
PROBAElLlTY 
AND 

MATHEMATICAL STATlSTICS 

Val. 20, Faac 1 (2000), pp 63-73 

ON PAUL LEVY'S ARC SINE LAW AND SHIGA-WATANABE'S 
TIME INVERSION RESULT 

- -  ~ 

BY 
5 

SVENI3 ERIK GRAVERSEN (AARHUS) AND JUNA VUOLLE-APIAEA (HELSINKI) 

Abstract. Let ((XJ, P) be a symmetric real-valued H-self-similar 
diffusion starting at 0. We characterize the distributions of A,, the time 
spent on (0, a) before time t, and a,, the time of the last visit to 
0 before t. This gives a simple new proof to well-known results in- 
cluding P. Iivy's arc sine law for Brownian motion and Brownian 
bridge and similar results for symmetrized BesseI processes. Our focus 
is more on simplicity of proofs than on novelty of results. Section 3 
contains a generalization of T. Shiga's and S. Watanabe's theorem on 
time inversion for Bessel processes. We show that their result holds 
also Tor symmetrized Bessd processes. 

O.  Introduction. P. Lkvy showed in [8] that for a Brownian motion starting 
at 0 both 

1 

A , = 5 1 ~ ~ , , , ~ ~ d u  and g , = s u p { s < I I  Bs=O) 
0 

are arc sine distributed. This result has been extended mainly in two directions: 
on one hand for LCvy processes (see [5]),  on the other hand for self-similar 
Markov processes (see [I], [4], [63, and [lo]). A ,  remains beta distributed in 
many cases if (BJ is replaced by a more general Lkvy process (see 151) whereas 
g ,  is beta distributed if (3,) is replaced by any self-similar Markov process (see 
Dynkin [4] and Lamperti [6]). In [I] the distribution of A ,  was calculated for 
symmetrized Bessel processes (which are i-self-similar); it turned out not to be 
a beta distribution. 

In this note we calculate the moments of g ,  (Theorem 1 in Section 2). This 
gives a new proof of the fact that g, is beta distributed for any Bessel process 
(cf. [4] and [6]). Thereafter we use this to calculate the moments of A, .  We first 
show, by quite elementary methods, the connection between A, and g1 (see 
Lemma 4 in Section 1). Under an independence assumption (A), which we 
make, this gives also a connection between the moments of A,  and g,.  How- 
ever, to show that (A) is valid for all symmetrized Bessel processes (Theorem 2 in 



64 S. E. Graversen and J. Vuolle-Apiala 

Section 4) we need a generalization of T. Shiga's and S. Watanabe's time 
inversion result (Proposition 1 in Section 3). We believe that this result might 
have some interest on its own, independently of the rest of the paper. Except in 
the first section we are most of the time working with symmetrized Bessel 
processes but the results are also valid for Bessel and Brownian bridges and for 
symmetric H-self-similar diffusions on the whole real line, H > 0 (see Re- 
marks 5 and 6). 

I. Notation and basic ideas. Throughout this paper ((X,), P)  denotes a 
real-valued . process . starting at 0 with continuous paths satisfying the following 
propertie:: 

1. Symmetry, i.e. (X,) - P = (-Xt) - P, and that P ( X t  = 0) = O  for t  > 0. 
2. ((X,), P) is a strong Markov process. 
3. ((X,), B) is H-self-similar under P, i.e. 

( a - H ~ , ~  (x,) under P for all a > 0. 

Examples: Brownian motion and more general symmetrized Besel pro- 
cesses with index YE(- 1, 0) starting at 0. Here H = 1/2. 

By a symmetrized Bessel process with index v we mean a unique symmetric 
diffusion on the whole real line which on (0, co) behaves like a Bessel diffusion 
with the same index v (see [I]). They form exactly the class of diffusions 
fulfilling the properties 1, 2 and 3 in the case H = 1/2. Brownian motion is 
a special case, corresponding to the index v = - 1/2. The processes fuIfilling the 
properties 1, 2 and 3 for H # 1/2 can be obtained similarly from H-self-similar 
diffusions on (0,~). See also Section 3, Remark 2 in Section 2 and Remark 5 in 
Section 4. 

