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Abstract. We study the heat diffusion in a domain with an ob- 
stacle inside. More precisely, we are interested in the quantity of heat 
in so far as a function of the position of the heat source at time 0. This 
quantity is also equal to the expectation of the sojourn time of the 
Brownian motion, reflected on the boundary of a small disk contained 
in the unit disk, and killcd on the unit circle. We g v e  the explicit 
expression of this expectation. This allows us to make some numerical 
estimates and thus to illustrate the behaviour of this expectation as 
a function of starting point of the Brownian motion. 
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INTRODUCTION 

Assume that a heat source is placed in a bounded domain D with a heat 
absorbing boundary 8D. Also a small obstacle 0 with heat reflecting boundary 8 0  
is placed inside the domain. A natural question arises: given a position of the 
obstacle, what will the point z E D\O be where we must place the heat source, so 
that the quantity of heat - 

m . m. 

Q ( z ) : =  1 dw j dtu(t, z, w) 
D\O 0 

will be a maximum? It is a classical opthisation problem for linear partial 
differential equations (see also [I21 and references therein). Here u (., z ,  .) is the 
unique solution of the heat equation with mixed boundary conditions 

(au /a t ) ( . , z , . )=(1 /2)Au( . , z , . )  in RTx(D\O), 
~ ( 0 1  z, .) = 
(aujan) (., Z ,  w) = 0 for W E ~ O ,  
u( . ,  z ,  w)  = 0 for w E 8D. 
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The purpose of this paper is to give, using some probabilistic remarks, an 
answer to this question for the simple case where D is the unit disk in the 
complex plan and 0 is a small disk inside D. 

To modelise heat as a probabilistic object, we need to consider the Brow- 
nian motion starting from .ZED. The reflecting and the absorbing features are 
ensured by imposing that the stochastic process is reflected on 80 and killed on 
8D. Then the quantity of heat is related to the sojourn time of this stochastic 
process in the domain D\O. By a simple stochastic calculation we can see that 

where z is the first hitting time of dD by the stochastic process. Hence, finding 
the quantity of heat is equivalent to finding the preceding expectation (see also 
[dl, Chapter 11). 

Let us note that we may follow the potential theory point of view: the 
quantity of heat is the integral on D\O of the fundamental solution (Green 
-Neumann function or O-potential) associated with the stochastic process. If 
D\O is an annulus centered in the origin, the Green function for the Dirichlet 
problem was explicitly calculated by many authors: [13], p. 140; [3], p. 386; 
[ll], p. 6.41 (see also [2], Section 11.7 and notes therein). In [6] a general 
Neumann problem is aIso described (see Sections 15.2 and 15.7). At our knowl- 
edge, there is no reference for a mixed boundary problem on the annulus. 

It must be noticed that, since the expression of Q(z) which we obtain is 
complicated, in general, computing its maximum is not easy. We illustrate the 
behaviour of this function using some numerical computations. 

1. SETTING AND MAIN RESULT 

1.1. S e a g .  Let us consider a complex Brownian motion B starting from 
a point z with lzl < 1. It is well known that the expectation of the exit time from 
the unit disk of 3 is (1/2)(1- Iz~'), and it is a maximum when the starting point 
is z = 0. 

Assume that a reflecting obstacle is placed in the unit disk. What will the 
expectation of the exit time be from the unit disk of the Brownian motion 
which is reflected when it hits the obstacle? Let us denote by (xp: t 2 0) the 
process which is a reflected Brownian motion on an inner small circle yo, of 
radius R,, killed at the first hitting time of the unit circle y,. 

It  is a simple calculation (see also [I l l ,  Chapter 6)  to show that if the 
circles yo and y1 are concentric, then the expectation of exit time from the unit 
disk of x: is (112) (1 -]zI2 + Rg log lzJ2). This expectation is a maximum when the 
starting point lies on the circle yo.  

We shall also consider the process (x:: t 2 0) which is the Brownian mo- 
tion reflected on the unit circle y l  and killed at the first hitting time of yo (see 
also Figure 1). 
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Figure 1. Reflected Brownian motion on yo or  on y, 

We may assume, without loss of generality, that yo is centered on the real 
axis. Take co E 1 - 1, 1 [, Ro €10, 1 - lcol[ and denote the domain between the 
circles yo  and y ,  by 

For j = 0 or 1, we shall denote by .tj the first hitting time of y l  - by the pro- 
cess .vj: 

It  is known that, for any Z E  8, for j = 0, 1, zj is finite &-as. 

