# COMPLETE EXACT LAWS 

By

andré adler (Chicago, lllinois)


#### Abstract

Consider independent and identically distributed random variables $\left\{X, X_{n}, n \geqslant 1\right\}$ with $x P\{X>x\} \sim a(\log x)^{\alpha}$, where $\alpha>-1$ and $P\{X<-x\}=o(P\{X>x\})$. Even though the mean does not exist, we establish Laws of Large Numbers of the form


$$
\sum_{n=1}^{\infty} c_{n} P\left\{\left|\frac{\sum_{k=1}^{n} a_{k} X_{k}}{b_{n}}-L\right|>\varepsilon\right\}<\infty
$$

for all $\varepsilon>0$ and a particular nonsummable sequence $\left\{c_{n}, n \geqslant 1\right\}$, where $L \neq 0$.

Key words and phrases: Strong law of large numbers; weak law of large numbers; complete convergence.

Let $\left\{X, X_{n}, n \geqslant 1\right\}$ be independent and identically distributed random variables with
$x P\{X>x\} \sim a(\log x)^{\alpha}, \quad$ where $\alpha>-1$ and $P\{X<-x\}=o(P\{X>x\})$.
From Adler [1] we have Weak Laws of the form

$$
\frac{\sum_{k=1}^{n} a_{k} X_{k}}{b_{n}} \xrightarrow{P} L
$$

where $a_{k}=k^{a}$ for all $a>-1$ and $L \neq 0$. (These limits were used to establish generalized one-sided Laws of the Iterated Logarithm.) Then in Adler [2] we established Strong Laws of the form

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} a_{k} X_{k}}{b_{n}}=L \text { almost surely }
$$

where $n a_{n}$ was slowly varying at infinity and again $L \neq 0$.
The next question is whether we can extend almost sure convergence to complete convergence, i.e., $c_{n}=1 \mathrm{in}$ (1). For our random variables the answer is
a resounding 'no', but there is a similar result. We will show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} P\left\{\left|\frac{\sum_{k=1}^{n} a_{k} X_{k}}{b_{n}}-L\right|>\varepsilon\right\}<\infty \tag{1}
\end{equation*}
$$

for all $\varepsilon>0$, where $c_{n}=(n \log n)^{-1}$ for the same nonzero $L$ as in our Strong Laws.

Before we establish our result we need a few comments about notation. We define $\lg x=\log (\max \{e, x\})$ and $\lg _{2} x=\lg (\lg x)$. Also, the constant $C$ will denote a generic real number that is not necessarily the same in each appearañce.

From Adler [2] we have

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left[(\lg k)^{b-\alpha-2} / k\right] X_{k}}{(\lg n)^{b}}=\frac{a}{(\alpha+1) b} \text { almost surely }
$$

where both $a$ and $b$ are positive. So we set $a_{n}=(\lg n)^{b-\alpha-2} / n, b_{n}=(\lg n)^{b}$ and $L=a /((\alpha+1) b)$. As in our Strong Laws we partition our sum into the three terms:
(2)

$$
\begin{aligned}
& b_{n}^{-1} \sum_{k=1}^{n} a_{k} X_{k} \\
& = \\
& =b_{n}^{-1} \sum_{k=1}^{n} a_{k}\left[X_{k} I\left(\left|X_{k}\right| \leqslant k(\lg k)^{\alpha+2}\right)-E X I\left(|X| \leqslant k(\lg k)^{\alpha+2}\right)\right] \\
& \\
& \quad+b_{n}^{-1} \sum_{k=1}^{n} a_{k} X_{k} I\left(\left|X_{k}\right|>k(\lg k)^{\alpha+2}\right) \\
& \\
& \quad+b_{n}^{-1} \sum_{k=1}^{n} a_{k} E X I\left(|X| \leqslant k(\lg k)^{\alpha+2}\right) .
\end{aligned}
$$

The last term converges to $L$ by basic mathematics. Next we show that the first term converges to zero.

