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Abstract. Let D be a nonempty open bounded subset of 
d 2 2, and let 0 < a c 2. For a-harmonic functions on D vanishing 
outside D an analogue of the Martin representation for harmonic func- 
tions is derived. 

8 .  Introduction. The problem of the Martin boundary for harmonic func- 
tions is a part of potential theory. This theory can be expressed in a probabilis- 
tic way with the use of Markov processes. In the past the relationships between 
the classical Newtonian potential and the Brownian motion were investigated. 
A natural extension of the classical potential theory and harmonic functions is 
the theory of Riesz potentials and a-harmonic functions. This case has deep 
connections with the rotation invariant ('symmetric') stable processes with their 
index of stability a <  2. Although in general these processes differ from the 
Brownian motion, they have some properties which are similar or analogous to 
the corresponding properties of the latter process. That is why the results 
concerning Riesz potentials and a-harmonic functions appear in many situa- 
tions in probability theory, potential theory and in various analytical applica- 
tions. They are often an interesting natural generalization of classical results. 

For the rest of the paper let X, be a symmetric stable process in Rd of index 
ct for d 2 2 and 0 < a < 2. For a Borel subset B of Rd let TB and z, be the first 
entry time and the first exit time, respectively, i.e. z, = inf (t  > 0: X, E B )  and 
z, = T,. D will stand for a nonempty open subset of Rd. A nonnegative Borel 
function h on Rd is said to be a-harmonic on D if for each bounded open set 
3 with B c D and for x E B we have 

This definition is equivalent to another one in which (1) is required to hold only 
for each ball B = B ( x ,  r) = {YEP: Ix-yl < r) with 0 < r < dist(x, D9.In this 
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case (1) can be written explicitly as 

where 

r (d/2) sin (xa/2) 1 
(3) E, 0) = xl + d / 2  (lul"-=Yiz 1~1"' 

I Y I  

lyl G-r.  
% - 

The family of all u-harmonic functions on D will be denoted here by XU(D) ,  
and the family of those fuactions in #"(D) which vanish o n  Dc will be denoted 
by X 3 D ) .  Functions from g a ( D )  are continuous on D. Each nonnegative 
Borel function on De can be extended to D by the formula 

Then h is either harmonic on D or infinite on D. 
One of the classical results states that if D is a bounded Lipschitz domain 

in Rd, then each nonnegative harmonic function on D admits a representation 

where P ( x ,  y) is the Poisson kernel for D, p is some Borel measure, and aD 
denotes the Euclidean boundary of D. If D is a general bounded domain in Rd, 
then a representation similar to (4), called the Martin representation, is valid, 
although the Euclidean boundary aD must be replaced by the so-called Martin 
boundary and the Poisson kernel for D is replaced b y  the Martin kernel 
M (x, y). M (x, y )  is nonnegative and harmonic in D with respect to x ED. 

The main purpose of this paper is to establish a version of Martin re- 
presentation for functions in S g D )  (Theorem 5.12). The recent result shows 
that for a bounded Lipschitz domain the Martin boundary coincides, as for 
ct = 2, with the topological boundary (cf. [5 ] ) .  Our paper refersmto the general 
case of bounded domains in Rd. Contrary to what may seem at a first glance, 
Theorem 5.12 is not a theorem about the zero function. Examples of nontrivial 
functions in &'",Dl are given in Section 2. In Section 3 we prove a decom- 
position theorem for functions in XU(D), which states that each h ~ z " ( D )  
can be represented uniquely as the sum of an #",D) function and a function 
from A?" ( D )  "orthogonal" to 2 5  (D). This second term has a natural represen- 
tation (5). 

In general, as long as possible, we follow the classical schemes. But, unlike 
in the case of ct = 2, a-harmonicity is a global property. For this reason the 
kernels M(-, y) are not always u-harmonic on D. We show this at the end 
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of this paper. Hence, to prove the uniqueness part, we use different arguments. 
However, the boundary which we construct can be characterized as for u = 2. 
Finally, we must remark that this boundary coincides with the boundary 
Sl introduced in [8] in a more general setting. Also, as in the classical case, the 
kernel M coincides on D with the kernel JC defined in 181, except for the 
definition for x = y = x,. 

In the sequel an open bounded nonempty subset D of P will be fixed. We 
will also use the notation (D,) for a fixed sequence of nonempty bounded open 
subsets of D such that D, c D,,,, n = 1, 2, . . ., and U,D, = D .  