8.2. Main result. We are interested in computing the expectation of the 
hitting time, E,(zJ, j = 0, 1, as a function of the starting point z. These func- 
tions are given in the following main result: 

THEOREM 1.1. The expectations of the hitting times are given by 

(1.2) E, (z,) = (1/2) (lz sinh p -cosh pl"lz coshp-sinh p12) 

lz cosh p - sinh pl lz q sinh 2p - rl 
-log 

lz sinh p - cosh pl lz r - q sinh 2pl -. 

and 

(1.3) E, (z,) = (112) (lz sinh p -cash pl" lz coshp- sinh pI2) 

R lz cosh p - sinh pl 
- log 

lz sinh p - cosh pl lz r - q sinh 2pI2 
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R lz cosh p - sinh pl lz q sinh 2p - rl 
+ l o g  

r2 IZ sinh p - cosh pl lz s - 24 (1 - q) sinh 2pl 

q lz (1 + cosh 2p)- sinh 2pI2 - R4 I Z  (1 -cash 2p) + sinh 2pI2 
-- 

r 122 r - 2q sinh 2p12 

where we have put 
. . 

The sequences (sj;n(z, p, R)),3, are explicit (see (3.6)) and conuerge to  zero as 
R4", uniformly for z E a. 

The quantities sfb are sums of logarithms and fractions of the same type as 
the other terms in (1.2) and (1.3). 

Let us note that for co = 0  we find the formulas of the concentric circles 
case. The expectation of the exit time of the Brownian motion from the unit 
disk (without obstacle) can be obtained by taking c0 = R ,  = 0. 

1.3. Main ideas and plan. The reflected process that we study can be writ- 
ten, for j = 0 ,  1, as 

with 

where nj is the outward normal at y j  to 8, and, for j = 0, 1 ,  (k!: t 2 0) are 
adapted continuous and locally bounded variation processes_ (see also [lo], 
p. 512). '.- 

The expectation of the hitting time zj  is then expressed as a function of the 
starting point z: 

Indeed, for j = 0 ,  1 ,  let H j  be a smooth function which satisfies the mixed 
boundary conditions of the (Dirichlet-Neumann) problem: 
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By It& formula we can write 

To get (1.8) it suffices to put t = zj  and to take the expectation. 
Hence, it suffices to compute the function H j .  But, for j = 0, 1, 

(1.12) H ~ ( z ) = ~ G ~ ~ ~ ( w , z ) ~ w ,  ~ € 0 ,  
P 

where GjD' is-the-fundamental solution of the problem (1.9)-(1.11). &r j = 0, 1, 
GiD) satisfiest 

(1.13) AG~Rl(w,z)=G,(z) for z ~ 0 ,  

In (1.13) and (1.14) the differentiation is with respect to z. 
If the circles yo and y ,  are concentric, the expression of this fundamental 

solution can be obtained as for the reflected linear Brownian motion (see 
Section 2). By using a suitable linear fractional transformation we reduce the 
general case to the case of concentric circles (see Section 3.2). 

The proof of Theorem 1.1 is given in Section 3.3, except for some technical 
lemmas postponed to the Appendix. Finally, Section 4 presents graphs of the 
expectation as a function of z. 

2. CONCENTRIC CIRCLES CASE 

2.1. Expectation of the hitting time. In this section we shall assume that 
c, = 0, that is, y o  is centered in the origin. For the sake of completeness, we 
recall some classical results (see also [Il l ,  Chapter 6). 

PROPOSITION 2.1. The expectations of the hitting times are -&@en by 

and 

Note. We have already noted that (2.1) and (2.2) are nothing but (1.2) and 
(1.3) with co = 0. 

P roo f  of P ropos i t i on  2.1. It is classical: for j = 0, 1, the function 
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satisfies (1.9) in the annulus 

Then we find uj ,  bj  such that the boundary conditions (l.lO), (1.11) are fulfilled. 
Therefore (2.1) and (2.2) are obtained by (1.8). rs 

It em a r k  2.2. The maximum of the function z w EE, (z,) lies on the circle 
yo and the one of the function z ~ E , ( z l )  lies on 7 , .  w 

Note .  It must be noticed that in this case we have the "intuition" of the 
solution of the problem (1.9Hl.11) because the domain, the annulus A,,, is 
very particular. 