Claim. $\sum_{n=1}^{\infty} c_{n} P\left\{\left|\sum_{k=1}^{n} Y_{k}\right|>\varepsilon b_{n}\right\}<\infty$, where

$$
Y_{k}=a_{k}\left[X_{k} I\left(\left|X_{k}\right| \leqslant k(\lg k)^{\alpha+2}\right)-E X I\left(|X| \leqslant k(\lg k)^{\alpha+2}\right)\right] .
$$

Proof. From Markov's inequality we get

$$
\begin{aligned}
P\left\{\left|\sum_{k=1}^{n} Y_{k}\right|>\varepsilon b_{n}\right\} & \leqslant \frac{C}{b_{n}^{2}} \sum_{k=1}^{n} E Y_{k}^{2} \\
& \leqslant \frac{C}{(\lg n)^{2 b}} \sum_{k=1}^{n} \frac{(\lg k)^{2(b-\alpha-2)}}{k^{2}} E X^{2} I\left(X \leqslant k(\lg k)^{\alpha+2}\right) \\
& \leqslant \frac{C}{(\lg n)^{2 b}} \sum_{k=1}^{n} \frac{(\lg k)^{2(b-\alpha-2)}}{k^{2}} \int_{1}^{k(\lg k)^{\alpha+2}}(\lg x)^{\alpha} d x
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{C}{(\lg n)^{2 b}} \sum_{k=1}^{n} \frac{(\lg k)^{2(b-\alpha-2)}}{k^{2}} k(\lg k)^{\alpha+2}\left[\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha} \\
& \leqslant \frac{C}{(\lg n)^{2 b}} \sum_{k=1}^{n} \frac{(\lg k)^{2 b-\alpha-2}}{k}[\lg k]^{\alpha}=\frac{C}{(\lg n)^{2 b}} \sum_{k=1}^{n} \frac{(\lg k)^{2 b-2}}{k}
\end{aligned}
$$

Hence

$$
P\left\{\left|\sum_{k=1}^{n} Y_{k}\right|>\varepsilon b_{n}\right\} \leqslant \begin{cases}C /(\lg n)^{2 b} & \text { if } 0<b<1 / 2, \\ C \lg 2 n / \lg n & \text { if } b=1 / 2, \\ C / \lg n & \text { if } b>1 / 2,\end{cases}
$$

whence

$$
\sum_{n=1}^{\infty} c_{n} P\left\{\left|\sum_{k=1}^{n} Y_{k}\right|>\varepsilon b_{n}\right\}<\infty
$$

since $c_{n}=(n \lg n)^{-1}$.
The real problem is the second term in (2). Even though the Borel-Cantelli lemma holds, this is not sufficient. We will use a result due to Hu et al. [3]. This result is quite optimal. Their theorem is:

Theorem. Let $\left\{\left(Y_{n k}, 1 \leqslant k \leqslant k_{n}\right), n \geqslant 1\right\}$ be an array of rowwise independent random variables and $\left\{c_{n}, n \geqslant 1\right\}$ a sequence of positive constants such that $\sum_{n=1}^{\infty} c_{n}=\infty$. Suppose that for all $\varepsilon>0$ and some $\delta>0$ :
(i) $\sum_{n=1}^{\infty} c_{n} \sum_{k=1}^{k_{n}} P\left\{\left|Y_{n k}\right|>\varepsilon\right\}<\infty$,
(ii) there exists $J \geqslant 2$ such that $\sum_{n=1}^{\infty} c_{n}\left(\sum_{k=1}^{k_{n}} E Y_{n k}^{2} I\left(\left|Y_{n k}\right| \leqslant \delta\right)\right)^{J}<\infty$,
(iii) $\sum_{k=1}^{k_{n}} E Y_{n k} I\left(\left|Y_{n k}\right| \leqslant \delta\right) \rightarrow 0$ as $n \rightarrow \infty$.

Then $\sum_{n=1}^{\infty} c_{n} P\left\{\left|\sum_{k=1}^{k_{n}} Y_{n k}\right|>\varepsilon\right\}<\infty$ for all $\varepsilon>0$.
Claim. (i) holds with

$$
c_{n}=(n \lg n)^{-1} \quad \text { and } \quad Y_{n k}=a_{k} X_{k} I\left(\left|X_{k}\right|>k(\lg k)^{\alpha+2}\right) / b_{n} .
$$