2. Examples of functions in &'$ (D) 
EXAMPLES 2.1. The function 

is in S'",Kd\(y]) ([9], 1.6.19). More generally, if g,(x, y) is (discussed later) the 
Green function for D and y ED, then the function 

EXAMPLE 2.2. Let K be a compact subset of D of nonzero u-capacity and 
zero Lebesgue measure. Let us define the function h1 by the following formula: 

and let h = I,,,. hl. The function hl is a-harmonic on D\K, equal to h on D\K, 
and equal to h a.e. on IZd. Therefore for x E D\K and r, 0 < r < dist (x, (D\K)C), 
we have 

h(x) = h,(x) = &,*hl(x) = ~ ,*h(x ) .  

Hence h is a-harmonic on D\K. Since h = 0 on D\K, we have h E A?",D\K). 
Since K is of nonzero a-capacity, we have - 

so h is also nontrivial. 

EXAMPLE 2.3. Let p(x, y), y € R d ,  1x1 < 1, be the Poisson kernel for the 
unit ball, i.e. the density function of Px(X,,,,, , ,  ~ d y ) .  This function is explicitly 
given by the formula (191, 1.6.23) 

r ( 42 )  sin (742) (1 - I x ~ ~ ) " / ~  
P(x, Y) = +dl2 (ly12 - l)aJZ )X - yld' 

tyl > 1, 
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Let [y( 3 1 and 0 c Q < ly(-1. The function 

is u-harmonic in B(O, 1). Therefore for each x, 1x1 < 1, and each r, 
O < r  < 1-1x1, we have 

Ja,., Ix) = Er * h y . ,  (XI. 
When we express h,,, in the above equality in terms of and we let g tend to 
zero, then we obtain 

* 
P ( x ,  y) = ~ ) ( x ) + E , ( x - y ) ,  0 < r < 1.-1x1. 

Multiplying both sides of the above equality by ((yI2- 1)"" and letting y, 
(yl > 1, tend to a fixed point yo ,  lyol = I, we obtain 

hYo(x)=~,.*hy,(x), O < r <  1-1x1, 

where 

r (42) sin (rcu/2) (1 - 1 ~ 1 ~ ) " / ~  
7 Ix l<l ,  

h,, (x) = Ix-y0ld 
1x1 > 1. 

Hence the function h,, belongs to %",B(O, 1)). As can be easily verified by 
Fubini's theorem, a more general example of a nontrivial function from 
Xg(B(0, 1)) is given by the formula 

with p being any nonzero Bore1 measure on the unit sphere. 

3. A decomposition theorem for a-harmonic functions 
. - 

. T H J ~ R E M  3.1. Every a-harmonic function h in Afa(D) can be uniquely re- 
presented in the form h = hl +h2, where hl E &'%(D), h, €Xa(D) and h, is such 
that the condition: k2 > v with U E  %:(D) implies v = 0. Moreover, h,  is of the 
form 

Proof.  For h ~ x " ( D )  and for a positive integer n define 
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Note that we have either 'CD" < Z D  for all n or rDn = zD for all but finite numbers 
of n's. By quasi-continuity of X, we have 

and 

X , , E t ) D , = D  on U ( 7 D n = ~ D ) .  

n n 

Hence 

Therefore T, h (x) t Th ( x )  as n 4 w, where Th (x) denotes the right-hand side 
of (5). Moreover, h ( x )  = Ex (h (X,,-)) 2 T, h (x),  x E D ,  The monotone con- 
vergence theorem implies that the function T h  is a-harmonic on D as a fi- 
nite limit of a nondecreasing sequence (T, h) of functions cl-harmonic on D. 
It is clear that T (Th) = Th and Tv = 0 if v E X': (D). So, if h E &'",fD), we 
set h, = Th and hl = h- Th. The function hl is a-harmonic on D as the 
nonnegative difference of functions a-harmonic on D, and h, = 0 on Dc. 
T o  complete this proof assume that u E 2: ( D )  and 0 d v d h,. Then 
hZ - u 3 T (h2 - v) = Th, - Tv = Th2 = T (Th) = Th = ha. Consequently, we 
have v = 0. 

4. Auxiliary results. Together with the process X, we will consider the 
process 2, which is "X, killed on exiting D .  This is a Markov process on the 
state space DA = D u { A ) ,  where A $ D ,  defined by the formula 

if 8, (w) E D ,  and 3, (w)  = A,  t > 0 ,  if 2, (w) = A. As is customary, all functions 
on DA considered here will be assumed to vanish at A. Therefore, we may 
identify each function on D, with its restriction to D.  The potential operator for 

. - 
the process zt is denoted by GB, i.e. 

*,m 

for each nonnegative Bore1 function f on D. The operator GD has a kernel 
which will be denoted by g,(x,  y), i.e. 

