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Abstract. Consider independent and identically distributed ran- 
dom variables (x, X,,, n > i )  with xP {X > x )  - a (log x)", where 
a: > -1  and P { X  < -x) = o ( P { X  > x)). Even though the mean 
does not exist, we establish Laws of Large Numbers of the form 

for all E > 0 and a particular nonsummable sequence (c,, n 3 I), 
where L # 0. 
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Let {X, X,, n 2 1) be independent and identically distributed random 
variables with 

xP{X>x]-a(logx)*, where a >  -1 and P { X <  - x ) = o ( P ( X > x ) ) .  

From Adler [I] we have Weak Laws of the form 

where ak = k" for all a > - 1 and L # 0. (These limits were used to establish 
generalized one-sided Laws of the Iterated Logarithm.) Then in Adler [2] we 
established Strong Laws of the form 

akxk 
lim = L almost surely, 
n b, 

where nu, was slowly varying at infinity and again L # 0. 
The next question is whether we can extend almost sure convergence to 

complete convergence, i.e., en = 1 in (1). For our random variables the answer is 
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a resounding 'no', but there is a similar result. We will show that 

for all E > 0, where cn = (nIogn)-I for the same nonzero L as in our Strong 
Laws. 

Before we establish our result we need a few comments about notation. 
We define lg x = log (max {e, x)) and Ig, x = lg (lg x). Also, the constant C 
will denote . - .  a generic real number that is not necessarily the same in each 
appearaqce. 

From Adler [2] we have 

[(k k)b-a-2/kl X k  U. 
Iim =- almost surely, 
n+ca (lg nIb (o:+ 1)b 

where both a and b are positive. So we set an = (lg n)b-a-2/n, b, = (Ign)b and 
L = a/(@+ 1)b). As in our Strong Laws we partition our sum into the three 
terms : 

The last term converges to L by basic mathematics. Next we show that the first 
term converges to zero. 

P r o  of. From Markov's inequality we get 
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Hence 

whence 

since c, = (n1gn)-I. 

The real problem is the second term in (2). Even though the Borel-Cantelli 
lemma holds, this is not sufEcient. We will use a result due to Hu et al. [3]. This 
result is quite optimal. Their theorem is: 

THEOREM. Let ( (xk,  1 < k < kn), n 2 1 )  be an array of rowwise independent 
random variables and {c,, n 2 1 )  a sequence of positive constants such that xnm= en = m. Suppose that for all E > 0 and some S > 0: 

(i) EL, C. Cia, P { ~ x k ~  > & I  < 
(ii) there exists J 2 2 such that zm= en (z:= E I ( I  YAI 9 < m , 
(iii) E : ~ ~ E ~ I ( ~ U , I  C 6 ) + O  as n + m .  

Then xY=, c , P ( 1 ~ 1 ,  Y,I > E J  < ao for all E > 0. 

CLAIM. (i) holds with 
- c, = (n Ig n)- ' and Y , ~  = ak xk I ( 1 ~ ~ 1  > k (lg k)B+ ')/b,. 

Pro of. Let 0 < E < 1 and set y, to the greatest integer part of n""". We 
have 

"7 

= P{IXI > max {k  (lg k)"+2, ~k (lg k)bf2-b (lg n)b}).  

Thus 
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The second - term is- simpler to prove; it equals 

Let M be any integer larger than a; then the first term is 

Yn U ~ E +  lg k +  (a +2) Ig2 kIa-jug, n)' 
n = l  k = l j = D  k (Ig k)"+ 2-b  (lg n)b 

where 

lg~+lgk+(ol+2)lg~k < y < I g ~ + l g k + ( a + 2 ) I g ~ k f b ( l g , n - l g ~ k ) .  

Since y > Clg k, we have 
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since 

Finally, we have 

" '* M ~ g ~ + 1 g k + ( a + 2 ) I g 2 k ] u - j ( l g 2 ~ ) 1  
C c n C  C 

n = l  k = 1 j = 0  k (lg k)" + - (lg n)b 

since 

which concludes the proof of part (i). w 

CLAIM. (ii) holds with J = 2 and 6 = 1. 

Pro of. Again we select M as any integer larger than a. Thus 

= (Og k ) 2 ( b - a - 2 ) ~ ~ 2  I ( X  > k(1g kp+2)  

k =  1 k2 (lg a)2b 

(lg k)2(b-'-2) k (lg k).t.2-b (lg [Ig (k (lg k)"+2-b (lg n)b)]" < c C  
k =  1 k2 (lg n)2b 
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" ( l g k ) b - a - 2 ~ g k + ( a + 2 ) l g , k + b ( l g 2 n - l g 2 k ) ] a  = c c  
k = l  k (lg nIb 

b - 4 - 2  M 

i C i U g k )  [~[ lgk+@+2)lg,k~-j[Ig2n]j+ya-M-1 
k = l  k(Ignlb j=,, 

C k z  nlM + I] 

b - a - 2  M 

= C c  (Igk)  Z [ l g k + ( a + 2 ) l g 2 k ] a - j [ l g 2 n ] J  
k = l  k('gnlb j = ,  

- - 
n &k)b-a12 n - M - 1  

+ C %  Y Pgz nl"+ 
k (lg @ I b  1 

k= 1 

where l g k + ( ~ x + 2 ) l g , k  < y < l g k + ( a + 2 ) l g 2 k + b ( l g 2 n - l g 2 k ) .  
For the first term 

b - a - 2  M Og k, Pg k  + (a + 2) lg, k]* - j  [ lg,  FZ]' 
k = l  k(lgnIb j=o 

s ( lgk )b -a -2  C (lg,  n)M " (Ig kIb- 
k =  l k (lg nIb 

Dg kl" rlg2 nlM = c k (lg nIb k =  1 

Therefore the first term is less than 

Working on the second term we have 

( Igk )b -M-3  = C C  (Igz @IM + 

C ( l g 2  n ) M + l -  " < (lg k)b - 
k =  1 k (Ig nIb (Wb , = I  E , -  

So this term is bounded by 

Thus for all b > 0 
m n 

Z c n ( Z  EK~::1(1~,161))'<m, where e . = ( n l g n ) - I .  
n = l  k = l  
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CLAIM. (iii) holds, where once again S = 1. 

Proof. Let M be any integer larger than a. Thus 

where Igk+(a+2)lg2k < y < lgk+(a+2)lg,k+b(lg2n-lg,k). 
The first term goes to zero since 

b - a - 2  M Og k, [lg k + (a + 2) lg, k]"' ' -j(lg2 n)' 
k = l  k(lgnIb j =1  

for all b > 0. 
Finally, we have 
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for all b > 0, which concludes the proof of part (iii), and hence our claim that 

for all s > 0. a 
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