The following notation will be used repeatedly. Define for all t > 0 

and 
z,:= inf{s > 0 I X, = 0). - 

If X;#O for all s > 0, then dt and zo:= oo, g,:= 0. i?n 

Remark  1. Obviously, the property 3 implies that At, dt and g, are equal 
in law to t A l ,  td  l and tg , ,  respectively. 

LEMMA 1. 
t I" t l  

A; = n ! l S . . . j l g t , > o  ,..., xt">*)dtl...dtn 
O D  0 

for all t > 0 and n 2 1. 

Proof.  We use induction based on the formula A: = n J: A:- dA,. H 
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Notice that neither of the properties 1,2 or 3 were used. For each n 2 1 we 
thus have by Fubini's theorem 

Being bounded the distribution of A,  is determined by its moments. In order to 
compute these we shall use the following simple identity. Note that only the 
property 1 is needed. 

LEMMA 2. 

Proof .  The property 1 shows that Al and 1 -Al are identically distributed 
under P. The binomial expansion of (1 -A,)" immediately gives (*). 

The next result, which makes use of the properties 1 and 2, gives an 
expression for the distribution of g, and establishes a link between the distri- 
butions of g, and A,. 

P(gi<s)  = 4 1 ' ( X s > 0 ,  X , > 0 ) - 1  for all O < s <  t .  

P r o  of. Let 0 < s < t be given. Using the strong Markov property at time 
point ds and symmetry we get 

4P (Xs > 0 ,  X, > 0 )  = 4P (Xi > 0) - 4P (X, < 0, Xt > 0) 

= 2-4P(& < 0, d" t ,  Xi > 0)  = 2-4E[P(Xt-, > O),=,, ds < t, X, < 01 

= 2-2P(Xs  < 0, d" t )  = 2-(P(Xs < 0, ds < t ) + P ( X s  > 0 ,  ds < t)) 
= 2-P(ds < t) = l+P(ds  > t )  = 1 +P(Q, < s). 

Using this we immediately get 

From now on the self-similarity (property 3) will be fundamental. As noticed in 
Remark 1 we have for all n 2 1 and t > 0 

E kt] = t - E [ g l ]  and E [A:] = tn a E [ A ; ] .  

Inserting above shows that the first three moments of A,  are determined by 

1 3 PI = Y PZ = ~ - ~ E C Q ~ ]  and p, = zpZ-$pl ++3 = $ -$E  ~ ~ ~ 1 .  

5 - PAMS 20.1 
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In order to compute the higher moments we need the following lemma: 

for all n 2 1 .  

Proof. It suffices to prove the first equality, the second one then follows 
by substitution. . . Arguing like in Lemma 3 we have for all- n 3 1 and all 
O <  t l  <*... < t ,  < 1 

2 P ( X * , > O  ,..., Xt,_l>O)-2P(Xt,>0 ,..., Xtn>O) - 

= 2P(Xt1 > 0, ..., X , ,  > 0, Xtn < 0) 

= 2P(Xtl > 0, . . ., Xtn-, > 0, dtn-l < t,, Xtn < 0) 

= P(X,, > 0, ..., Xln-, > 0, din-1 < t,) 

= P(Xt, > 0, ..., > 0)-PIXtl > 0, ..., X t n ,  > 0, > t,) 
=P(X,, =-O>.. . ,Xtn-l  )O)-P(Xr, >O, ..-, Xtn-, > 0 ,  gin< t , - ' )  

= P(Xtk > 0, . , ' Y  X i n r  > O)-P(Xt,/tn > 0, ..., Xtn-l/*,, > 0, g1 < tn-l/t,,), 

and therefore 

Under the following assumption (A), which will be characterized later in Sec- 
tion 4, 

1 1 

(A) 91 and lixuwl du = 1 l ~ ; n x u ~ l  du are independent, 
0 0 
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the identity between the first and last terms in Lemma 4 can be rewritten as 

(**I p,=pn-l-$ji,-l~tg",l] for all n 2 1 ,  

where 
1 

Pn = E C=% 1 : = E [ ( [  l[xull ,ol du)"] for n 0. 
0 

This formula contains a lot of information. To see this define (XJ : = (X,,,). We 
see that ((f*), I?) .is a continuous process starting at 0 and satisfying $he proper- 
ty 1. Thus (A),,, fulfills (*). Combining (*), (**) and the fact that ,ul,.jlo and 
ji, are (trivially) known we see that in order to recursively compute p, and 
jin for all n it is enough to calculate the moments of g,. Thus under the 
assumption (A) the distribution of g1 determines that of both A, and A",. 