2.2. Fundamental solution for the anndus. We shall point out the fun- 
damental solution of the problem (l.Bj(1. 11) for the annulus ARo. This function 
will be denoted, for j = 0, 1, by GIR0', and it satisfies (1.13H1.15) with A,, 
instead of W. 

The idea comes from the study of the linear Brownian motion on 10, I[, 
reflected at 0 and absorbed at 1 (see also [4], pp, 77 and 79, or [9], p. 97). This 
process has the density 

where q, Cy, x ) :  = ( 2 ~ c t ) - ~ / ~  exp (- Ix -yI2/2t). 
For the 2-dimensional case, we shall use the homothetic transformation 

p(z) : = z/R, and the inversion v (z) : = Ri/5 instead of the translation and of the 
symmetry (see also [Ill, Section 4.3). The a-potential associated with the pro- 
cess xi  is obtained by integrating in t the product by eWat of the following 
density: 

where p, (w, z) = (274-I exp (- lw -zI2/2t). It is known that .5,n. 

where KO denotes the modified Bessel function of index 0. Moreover, 
K,(P) - log(l/P) as 8 4 0  (see, for instance, [8], p. 133). 

Letting olJ0 in the expression of the or-potential for the process xj, we get 
the 0-potential or the Green function 
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I To obtain the solution of (1.13H1.15) on A,,, we need to add a harmonic 
function (see also [13], p. 140, 131, p. 386, Ill], p. 6.41, for the Dirichlet 
problem): 

PROPOSITION 2.3. For j = 0 ,  1 and for w # z, we introduce 

Then GjRol sati$es (1.1 3H1.15) on the annulus ARo. 

P r o  of.: We prove the result for j = 0, the case j = 1 being similar. The 
function GhRo) is well defined. Indeed, the series in (2.3) is convergent. For 
instance, if n E N, the series behaves as k z:=, R p ,  which is convergent since 
0 < R, < 1 (here k = - w/z - wZR; + wFf  wR$z). 

Since, for z E yl, zZ = 1, the general term of the series in (2.3) equals 0 and 
(1.15) is obvious. 

For the proof of (1.14) let us put z = pis. To compute the normal deriva- 
tive it suffices to differentiate with respect to e, since the circles are centered at 
the origin: 

Clearly, the series is uniformly convergent. For instance, if  EN, the series 
behaves as k xr=, Rp,  where k = w (1 +e2)  (1 - R;)/(e2 e i 3  For Z E  A,,, 
Q - ~  + 1 < R,  + 1, so the series converges. 

Then we can verify (1.14), since, by I*), we get 

Finally, to prove (1.13) we note that, for ~ E Z ,  the points A, of the form 
r 

w R p ,  l/wR$'+', l/wR$", wRP+ 

Iie in the complementary of the annulus ARo, excepting w. Hence the functions 
log ~ Z - A , / ~  and log ~ Z - A , / ~  are harmonic in A,,, and 

A, G$~~O'(W, Z) = ( 1 1 2 ~ )  A, (log 12- wl +log lzl) = dw(z). H 
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Remark  2.4. The function GyO) is not symmetric in (w, 2). However, we 
can prove that, for j = 0, 1, 

(2.4) A, GjR0)(w, Z) = 6,(w) for w  EAR^. 

Indeed, we note that, for ~ E Z ,  the points of the form 

lie in the complementary of the annulus A,,, excepting z. Then we can proceed 
as for the p r o d  of (1.13). a 

2.3. Find the expectation using the fundamental solution. By integrating 
(2.3) on A,, we find the expectation Ez(zj) ,  j = 0, 1, that is (21) and (2.2) up to 
the multiplication by -2 (see (1.8) and (1.12)). 

Let us remark first that the integrals of the terms of the series are zero 
except for the term corresponding to n = 0. Indeed, this is a consequence of the 
facts that, for j = 0, 1 ,  

> 1 if n ~ z $ ,  
Iz/RpI, I ~ / z R ~ ' " - " ~  1, l l / ~ R ~ - ~ j l ,  IZ/RF+~I are { < R o  i f n ~ Z * _ ,  

and of the following 

LEMMA 2.5. We have 

2n (1 - Ri) log IR] tf I4 > 1, 

(2.5) J log][ -11' d[ = - 2x Rg log 111 -n: (1 - lRl2) if Ro < 111 < 1, 
A ~ o  -2n:R$logRo-~(1-R~) ifljll<Ro. 

