivalent to (20).
5. Limiting distributions of the random variables $R_{n}^{(k)}, n \rightarrow \infty$.

Theorem 3. Suppose that X_{i} have df F and pdf f, with the interval $S \subset[0, \infty)$ as the support, and that

$$
q(x)=\frac{1}{-\log (1-F(x))} \frac{f(x)}{1-F(x)}
$$

is a differentiable function satisfying the condition

$$
\begin{equation*}
\left|x^{2} q^{\prime}(x)\right| \leqslant M \quad \text { for } x \in S \tag{21}
\end{equation*}
$$

Moreover, assume that $\left\{F_{n}, n \geqslant 1\right\}$ is a sequence of distribution functions of the form

$$
F_{n}(z)= \begin{cases}1-\int_{S}\left(\frac{\log (1-F(v /(1+z / n)))}{\log (1-F(v))}\right)^{n} d G_{n}(v), & z \geqslant 1 \tag{22}\\ 0, & z<1\end{cases}
$$

where $\left\{G_{n}, n \geqslant 1\right\}$ is a sequence of distribution functions such that

$$
\begin{equation*}
G_{n} \rightarrow G, \quad n \rightarrow \infty, \tag{23}
\end{equation*}
$$

and G is a distribution concentrated at a point $x_{0} \in \partial S$. Then

$$
F_{n} \rightarrow F_{\mu}, \quad n \rightarrow \infty,
$$

where

$$
F_{\mu}(z)=1-\exp (-\mu z) \quad \text { for } z>0
$$

and

$$
\mu= \begin{cases}\lim _{x \rightarrow x_{0}^{-}} x q(x) & \text { if } x_{0}=\sup S \tag{24}\\ \lim _{x \rightarrow x_{0}^{+}} x q(x) & \text { if } x_{0}=\inf S\end{cases}
$$

Proof. Let $g(x)=\log [-\log (1-F(x))]$. Then using Taylor's formula and the differentiability of q we obtain for $z \geqslant 0$

$$
\log \frac{\log (1-F(v /(1+z / n)))}{\log (1-F(v))}=-q(v) \frac{v z}{n+z}+q^{\prime}\left(\frac{v}{1+\theta z / n}\right)\left(\frac{v z}{n+z}\right)^{2}
$$

where $0<\theta<1$. Thus
(25) $\quad 1-F_{n}(z)=\int_{S} \exp \left\{q^{\prime}\left(\frac{v}{1+\theta z / n}\right) \frac{n(v z)^{2}}{(n+z)^{2}}\right\} \exp \left(-q(v) \frac{n v z^{-}}{n+z}\right) d G_{n}(v)$.

Define

$$
\begin{equation*}
H_{n}(z)=\int_{S} \exp \left(-q(v) \frac{n v z}{n+z}\right) d G_{n}(v) . \tag{26}
\end{equation*}
$$

From assumption (21) we obtain

$$
\left|v^{2} q^{\prime}\left(\frac{v}{1+\theta z / n}\right)\right| \leqslant M\left(1+\frac{\theta z}{n}\right)^{2}
$$

which together with (25) implies

$$
\begin{equation*}
H_{n}(z) \exp \left\{-\frac{M z}{2 n}\left(\frac{n+\theta z}{n+z}\right)\right\} \leqslant 1-F_{n}(u) \leqslant \exp \left\{\frac{M z}{2 n}\left(\frac{n+\theta z}{n+z}\right)\right\} H_{n}(z) \tag{27}
\end{equation*}
$$

Note that

$$
H_{n}(z)=E \exp \left(-Z_{n}\right), \quad \text { where } Z_{n}=Y_{n} q\left(Y_{n}\right) \frac{n z}{n+z}
$$

and $\left\{Y_{n}, n \geqslant 1\right\}$ is a sequence of random variables such that Y_{n} has the $\mathrm{df} G_{n}$. The convergence $Y_{n} \xrightarrow{D} x_{0}$, as $n \rightarrow \infty$, and (one-sided) continuity of the function $v \mapsto v q(v)$ at x_{0} together imply that $Z_{n} \xrightarrow{D} \mu z, n \rightarrow \infty$, and we obtain

$$
\begin{equation*}
H_{n}(z) \rightarrow \exp (-\mu z), \quad n \rightarrow \infty . \tag{28}
\end{equation*}
$$

Thus (27) and (28) imply that

$$
F_{n}(z) \rightarrow 1-\exp (-\mu z), \quad n \rightarrow \infty,
$$

where μ is given by (24). It follows that $F_{k}(z) \rightarrow 0$ for $z \leqslant 0$, which completes the proof of the theorem.