2. The distribution of g, .  As concluded above it is important to be able to 
compute the moments of g ,  under P. A first step in this direction was already 
taken in Lemma 3 and using this result we shall now deduce the following 
known result: 

THEOREM 1. Let ((X,), P) be a symmetrized Bessel process of index 
VE(-  1, 0) starting at 0, that is, a symmetric dgusion on the real line which on 
(0, GO) behaves like an ordinary Bessel process of index v. Then 

d gl = beta (- v, v + 1) under P, 

i.e. the distribution of g, under P is absolutely continuous with respect to the 
Lebesgue measure with density 

t+$s in (n I~ l ) . t -~ -" - ( l - t ) '  for t ~ ( 0 , l ) .  

In order to prove Theorem 1 we need the following 

LEMMA 5. We have g, lid' under P 

P r o  of. Obviously, P (g ,  < t) = P(dt 2 1). Using the self-similarity proper- 
ty 3 (see Remark 1) this becomes equal to P(tdl 2 1) = P(l/dl-< t). H 

~,?v 

Using Lemma 5 and a well-known formula related to the gamma function 
we obtain for the moments of 9, 

1 " 
[dl = --- t'-l E[exp(-tdl)]dt for n 2 1. (n - I)! 

Write (X,, P,f for a symmetrized Bessel process of index v for some v ~f - 1, 0), 
starting at X E R .  The Markov property and self-similarity imply for all t > 0 

Eo [exp (- tdl)] = eCt E,[E,, [exp ( -  tzo)j] 

= e-'E* [Etwx, Cexp (-zo)l] = e-'& [Ex, Cexp ( -TO)]]. 
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Rewriting f (x) = Ex [exp (- zo)] for x E R we have 

P r o of of The  o rem 1. Let ((X,), (P,),,,) be a symmetrized Bessel process 
of index v for some VE(-1, 0). Let further GI(., .) and (p,(., -)),,, denote con- 
tinuous versions of the corresponding 1-Green function and the transition 
density with respect to the speed measure, i.e. , . 

. - m 

5 G l ( ~ , ~ ) = J e - ' - p , ( x , y ) d t  f o r a U x , y ~ R .  . 
0 .. 

It is known that 

and therefore 

for t > 0, 

The well-known theory (see [2]) shows that f = c . G1 (a ,  O),  where the constant 
c is determined by the equation f (0) = 1, i.e. 

Using the Chapman-Kolmogorov equation we get 

- 
and inserting this above we obtain 

-,,,T 

for every n 2 1. This is exactly the n-th moment of a beta (- v, v + 1) dis- 
tribution. Writing now P = Po we can conclude that the result is proved. 

Remark  2. Using Theorem 1 we can calculate the moments of g, corre- 
sponding to any symmetric H-self-similar diffusion sat isfag the basic assump- 
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tions 1, 2 and 3. Everything depends obviously only on the radial process, 
which is an H-self-similar diffusion on [0, a). Now let (r:, P) denote a Bessel 
process on [O, m) of index v starting at 0. It is known (see [6] and 171) that any 
H-self-similar diffusion (Rr, P') on [0, m) starting at 0 is identical in law to 
a process of the form 

for some (unique) Y and a2 > 0. This is due to the fact that (R:, B) on (0, c ~ )  is 
governed by the differential operator 

. - .  . - 

Using this relation and the following identities it is clear how results for Bessel 
processes can be used to give general results (assume for simplicity aZ = 1): 

1 1 1 

AfV = j I { R s V > O ) d ~  = i I < ( , s v ) ~ ~ , ~ )  ds = 1 K { , j , O l d ~  =A?.  
0 0 0 

Similarly, 

gfv  = suP{s < 1 I RI = 0) = SUP{S < 1 I (rl)2H= 0) 

= s u p { s < l  ~ r : = o } = ~ ' ; l .  