The proof of this lemma is postponed to the Appendix. 
On the other hand, 

Since, for j = 0, Ro < lzl < 1, Izl/Ri > 1, 1/15] R i  > 1 and 1/IZI > 1, using again 
(2.5) we get 

1 GbRO) (w, Z) dw = (1124 log ]zl j dw +(1/4n) ( -271 Ri log 121- .rc (1 - 1zI2) 
ARO ARO 

+ 2n (1 - Ri) log (l/IL;I R@ - 2n (1 - Ri) log (l/IZI) - 2n (1 - R t )  log (IZI/R;)) 

= (1/2)(1 - ~ i ) l o g  lzl+ (114) ( 1 ~ 1 ' -  1 -2 log 121) = (- 1/2) EZ (70). 

The calculation is similar for j = 1, by noting that ~ $ 1 ~ . 1  < Ro. H 
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3. FRACTIONAL LINEAR TRANSFORMATION AND GENERAL CASE 

3.1. Fractional h e a r  transformation. Let us consider, for t E R ,  the trans- 
formation 

[ cosh t + sinh t 
'":= (sinh t+cosh t' 

[ € C. 

This is a one-parameter transformation group: a,a, = a,,,. We recall below 
some well-known properties of these transformations. 

Remark  31. The image of the circle centered in the origin,-with radius 
tanh r, by the fractional linear transformation a, is a circle centered on the real 
axis. Moreover, this transformation leaves the unit circle invariant. 

Indeed, it is no difficult to see that lat(l;)l = 1, provided lil = 1. On the 
other hand, by classical properties of the fractional linear transformations, the 
image of an orthogonal circle to the real axis is a circle orthogonal to the real 
axis. Therefore, the center of the image circle lies on the real axis. 

Moreover, the images of the points tanh r and - tanh r are tanh (t + r) 
and tanh(t -r), respectively. Hence the image circle has the center 
(1/2) (tanh (t $ r )  + tanh (t - r)) and the radius 11/21 ( t a d  (t + r) - tanh (t - r)). 

In particular, the circle yo, centered in cO, with radius R,, is the image of 
a circle centered in 0 having the radius R, by the transformation of parameter p, 
where R and p are given by (1.4). rn 

Remark  3.2. Let a and a-I be the solutions of the equation 

By a geometric reasoning we can see that, for j = 0, 1 ,  

(3.2) l(i-a)/([-a-l)l=const provided ( € y j .  

Therefore, yo and y ,  are in the family of Apollonius circles with respect to oc and 
a-l (see [I], p. 84). There exists an orthogonal family of circles which pass 
through the points a and a-l ,  and satisfy 

- 7  

(3.2') . - - arg ((-a)/(( - a-  I)  = const 3qp 

(see also [n, p. 53). ra 

3.2. Fundamental solution for the general domain. We shall point out the 
fundamental solution of the problem (1.9)-(1.11) using the one on the annulus 
A,, and the linear transformation defined above (see also [Il], p. 6.19): 

PROPOSI~ON 3.3. For j = 0, 1 and for w # z we introduce 

where G$,) is given by (2.3) with the parameter R giuen in (1.4). Then G)*) satiSJies 
(1.13H1.15). 
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Proof.  Let us first notice that 

(see also [ll], p. 4.29). It follows, by a reasoning similar to that for the proof of 
Proposition 2.3, that 

d=G$al (w, z) = A, G$l(a-,(w), a-,(z)) 

= (1/2n)Az(log la-,(z)- a.-, (w)l +log (la-, (z)l/Rq). 

Since 4 is a holomorphic function, the second term in the above sum is a har- 
monic function. Then, by (3.11, we get 

Therefore, 

A,  Gj (w , z) = (1/2n) A ,  (log lz - wl -log I(l/tanh p) - zl) 

and we get (1.13), since tanh p < 1. 
In order to obtain (1.14) we use the corresponding property of GjR), (*) and 

Remark 3.2. 
Indeed, to calculate the derivative of GjQ) in the normal direction to the 

circle y j  we can use an infinitesimal shift along an arc of circle from the or- 
thogonal family given by (3.2'). We have already observed that a_,  send the 
Apollonius circles (3.2) in the concentric circles in 0 and the orthogonal family 
(3.2') in straight lines through 0 (that is, into two other orthogonal families of 
circles in wider sense; see [I], p. 79). Therefore, using an infinitesimal shift 
along a segment on a line through 0, the upper derivative is equal to the 
derivative of GjR) in the normal direction to the image circle centered in 0. But 
this derivative is zero and (1.14) follows. 