Theorem 4. Suppose that F, f and q are as in Theorem 3. Then

$$
\begin{equation*}
R_{n}^{(k)} \xrightarrow{\boldsymbol{D}} R^{(k)}, \quad n \rightarrow \infty, \tag{29}
\end{equation*}
$$

where $R^{(k)}$ has an exponential distribution

$$
F_{\mu}(x)=1-\exp (-\mu x)
$$

and $\mu=\lim _{x \rightarrow x_{0}^{-}} x q(x)$ and $x_{0}=\sup S$.
Proof. Using Proposition 2 we may write the df of $U_{n}^{(k)}$ as

$$
F_{U_{n}^{(k)}}(z)=1-\int_{S}\left(\frac{\log (1-F(v / z))}{\log (1-F(v))}\right)^{n} d G_{n}(v),
$$

where

$$
G_{n}(x)=\frac{k^{n+1}}{n!} \int_{0}^{x}[-\log (1-F(y))]^{n}(1-F(y))^{k-1} f(y) d y^{y m}
$$

is the df of $Y_{n+1}^{(k)}$. Therefore $R_{n}^{(k)}$ has the df

$$
F_{R_{n}^{(k)}}(z)=1-\int_{S}\left(\frac{\log (1-F(v /(1+z / n)))}{\log (1-F(v))}\right)^{n} d G_{n}(v) .
$$

To prove that (23) is satisfied, we use the formula (cf. [5])

$$
\begin{equation*}
F_{Y_{n}^{(k)}}(x)=1-(1-F(x))^{k} \sum_{i=0}^{n-1} \frac{k^{i}}{i!}[-\ln (1-F(x))]^{i} \tag{30}
\end{equation*}
$$

If $x_{0}=\sup S$, then for $x<x_{0}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} G_{n}(x) & =\lim _{n \rightarrow \infty} F_{Y_{n+1}^{(k)}}(x)=1-(1-F(x))^{k} \sum_{i=0}^{\infty} \frac{k^{i}}{i!}[-\ln (1-F(x))]^{i} \\
& =1-(1-F(x))^{k} \exp \{-k \ln (1-F(x))\}=0,
\end{aligned}
$$

and $G_{n}(x)=1$ for $x \geqslant x_{0}$. Theorem 3 implies now that

$$
F_{R_{n}^{(k)}} \rightarrow F_{k}, \quad n \rightarrow \infty,
$$

where

$$
F_{k}(x)=1-\exp (-\mu x), \quad x \geqslant 0
$$

which is equivalent to (29).
6. Limiting distributions of the random variables $Q_{n}^{(k)}, n \rightarrow \infty$.

Theorem 5. Suppose that X_{i} have df F and pdf f, with the interval $S \subset[0, \infty)$ as the support, and that

$$
p(x)=-\frac{f(x)}{F(x) \log F(x)}
$$

is a differentiable function such that

$$
\begin{equation*}
\left|x^{2} p^{\prime}(x)\right| \leqslant M \tag{31}
\end{equation*}
$$

for $x \in S$. Moreover, assume that $\left\{F_{k}, k \geqslant 1\right\}$ is a sequence of distribution functions of the form

$$
F_{n}(z)= \begin{cases}1-\int_{0}^{\infty}\left(\frac{\log F(v(1+z / n))}{\log F(v)}\right) d G_{n}(v), & z \geqslant 0, \tag{32}\\ 0, & z<0\end{cases}
$$

where $\left\{G_{n}, n \geqslant 1\right\}$ is a sequence of distribution functions such that

$$
\begin{equation*}
G_{n} \rightarrow G, \quad n \rightarrow \infty, \tag{33}
\end{equation*}
$$

and G is a distribution concentrated at a point $x_{0} \in \partial S$. Then

$$
\begin{equation*}
F_{n} \rightarrow F_{\mu}, \quad n \rightarrow \infty, \tag{34}
\end{equation*}
$$

where

$$
F_{\mu}(z)=1-\exp (-\mu z) \quad \text { for } z>0
$$

and

$$
\mu= \begin{cases}\lim _{x \rightarrow x_{0}^{-}} x p(x) & \text { if } x_{0}=\sup S, \tag{35}\\ \lim _{x \rightarrow x_{0}^{+}} x p(x) & \text { if } x_{0}=\inf S .\end{cases}
$$

Proof. Put $g(v)=\log (-\log F(v))$. Then

$$
g^{\prime}(x)=\frac{f(x)}{F(x) \log F(x)}=-p(x)
$$

and, by Taylor's formula,

$$
\log \frac{\log F(v(1+z / n))}{\log F(v)}=-p(v) \frac{v z}{n}-\frac{1}{2} v^{2} p^{\prime}(v(1+\theta z / n))(z / n)^{2} .
$$