Remark  3. According to the result of Lamperti [7], 0 is a regular bound- 
ary point for (R:) (that is, the process can hit 0 and can be started from 0) iff 

$(I - ( 1 / ~ ) )  (4H2) < 2H (H + v) < 2H2 or, equivalently, - I < v < 0, 

which is exactly the case when 0 is a regular boundary point for (r,'). 

3. On s result of T. Shiga and S. Watanabe. In this section we prove a time 
inversion result for symmetrized Bessel processes, analogous to the result which 
Shiga and Watanabe 1121 showed for ordinary Bessel processes on [0, a). 
This is needed in Section 4 to show that (A) is valid for any symmetrized Bessel 
process of index VE(-1, 0). Their result states: -.n, 

(3.1) If (r,, P) is a Bessel process on [0, CQ) starting at 0, then (r,) and (tr,,,) are 
equivalent diffusions under P. 

It is well known that a similar result is true for Brownian motion. We shaII 
prove the following generalization : 

PROPOSITION 1. Let (X,, P)  be a symmetrized Bessel process of index 
v E (- I ,  0) starting at 0. Then (X,) and (tXl,,) are equivalent dzrusions under P. 

Proof.  Let v E (- 1,O) be given and let (r,, Q,) be a Bessel process on 
[0, CQ) of index v starting at 0. Denoting by (en)n3l an ordering of the excur- 
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sions from 0 for (rt, Qo) it is dear (compare with [ll], exercise (2.16), p. 449) 
that (1,) under P is identical in law to (Z , ,  01, which is defined by 

a = Qo x Q,  ((K)n3 Q) is a Rademacher sequence and S, = [s,, sk) is the 
excursion interval corresponding to en for each n. Notice that 2, = rt if t E S,, 
and that US, = 10, a) since ro = 0. Obviously, 

tZ1,, = Y, te,((l/t)-s,) = Y,tXlir if IIEES,. 

According to [12], (r,) and (trll,) have the same distribution under Q,. Now, let 
0 < t, 4.. . < t, be given. To prove that (Xt) and (tXll,) or, equivalently, (Z,) 
and (tZlIJ have the same finite-dimensional distributions we-need to verify that 

. . for a given set of subintervals 11, .. ., I, of [0, co) and elements i,, . . ., I ,  in 
(- 1, 1) the following two probabilities are equal: 

P(IZ,,IEI~, signZ,, = i,, k = 1, ..., n) 
and 

P(ltkZlitkl E Ik,  signtkZljrk = ik, k = 1, . . ., ri). 

We shall consider only the case n = 2 because this case includes all the difficul- 
ties (except the combinatorial ones) which occur in the general case. Write 

where pl and p2 mean 

p1 = P(IZ,,IEI,, signZ, = ik, k = 1, 2; 

t,, t, belong to different excursions of (r,)) 

and 

pz = P(IZ,,I E I ~ ,  signZ,, = ik, k = 1, 2; 

t l ,  t2 belong to the same excursion of (r,)). 
- 

Due to the independence, p ,  is equal to 

$Qo (rzk €Ik, k = 1, 2; tl, tZ belong to different excursions of (r,)) 

= $ Q, (r,, E Ik, k = 1, 2; 3s E (t,, t2) such that r, = O), 

and p, is equal to 

Q (il, iz) Qo (rtk E Ik, k = 1, 2; t,, t2 belong to the same excursion of (r,)) 

= Q(i1, iz)eo(r tk~lk,  k = 1,  2;  r~ > 0 V s ~ ( t l ,  tz)), 

where 

Q (il, i2) = 1/2 if il = i2 and Q (il, i2) = 0 if il # i2. 
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Using the result of Shiga and Watanabe (3.1) we obtain 

Qo ( r t k ~ I k ,  k = 1, 2; 3s E (tl, t2) such that r, = 0) 

= Qo(tkrllrk~lk, k = I ,  2; 3 s ~ ( t ~ ,  tZ) S U C ~  that srll, = 0) 

= (tk rljir E I k ,  k = 1, 2; 31/s E (litz, l/tl) such that rlIs = 0) 

= &O (tk rliik I , ,  k = 1, 2; 316 €(l/t2, l/tl) S U C ~  that r, = 0) 

= (tk rl/tk E ~ k ,  k = 1, 2; l/tl, 1/t2 belong to different excursions of (rJ), 

which, using the independence, implies that p ,  is equal to - 

5 

P( l tkZl / tk l  ~ I k r  s i ~ t k Z l l t k  = i k ,  k = 1, 2; 
l/tl, l/t, belong to different excursions of (r,)). 