Finally, (1.15) is a consequence of (*) and the corresponding property 
of GY). 

3.3. Expectation of the hitting time: the proof of Theorem 1.1. As in Sec- 
tion 2.3 we shall find the expectation of the hitting time using-(1.8), (1.12) and 
the fundamental solution obtained in Proposition 3.3. . m- 

By (3.3) and (*) from the proof of Proposition 3.3, we can write, for 
j = 0 ,  1, 

where Jac(r) is the Jacobian of the transformation a,. Let us write this Jaco- 
bian as 
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where k = - l/tanh p < - 1. Therefore, 

Using Green's formula, we obtain 

where the normal derivatives and the surface integral are with respect to I .  
By (2.41, the first integral in (i) is the same for j = 0, 1, and equaIs 

1 1 1 tanh2 p - (ii) A, = 
4sinh4p la-,(z)-k12 - 4 s i n l 1 ~ ~  Il+ a-,(z)tanhp12' 

By (2.31, the second integral in (i) can be written as 

where 

t'" 

Since the derivatives are in [, the first integral in (iii) equals 

A# = 
a 1 

( I - -  dc- J ---- 
la-, (z)I2 

1 6 ~  sinh4p ,,,,=,,an 15-kI2 (lil=s an 15-kI2 

To compute the preceding quantity we shall use the following 

LEMMA 3.4. For 0 < e 4 1 ,  
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We postpone the proof of this lemma to the Appendix, and we use its result to 
obtain 

since k2- 1 = l/sinh2p and here r is given in (1.5). 
The second term in (iiij can be written as 

1 m 

(v) Ay' - C {(J , (z)/R4n) - ( R  a - (z)/R~~)) - 1 6 7 ~ s i n h ~ ~ ~ = - ,  

where 

The expression of J ( Q ,  1) is contained in the following result, the proof of 
which will be given in the Appendix: 

LEMMA 3.5. For 0 < q < 1, 

Recalling that l / k  = - tanhp, by (vi) and (3.5) we can compute the genera1 
term of the series in (v): 

-. J(1, A)-J(R, A) 
(vii) 

16n sinh4p 

R 
$log IA+ tanhpl --log 13,+R2 tanhpl if IAI > 1, 

2r2 
R2 1 1 - Ill2 tanh2 p 

$log11 +Atanhpl-Z-iloglA+R2 tanhpt- - - r 4 sinh2 p I1 + A  tanh p12 
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Here q and r are given in (1.5), and 

A E ( ~ - ~ ( Z ) / R ~ " ,  l / i i - , ( ~ ) R ~ ~ + ~ - ~ j  , 1 /G-p(~)R 4"- 2 j  , a-,(z) /R ~ J I + Z .  

n ~ Z , j =  0 ,  1). 

In order to apply (vii) for the calcuIation of A$%,, we need to study the 
modulus of the complex in the preceding set for n € Z  and for j = 0, 1. 

For n = 0, 

Therefore, 

1 11 +a-,(z) RZ tanhpl - 1 1 -]a- , (~)1~ tanh2p 
(viii) Ayj, = log 

la-, (z) + R2 tanhpl 4 sinh2pl 11 +al, (z) tanhpI2 

RZ la-, (z) + R2 tanhpl 11 +a_, (z) R4 tanhpt 
- -- log 

2rZ I1 +a-,(z) R2 tanhpl la-,(z)+R4 tanhpl 

and 

1 R2 11 +a-,(z)tanhp12 - 1 1 --la_,(~)1~ tanh2p 
(ix) = log 

la-,(z)+RZtanhp12 4sinh2p Il+a-,(z)tanhp12 

R' RJl+a-,(z)R2tanhpl q l a - , (~ )1 ' -R~ tanh~~  
--log 

2r2 +-. 
la-,(z)+R4 tanhpl 2r la-,(z)+R2 tanhp12 ' 