Therefore, using (32) we obtain

$$
\begin{equation*}
1-F_{n}(z)=\int_{0}^{\infty} \exp \{-v p(v) z\} \exp \left\{-v^{2} p^{\prime}(v(1+\theta z / n)) \frac{z^{2}}{2 n}\right\} d G_{n}(v) \tag{36}
\end{equation*}
$$

and, by (31),

$$
\begin{align*}
\left|v^{2} p^{\prime}(v(1+\theta z / n))\right| & =\left|\frac{1}{(1+\theta z / n)^{2}} v^{2}(1+\theta z / n)^{2} p^{\prime}(v(1+\theta z / n))\right| \tag{37}\\
& \leqslant M\left(\frac{n}{n+\theta z}\right)^{2} .
\end{align*}
$$

Define

$$
H_{n}(z)=\int_{0}^{\infty} \exp \{-v p(v) z\} d G_{n}(v)
$$

Then from (36) and (37) it follows that

$$
\begin{equation*}
\exp \left\{-\frac{M n z^{2}}{2(n+\theta z)^{2}}\right\} H_{n}(z) \leqslant 1-F_{n}(z) \leqslant \exp \left\{\frac{M n z^{2}}{2(n+\theta z)^{2}}\right\} H_{n}(z) \tag{38}
\end{equation*}
$$

Since from (33) and (35) we get

$$
H_{n}(z) \rightarrow \exp (-\mu z), \quad n \rightarrow \infty,
$$

inequality (38) implies (34).
Theorem 6. Suppose that F, f and p are as in Theorem 5. Then

$$
\begin{equation*}
Q_{n}^{(k)} \xrightarrow{\boldsymbol{D}} Q^{(k)}, \quad k \rightarrow \infty \tag{39}
\end{equation*}
$$

where Q_{n} has an exponential distribution

$$
F_{\mu}(x)=1-\exp (-\mu x), \quad x \geqslant 0
$$

and $\mu=\lim _{x \rightarrow x_{0}^{+}} x p(x)$ and $x_{0}=\inf S$.
Proof. Using Proposition 3 we may write the df of $T_{n}^{(k)}$ as

$$
F_{T_{n}^{(k)}}(z)=1-\int_{S}\left(\frac{\log F(v z)}{\log F(v)}\right)^{n} d G_{n}(v)
$$

where

$$
G_{n}(x)=\frac{k^{n+1}}{n!} \int_{0}^{x}(-\log F(y))^{n}(F(y))^{k-1} f(y) d y
$$

is the df of $Z_{n+1}^{(k)}$. Therefore $Q_{n}^{(k)}$ has the df

$$
F_{Q_{n}^{(k)}}(z)=1-\int_{S}\left(\frac{\log F(v(1+z / n))}{\log F(v)}\right) d G_{n}(v)
$$

Analogously to (30) we show that

$$
F_{Z_{n}^{(k)}}(x)=(F(x))^{k} \sum_{i=0}^{n-1} \frac{k^{i}}{i!}(-\ln F(x))^{i}
$$

Thus for $x \geqslant x_{0}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} G_{n}(x) & =\lim _{n \rightarrow \infty} F_{Z_{n+1}^{(k)}}(x)=(F(x))^{k} \sum_{i=0}^{\infty} \frac{k^{i}}{i!}(-\ln F(x))^{i} \\
& =(F(x))^{k} \exp \{-k \ln F(x)\}=1
\end{aligned}
$$

and condition (33) is valid with $x_{0}=\inf S$. Theorem 5 implies that

$$
F_{R_{n}^{(k)}} \rightarrow F_{k}, \quad n \rightarrow \infty,
$$

where

$$
F_{k}(x)=1-\exp (-\mu x), \quad x \geqslant 0
$$

which is equivalent to (39).

REFERENCES

[1] R. Balakrishnan, M. Ahsanullah and P. Chan, Relations for moments of record values from generalized extreme value distribution, Comm. Statist. Theory Methods 22 (1992), pp. 1471-1482.
[2] W. Dziubdziela and B. Kopociński, Limiting properties of the k-th record values, Appl. Math. 15 (1976), pp. 187-190.
[3] L. Gajek, Limiting properties of difference between the successive k-th record values, Probab. Math. Statist. 5 (1985), pp. 221-224.
[4] Z. Grudzień, Charakteryzacja rozkladów w terminach statystyk rekordowych oraz rozklady i momenty statystyk porządkowych i rekordowych z prób o losowej liczębności, PhD Thesis, Maria Curie-Skłodowska University, Lublin 1982.
[5] Z: Grudzień and D. Szynal, On the expected values of k-th record values and associated characterizations of distributions, Probab. Statist. Decision Theory, Vol. A (1985), pp. 119-127.
[6] P. Pawlas, Relations for single and product moments of k-th record values from exponential and Gumbel distributions, J. Appl. Statist. Sci. 7 (1998), pp. 53-62.

Department of Mathematics, Maria Curie-Skłodowska University pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
E-mail address: mbieniek@golem.umcs.lublin.pl szynal@golem.umcs.lublin.pl