Proof. Let $0<\varepsilon<1$ and set $\gamma_{n}$ to the greatest integer part of $n^{\varepsilon^{1 / b}}$. We have

$$
\begin{aligned}
P\left\{\left|Y_{n k}\right|>\varepsilon b_{n}\right\} & =P\left\{|X| I\left(|X|>k(\lg k)^{\alpha+2}\right)>\varepsilon k(\lg k)^{\alpha+2-b}(\lg n)^{b}\right\} \\
& =P\left\{|X|>\max \left\{k(\lg k)^{\alpha+2}, \varepsilon k(\lg k)^{\alpha+2-b}(\lg n)^{b}\right\}\right\}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{n=1}^{\infty} c_{n} \sum_{k=1}^{n} P\left\{\left|Y_{n k}\right|>\varepsilon b_{n}\right\} & =\sum_{n=1}^{\infty} c_{n}\left[\sum_{k=1}^{\gamma_{n}} P\left\{\left|Y_{n k}\right|>\varepsilon b_{n}\right\}+\sum_{k=\gamma_{n}+1}^{n} P\left\{\left|Y_{n k}\right|>\varepsilon b_{n}\right\}\right] \\
& <C \sum_{n=1}^{\infty} c_{n} \sum_{k=1}^{\gamma_{n}} \frac{\left[\lg \left(\varepsilon k(\lg k)^{\alpha+2-b}(\lg n)^{b}\right)\right]^{\alpha}}{\varepsilon k(\lg k)^{\alpha+2-b}(\lg n)^{b}}
\end{aligned}
$$

$$
\begin{aligned}
& +C \sum_{n=1}^{\infty} c_{n} \sum_{k=\gamma_{n}+1}^{n} \frac{\left[\lg \left(k(\lg k)^{\alpha+2}\right)\right]^{\alpha}}{k(\lg k)^{\alpha+2}} \\
= & C \sum_{n=1}^{\infty} c_{n} \sum_{k=1}^{\gamma_{n}} \frac{\left[\lg \varepsilon+\lg k+(\alpha+2-b) \lg _{2} k+b \lg _{2} n\right]^{\alpha}}{\varepsilon k(\lg k)^{\alpha+2-b}(\lg n)^{b}} \\
& +C \sum_{n=1}^{\infty} c_{n} \sum_{k=\gamma_{n}+1}^{n} \frac{\left[\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha}}{k(\lg k)^{\alpha+2}} .
\end{aligned}
$$

The second term is-simpler to prove; it equals

$$
\begin{gathered}
C \sum_{n=1}^{\infty} c_{n} \sum_{k=\gamma_{n}+1}^{n} \frac{\left[\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha}}{k(\lg k)^{\alpha+2}}<C \sum_{n=1}^{\infty} c_{n} \sum_{k=\gamma_{n}+1}^{n} \frac{(\lg k)^{\alpha}}{k(\lg k)^{\alpha+2}} \\
=C \sum_{n=1}^{\infty} c_{n} \sum_{k=\gamma_{n}+1}^{n} \frac{1}{k(\lg k)^{2}}<C \sum_{n=1}^{\infty} c_{n} \int_{\gamma_{n}}^{\infty} \frac{d x}{x(\lg x)^{2}} \\
<C \sum_{n=1}^{\infty} \frac{c_{n}}{\lg n}=C \sum_{n=1}^{\infty} \frac{1}{n(\lg n)^{2}}<\infty .
\end{gathered}
$$

Let $M$ be any integer larger than $\alpha$; then the first term is

$$
\begin{aligned}
& C \sum_{n=1}^{\infty} c_{n} \sum_{k=1}^{\gamma_{n}} \frac{\left[\lg \varepsilon+\lg k+(\alpha+2) \lg _{2} k+b\left(\lg _{2} n-\lg _{2} k\right)\right]^{\alpha}}{\varepsilon k(\lg k)^{\alpha+2-b}(\lg n)^{b}} \\
&< C \sum_{n=1}^{\infty} c_{n} \sum_{k=1}^{\gamma_{n}}\left\{\frac{\sum_{j=0}^{M}\left[\lg \varepsilon+\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha-j}\left[\lg _{2} n-\lg _{2} k\right]^{j}}{k(\lg k)^{\alpha+2-b}(\lg n)^{b}}\right. \\
&\left.+\frac{y^{\alpha-M-1}\left[\lg _{2} n-\lg _{2} k\right]^{M+1}}{k(\lg k)^{\alpha+2-b}(\lg n)^{b}}\right\} \\
&< C \sum_{n=1}^{\infty} c_{n} \sum_{k=1}^{\gamma_{n}} \sum_{j=0}^{M} \frac{\left[\lg \varepsilon+\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha-j}\left(\lg _{2} n\right)^{j}}{k(\lg k)^{\alpha+2-b}(\lg n)^{b}} \\
& \quad+C \sum_{n=1}^{\infty} c_{n} \sum_{k=1}^{\gamma_{n}} \frac{y^{\alpha-M-1}\left(\lg _{2} n\right)^{M+1}}{k(\lg k)^{\alpha+2-b}(\lg n)^{b}},
\end{aligned}
$$