For ~ E Z ' ;  and j = 0, 1 ,  

la-, (z)/R4"l, I l / ~ - ~ ( z )  R4n+2-2j 1, ll/CT-p(~)R4n-2il, la- , (~) /R~"+~1 > 1, 

while, for n ~  ZT and j = 0, 1, 

Thus, for ~ E Z * ,  and j = 0, 1, the computations give - 
~<-, 

(a-,(z)+ R4" tanhpl 11 +a-,(z) R4"+Z-2j tanhpl 
A B n + A " ( - ~  = log 11 +a-p (z)~4n-2jtanhpl + ~ 4 " + 2  tanhpl 

I1 +a-,(z) R4" tanhpl ( a - , ( z ) + ~ ~ " - ~ + ~ j t  
+log 

la-,(z)+R4"+ 2jtanhplIl +a-,(z) R4n-2 tanhpl 
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where q and r are given in (1.51, and a_,(z) = (z coshp-sinhp)/( -z sinhp 
+ coshp). 

Combini,ng (i), (ii), (iv), (vii) and (x) we get 

while from (i), (ii), (iv), (ix) and (3.6) we get 

m 

(xii) H I M  = AI+.~$~?+A$YO+ ( A L ~ ~ ~ + A ~ ~ ~ ( - ~ J .  
n = l  

Thus (1.2H1.3) are obtained by using (1.8) and (x), where we have put 

In order to end the proof, let us show that, for j = 0, 1, the series with 
general term given by (3.6) are convergent. For instance, 

has the same behaviour as k znm= =, R4", where 

The other series with logarithm can be treated in the same manner. Similarly, 
- 

1 - l a - , ( ~ ) 1 ~ R ~ ~  tanhZp l a - , ( ~ ) 1 ~ - R ~ " - ~ +  4jta nh2p + 
[l +a-,(z) R4" tanhp12 la-,@)+ R4"-2+2jtanhp12 

l a - , ( ~ ) 1 ~ - R ~ ~ + ~ ~ t a n h ~ ~  l -~a -p (z )~  2 RER-4 - - tanhp 
I a - , ( z ) + ~ ~ ~ +  2jtanhp12 11 +a-,(z) R4n-2 tanhp12 

behaves as k zn", , R4", where 

k = (-2 tanhp)(l -R-2)(la-,(z)l- R2j/la-,(z)l). 

This ends the proof of the theorem except for the proofs of the lemmas. ra 
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4. NUMERICAL RESULTS 

In this section we present numerical approximations of the analytical 
representation of the expectations given in (1.2) or (1.3). We plot two views of 
the expectation as a function of the starting point: three-dimensional graph and 
its vertical section. 

Figures 2 and 3 illustrate the case j = 0. Recall that for the concentric 
circles case the maximum lies on yo.  Suppose now that co # 0. When Ro is 
small, the position of the maximum is close to zero as we can see in Figure 2. 
The increase df -Ro gives a displacement of this position towards- y l .  This is 
quite differedtwith respect to a deterministic motion in which it is quite natural 
to think that z must be far from this circle. 

Figures 5 and 6 correspond to the case j = 1. The maximum lies on y ,  and 
its value is a decreasing function with respect to Ro. 

In parallel to the semi-analytical method present in this paper we con- 
sider a classical finite element method to solve the partial differential equations 
(1.9), (1.10) and (1.1 1). A solution of this problem is in H2 (a), the SoboIev space 
of function u such that td, VU and Au belong to LZ(i2). By the finite element 
we compute an approximation of H j  belonging to a subspace r/h of continuous 
functions piecewise linear in Q. The results obtained by the finite element 
method are similar to those obtained by the semi-analytical method conside- 
red in this paper. One difference between the two methods is that the maximum 
obtained by the finite element method is an approximation with an error 
of order h2, h being the discretisation parameter. In Figures 4 and 7 we re- 
present results computed by the finite element technique, which correspond 
to Figures 2b and 6b, respectively. 

Figure 2. Case j = 0 with co = 0.1 and R o  = 0.01 

3 - PAMS 20.1 
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Figure 3. Case j = 0 with c,  = 0.2 and Ro = 0.4 

Figure 4. Case j = 0 with co = 0.1 and Ro = 0.01, by the finite element technique 

Figure 5. Case j = 1 with c, = 0.3 'and R, = 0.01 
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Figure 6. Case j = 1 with c, = 0.3 and R, = 0.4 

Figure 7. Case j = 1 with co = 0.3 and Ro = 0.4, by the finite element technique 

APPENDIX 

We give here the proofs of lemmas which we used. 