Similarly, we can show that p ,  is equal to 

P (It, ZI/,I EL, s i a t k  Z,,,, = i,, k = 1 ,  2; 

l/tl, l/t, belong to the same excursion of (r,)). 

Adding up we get 

which implies that the two-dimensional marginal distributions of (2,) and 
(tZltt) are the same. As remarked above, the same kind of argument shows 
that all the finite-dimensional distributions of (Z,) and (tZ1/,) are the same. 
Thus (X,) and (tX,,J have the same distribution under P. Finally, since (X,, P) 
is continuous and Markovian with respect to a Feller semigroup, the con- 
tinuity and the strong Markov property of (tXIti) under P are proved by using 
standard arguments. 

4. The independence assumption (A). In this section we shall use the result 
of Section 3 and show that the assumption (A) is valid: 

THEOREM 2. Let ((X,), P) be a symmetrized Bessel process rl.ll of index 
VE(-1, 0) starting at 0. Then (A) is  satisfied. 

Proof.  Define (I;):=(tXltJ. As is well known for Brownian motion and 
proved in Proposition 1 (Section 3) in the general case (Xi) and (Y,) are equiva- 
lent diffusions under P. Define T : = dl (Y). Then T is a finite stopping time and 
P(Y, = 0) = 1. The strong Markov property implies that the distribution of 
(YT+t)t3 under P (. I T = a) equals the distribution of (I:),3 under P for any 
a > 1. Therefore, since (x) under P, and thus also (Y,,,) under P C  I T = a) is 
3-self-similar, we have for any a > 1 

d 
(Yo+t)tkO = (a-l12 Y,+m)i,o under P ( .  I T= a), 
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which implies that 

have the same distribution under B (. I T = a)  for all a > 1. Consider the law of 

( (1- t )  Y,+r/(i-r))oat<l under f'(- I T = a). 

For all a > 1 this is the law of (&',,,,),3,, under PC I T = a), conditioned to hit 
0 at t = 1 @ridge of Y'). This statement is straightforward in the case of 
Brownian motion; for the general Bessel case see [9], Theorem 5.8, p. 324. 
Rewriting in terms of (X,) shows that the law of 

ta1'2X,la)o s,, 1 under P (. ) T = a) 
- 

is the same for all a > 1. But T = dl(Y) = g L i ,  and so the distribution of 

(g; =I2 x u g , ) ~ s u C 1  under PI. I T = a) = PC I g ,  = a-1) 

does not depend on a, which means that g ,  and (g; 'Iz . X , , , ) o ~ u C  are indepen- 
dent under P. This immediately proves the statement. ra 

Re mark  4. If (XJ is a Brownian motion, then @TIt2 Xwl)O~ul  is a Brow- 
nian bridge (see [Ill). Similarly, we can construct bridges from symmetrized 
Bessel processes. Except the moments of A, we can use (*) and (**) to calculate 
the moments of At?,, which correspond to the bridge process (g~1/2X,,,). 

Remark  5. The results of Proposition 1 and Theorem 2 are also valid in 
the general H-self-similar case. Obviously, any H-self-similar symmetric dif- 
fusion can be constructed from the radial excursions in the same way as the 
symmetrized Bessel process is constructed from the ordinary Bessel process; 
and using Remark 2 of Section 2 and the H-seIf-similarity we can show that (RJ 
and ( t Z H  Kil t )  are equivalent, where (K t )  is an H-self-similar diffusion on [0, m) 
starting at 0. Using these two facts it is easily seen that the arguments used in 
the proof of Proposition 1 and Theorem 2 are applicable in the general case. 
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