where
$\lg \varepsilon+\lg k+(\alpha+2) \lg _{2} k<y<\lg \varepsilon+\lg k+(\alpha+2) \lg _{2} k+b\left(\lg _{2} n-\lg _{2} k\right)$.
Since $y>C \lg k$, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} c_{n} \sum_{k=1}^{\gamma_{n}} \frac{y^{\alpha-M-1}\left(\lg _{2} n\right)^{M+1}}{k(\lg k)^{\alpha+2-b}(\lg n)^{b}}<C \sum_{n=1}^{\infty} \frac{c_{n}\left(\lg _{2} n\right)^{M+1}}{(\lg n)^{b}} \sum_{k=1}^{\gamma_{n}} \frac{(\lg k)^{\alpha-M-1}}{k(\lg k)^{\alpha+2-b}} \\
\leqslant & C \sum_{n=1}^{\infty} \frac{c_{n}\left(\lg _{2} n\right)^{M+1}}{(\lg n)^{b}} \sum_{k=1}^{n} \frac{(\lg k)^{b-M-3}}{k}<C \sum_{n=1}^{\infty} \frac{c_{n}\left(\lg _{2} n\right)^{M+1}}{(\lg n)^{b}} \sum_{k=1}^{n} \frac{(\lg k)^{b-3}}{k}<\infty
\end{aligned}
$$

since

$$
\sum_{k=1}^{n} \frac{(\lg k)^{b-3}}{k} \leqslant \begin{cases}C & \text { if } 0<b<2 \\ C \lg _{2} n & \text { if } b=2 \\ C(\lg n)^{b-2} & \text { if } b>2\end{cases}
$$

Finally, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} c_{n} \sum_{k=1}^{\gamma_{n}} \sum_{j=0}^{M} \frac{\left[\lg \varepsilon+\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha-j}\left(\lg _{2} n\right)^{j}}{k(\lg k)^{\alpha+2-b}(\lg n)^{b}} \\
& <C \sum_{n=1}^{\infty} c_{n} \sum_{k=1}^{\gamma_{n}^{n}} \sum_{j=0}^{M} \frac{(\lg k)^{\alpha-j}\left(\lg _{2} n\right)^{j}}{k(\lg k)^{\alpha+2-b}(\lg n)^{b}}<C \sum_{n=1}^{\infty} \frac{c_{n}\left(\lg _{2} n\right)^{M}}{(\lg n)^{b}} \sum_{k=1}^{n} \frac{(\lg k)^{b-2}}{k}<\infty
\end{aligned}
$$

since

$$
\sum_{k=1}^{n} \frac{(\lg k)^{b-2}}{k} \leqslant \begin{cases}C & \text { if } 0<b<1 \\ C \lg _{2} n & \text { if } b=1 \\ C(\lg n)^{b-1} & \text { if } b>1\end{cases}
$$

which concludes the proof of part (i). 日
Claim. (ii) holds with $J=2$ and $\delta=1$.
Proof. Again we select $M$ as any integer larger than $\alpha$. Thus