Proof of Lemma 2.5. Let us put [:= eeie, A : =  ae" and, for a # 0, 
a : = (qja) sinz and b : =(@/a) cos z. We can write - 

Since 
2a 

J d e  log (1 +a2 + b2 -2a cos 8 -2bsin8) = 2nlI,2 +,23 ,) log (a2 + b2) 
0 

(see also [5 ] ,  p. 528, 4.225.4), we obtain 
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2~ (lt ede) logo2 if c r >  I, 

~ l c ( P , ~ ~ d ~ ) l o ~ ~ ' + 2 n ~ ~ l o g e ~ ~ e  if Ro < < 1 ,  

2n @ log Q d@ if IT< R,. 

The preceding equality lies also for a = 0, and we get (2.5). 
- .  . . . 

Prqof of Lemma 3.4. Let us put [:= pie and a:= ~ / k  < 1. We can write 

From this we get (3.4). H 

For the proof of Lemma 3.5 we need the following result: 

LEMMA A.1. FOP REC, 

(A.1) 
2 x ~  log IR,-g2/kI2 if 121 > Q, da = 

k2-Q' {loge211-A/kl/k2 ijIAI<g. 

Proof. Let us put [:=eeie, A:=aeiT, a : = ~ / k < l  and, for a#O, 
b: = g/(r. We can write 

a. 2= l og l~-~12  = - do log (r2 r : =  J 
( ~ . g = ~ l  15-kI2 k o  1+a~-2acose 

The first integral is equal to (2,rclog 02)/(1 -a2). Then (A.l) is easily obtained for 
- 7 

real A (that is, for z = 0 or z = x) since 
<,n- 

(see also [ 5 ] ,  p. 594, 4.397.16). 
Then, by a classical argument of analytic continuation, we obtain 

The preceding equality lies also for (r = 111 = 0 and its real part is nothing 
but (A.1). EJ 
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Proof  of Lemm a 3.5. We shall use the same notation as in the proof of 
Lemma A.1. We write J(Q, A) = 11-I,, where 

2x d 1 
= p 1 d0 log (Q' +02 -2ea cos0 cosr - 2 ~ a  sin8 sinr)- 

o Q" k2 - 2ke cos 8 

a 2" -2a+2cosO 
= - 1 d0 log (e2 + g2 - 2 ~ a  cos 0 cosz - 2 ~ a  sin8  sin^) 

k Z o  . .  . . (1 + a2 - 2a cos 812 

i a 
12:= 1 -- log )(-a12 dcT 

(161 II -k12 an 
L/ 

-log (e2 + n2 - 2 p  cos8 cos z - 2~r3 sin8 sinz) 
= Q  d0e2+k2-'2kQcosOap 

2% 1 2b-2cosBcosr-2sinesinz 
= b j d Q  e2 + k2 - 2ke cos 8 1 + b2 - 2b cos 8 cosz- 2b sin0  sin^ 

But (A.l) can be written as 
2x 

(A.2) I d 0  
log (e2 + crZ - 2ea cos 0 cosz - 2pcr sin0 sinz) 

o 1 +a2-2acos0 

- --. 2n log e2 (l/b2 + a2 -2 (a/b)cosz) if 13Ll > Q, 
I-a2 {loge ( 1 +a2/b2 - 2  (a/b)cosz) if IRI < Q 

or as 

By the derivation of (A.2) and (A.3) with respect to a and b, respectively, we get 

4ne2 e2 - lAlk cos z 8xe2 + ,,logll-e2/kl i f IRI>e,  
k2 (k2 - e2) ' Il -e2/k12 (k2 -Q ) 

4n Ihl (In1 - k cos 2) 8ne2 + , ,logeIl-~/kl if 14 < e, 
k2(k2-e2) If-)LlkI2 (k2-e l  



38 R1. Deaconu et al. 

and 
47q2 e2 - llllk cos .t 

k2(k2-Q2) '  Il-g2/k12 if 111 > e, 
4~c 1 - IL/kl cos z -. 

k2 - e2  11 - A/k12 if I4 < a, 

and the proof of Lemma 3.5 is done. ra 
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