$$
\begin{aligned}
& \sum_{k=1}^{n} E Y_{n k}^{2} I\left(\left|Y_{n k}\right| \leqslant 1\right) \\
= & \sum_{k=1}^{n}\left\{\frac{(\lg k)^{2(b-\alpha-2)} E X^{2} I\left(X>k(\lg k)^{\alpha+2}\right)}{k^{2}(\lg n)^{2 b}}\right. \\
& \left.\times I\left((\lg k)^{b-\alpha-2} X I\left(X>k(\lg k)^{\alpha+2}\right) \leqslant k(\lg n)^{b}\right)\right\} \\
= & \sum_{k=1}^{n} \frac{(\lg k)^{2(b-\alpha-2)}}{k^{2}(\lg n)^{2 b}} E X^{2} I\left(X>k(\lg k)^{\alpha+2}\right) I\left(X \leqslant k(\lg k)^{\alpha+2-b}(\lg n)^{b}\right) \\
= & \sum_{k=1}^{n} \frac{(\lg k)^{2(b-\alpha-2)}}{k^{2}(\lg n)^{2 b}} \int_{\left.k(\lg k)^{\alpha+2-b}(\lg n)^{\alpha}\right)^{\alpha}}^{\int_{2-2}} x^{2} d F(x) \\
\leqslant & C \sum_{k=1}^{n} \frac{(\lg k)^{2(b-\alpha-2)}}{k^{2}(\lg n)^{2 b}} \int_{1}^{k(\lg k)^{\alpha+2-b}(\lg n)^{b}}(\lg x)^{\alpha} d x \\
\leqslant & C \sum_{k=1}^{n} \frac{(\lg k)^{2(b-\alpha-2)} k(\lg k)^{\alpha+2-b}(\lg n)^{b}\left[\lg \left(k(\lg k)^{\alpha+2-b}(\lg n)^{b}\right)\right]^{\alpha}}{k^{2}(\lg n)^{2 b}} \\
= & C \sum_{k=1}^{n} \frac{\left.(\lg k)^{b-\alpha-2}\left[\lg k+(\alpha+2-b) \lg 2^{2} k+b \lg \right]_{2} n\right]^{\alpha}}{k(\lg n)^{b}}
\end{aligned}
$$

$$
\begin{aligned}
= & C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}\left[\lg k+(\alpha+2) \lg _{2} k+b\left(\lg _{2} n-\lg _{2} k\right)\right]^{\alpha}}{k(\lg n)^{b}} \\
\leqslant & C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}}\left[\sum_{j=0}^{M}\left[\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha-j}\left[\lg _{2} n\right]^{j}+y^{\alpha-M-1}\left[\lg _{2} n\right]^{M+1}\right] \\
= & C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}} \sum_{j=0}^{M}\left[\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha-j}\left[\lg _{2} n\right]^{j} \\
& +C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2} y^{\alpha-M-1}\left[\lg _{2} n\right]^{M+1}}{k(\lg n)^{b}}
\end{aligned}
$$

where $\lg k+(\alpha+2) \lg _{2} k<y<\lg k+(\alpha+2) \lg _{2} k+b\left(\lg _{2} n-\lg _{2} k\right)$.
For the first term

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}} \sum_{j=0}^{M}\left[\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha-j}\left[\lg _{2} n\right]^{j} \\
& \quad \leqslant C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}}[\lg k]^{\alpha}\left[\lg _{2} n\right]^{M}=\frac{C\left(\lg _{2} n\right)^{M}}{(\lg n)^{b}} \sum_{k=1}^{n} \frac{(\lg k)^{b-2}}{k}
\end{aligned}
$$

Therefore the first term is less than

$$
\begin{cases}C\left(\lg _{2} n\right)^{M} /(\lg n)^{b} & \text { if } 0<b<1 \\ C\left(\lg _{2} n\right)^{M+1} / \lg n & \text { if } b=1 \\ C\left(\lg _{2} n\right)^{M} / \lg n & \text { if } b>1\end{cases}
$$

Working on the second term we have

$$
\begin{gathered}
\sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2} y^{\alpha-M-1}\left[\lg _{2} n\right]^{M+1}}{k(\lg n)^{b}} \leqslant C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}(\lg k)^{\alpha-M-1}\left[\lg _{2} n\right]^{M+1}}{k(\lg n)^{b}} \\
=C \sum_{k=1}^{n} \frac{(\lg k)^{b-M-3}\left(\lg _{2} n\right)^{M+1}}{k(\lg n)^{b}} \leqslant \frac{C\left(\lg _{2} n\right)^{M+1}-n}{(\lg n)^{b}} \sum_{k=1}^{n} \frac{(\lg k)^{b-3}}{k}
\end{gathered}
$$

So this term is bounded by

$$
\begin{cases}C\left(\lg _{2} n\right)^{M+1} /(\lg n)^{b} & \text { if } 0<b<2 \\ C\left(\lg _{2} n\right)^{M+2} /(\lg n)^{2} & \text { if } b=2 \\ C\left(\lg _{2} n\right)^{M+1} /(\lg n)^{2} & \text { if } b>2\end{cases}
$$

Thus for all $b>0$

$$
\sum_{n=1}^{\infty} c_{n}\left(\sum_{k=1}^{n} E Y_{n k}^{2} I\left(\left|Y_{n k}\right| \leqslant 1\right)\right)^{2}<\infty, \quad \text { where } c_{n}=(n \lg n)^{-1}
$$

Claim. (iii) holds, where once again $\delta=1$.
Proof. Let $M$ be any integer larger than $\alpha$. Thus

$$
\begin{aligned}
& \sum_{k=1}^{n} E Y_{n k} I\left(\left|Y_{n k}\right| \leqslant 1\right) \\
= & \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2} E X I\left(X>k(\lg k)^{\alpha+2}\right) I\left((\lg k)^{b-\alpha-2} X I\left(X>k(\lg k)^{\alpha+2}\right) \leqslant k(\lg n)^{b}\right)}{k(\lg n)^{b}} \\
= & \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}} E X I\left(X>k(\lg k)^{\alpha+2}\right) I\left(X \leqslant k(\lg k)^{\alpha+2-b}(\lg n)^{b}\right) \\
\leqslant & C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}} \int_{k(\lg k)^{\alpha+2-b}(\operatorname{lgn})^{b}} \frac{(\lg x)^{\alpha} d x}{x} \\
= & \left.C \sum_{k=1}^{n} \frac{(\lg k)^{\alpha+2}}{x} k\right)^{b-\alpha-2} \\
k(\lg n)^{b} & {\left.\left[\lg k+b \lg _{2} n+(\alpha+2-b) \lg _{2} k\right]^{\alpha+1}-\left[\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha+1}\right] } \\
= & C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}}\left[\left[\lg k+(\alpha+2) \lg _{2} k+b\left(\lg _{2} n-\lg _{2} k\right)\right]^{\alpha+1}-\left[\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha+1}\right] \\
\leqslant & C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}}\left[\sum_{j=1}^{M}\left[\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha+1-j}\left(\lg _{2} n\right)^{j}+y^{\alpha-M}\left(\lg _{2} n\right)^{M+1}\right],
\end{aligned}
$$

where $\lg k+(\alpha+2) \lg _{2} k<y<\lg k+(\alpha+2) \lg _{2} k+b\left(\lg _{2} n-\lg _{2} k\right)$.
The first term goes to zero since

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}} & \sum_{j=1}^{M}\left[\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha+1-j}\left(\lg _{2} n\right)^{j} \\
& \leqslant C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}}\left[\lg k+(\alpha+2) \lg _{2} k\right]^{\alpha}\left(\lg _{2} n\right)^{M} \\
& \leqslant C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}}[\lg k]^{\alpha}\left(\lg _{2} n\right)^{M}=C \sum_{k=1}^{n} \frac{(\lg k)^{b-2}\left(\lg _{2} n\right)^{M}}{k(\lg n)^{b}} \\
& =\frac{C\left(\lg _{2} n\right)^{M}}{(\lg n)^{b}} \sum_{k=1}^{n} \frac{(\lg k)^{b-2}}{k} \rightarrow 0
\end{aligned}
$$

for all $b>0$.
Finally, we have

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}} y^{\alpha-M}\left(\lg _{2} n\right)^{M+1} & \leqslant C \sum_{k=1}^{n} \frac{(\lg k)^{b-\alpha-2}}{k(\lg n)^{b}}[\lg k]^{\alpha-M}\left(\lg _{2} n\right)^{M+1} \\
& =\frac{C\left(\lg _{2} n\right)^{M+1}}{(\lg n)^{b}} \sum_{k=1}^{n} \frac{(\lg k)^{b-M-2}}{k} \rightarrow 0
\end{aligned}
$$

for all $b>0$, which concludes the proof of part (iii), and hence our claim that

$$
\sum_{n=1}^{\infty}(n \lg n)^{-1} P\left\{\left|\frac{\sum_{k=1}^{n}\left[(\lg k)^{b-\alpha-2} / k\right] X_{k}}{(\lg n)^{b}}-\frac{a}{(\alpha+1) b}\right|>\varepsilon\right\}<\infty
$$

for all $\varepsilon>0$.

## REFERENCES

[1] A. Adler, Generalized one-sided laws of the iterated logarithm for random variables barely with or without finite mean, J. Theoret. Probab. 3 (1990), pp. 587-597.
[2] A. Adler, Exact strong laws, Bull. Inst. Math. Acad. Sinica 28 (2000).
[3] T. C. Hu, D. Szynal and A. I. Volodin, A note on complete convergence for arrays, Statist. Probab. Lett. 38 (1998), pp. 27-31.

Department of Mathematics
Illinois Institute of Technology
Chicago, Illinois, 60616, U.S.A.
$\square$