The kernel g, is positive on D x D and symmetric. Also, for each fixed x E D, the 
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function go@, 7 )  is finite and continuous on D\(x} while near x we have 
limy,, gD ( x ,  y) = + co (see [7]). In the case D = Rd we have 

nu - r ((d - 01)/2) 
gD ( x ,  y) = u (X - y) = Ad,a IX - yla-d, where A d ,  = 

r @/2) 
LEMMA 4.1. If h E X m ( D ) ,  then hl, is excessive with respect to 2,. 
Proof.  Since h is continuous on D, it is enough to show that 

h ( x )  >, Ex k (x,), x E D ,  t > 0. To see this note that for each x ED,  each t > 0 and 
each n with . . XED,,  y e  have 

Since {t < z~"} t (T < T ~ )  a.s., letting n tend to infinity we obtain 

h ( x )  2 lim Ex ( h  (X,): t < rn} = Ex {h (X,): t < zD] = EX h fg,). 
n 

PROPOSITION 4.2. Let h E X u  (D) and let h, (x) = EX h (*TD,), x ED. Then 
there is a Bord measure v, concentrated on D, mch that 

i n  particular, we have GD v, (x) = h (x) ,  x E D,. 

P r o  of. Note that since g,(x, y)  < Ad,u (X -yld-', and since the function 
g,(., y) is continuous, from the dominated convergence theorem we may con- 
clude that GD f is continuous whenever f is a bounded function on D vanishing 
outside a compact subset of D. By Lemma 4.1, the function h is excessive with 
respect to gt. Therefore our proposition follows by Theorem VI.2.8. of [3]. 

PROPOSITION 4.3. Let h E S 3 D ) .  Let h, and vn be such as in Proposition 4.2. 
Let K be an arbitrary compact subset of D and let vk = v,)~. Then sup,.., GDv; (x) 
converges to zero as n tends to in$nity. In particular, lirn,v,(K) = 0. 

Proof.  Let x E K and let 0 < 2r < dist ( K ,  0'). Then for each - n such that 
K c D, we have 

vm 

By the dominated convergence theorem, the last expression converges to zero 
uniformly with respect to x E K, when n tends to infinity. On the other hand, if 
we assume additionally that r < dist ( K ,  Dg), then we have 
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Since tr (x - y) 2 Ad,= (~/3)er I X  - yl < r/3, by compactness of K ,  the inequali- 
ties (6) and (7) imply that 

To complete this proof note that 

G D V ~  (Kl 6 J u ( x - Y )  V: ( d ~ )  d j ~ ( x - Y )  (dy) + J Ad,= ( ~ / 3 ) a - ~  v i  (dy ) -  
Ix -Y~ <r/3 K 

. . 

But, by (6HS). kach of the last two integrals converges to zero a s n  tends to 
infinity. 

5. The Martin represenfation. Our construction of the Martin boundary 
follows a dassical scheme (cf. e.g. [6] ,  Chapter XIV). For a fixed xo G D let 
us define a function M on Eld x D with values in [O, m] by the formula 

Let K be an arbitrary compact subset of D containing x, and let B be an 
open set with # c B c D. For a fixed y  E D\B the function M (., y) is ol-har- 
monic on B and assumes value 1 at xo. Hence, by the generalized Harnack 
inequality there is a constant C depending only on K ,  3 and D such that 

Let D* be the Constantinescu-Cornea compactification ([6] ,  Chapter XIII) 
of D with respect to the family of functions M (x, .), x E D. The set D is a dense 
subset of D*, and functions of the family M (x, -), x E D, extend uniquely to 
continuous functions on D*. The space D* is metrizable, since the family 
M(x, .), XED, contains a countable subfamily separating points of D. 

Let h be a fixed function in X3D). For each positive integer-n we define 
"W 

a Bore1 measure p,, on D by the formula 

where v, is the measure from Proposition 4.3. Hence we have 

Since D is an open subset of D*, each measure y, may be considered to be 
a measure on D* which is concentrated on D. The space D* is metrizable and 
compact, therefore (10) implies that the sequence (pn) is relatively weakly com- 

6 - PAMS 20.1 
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pact. Let p be a weak accumulation point of (A). By Proposition 4.3 we have 
p(D)  = 0. Moreover, by Proposition 4.2, for each x E D and each n with x E D ,  
we have 

h ( ~ )  = Go (x) = J 9~ ( ~ 3  Y )  va ( d y )  = J M(x, Y )  H fdy). 
D D* 

Hence 

The set a,D = D*\D may be called the Martin boundary bf D. Note that 
a, depends on a. Thus we have proved the following theorem. 

THEOREM 5.1. For each h E X",(D) there exists a Borel'measure p on aM D 
such that 

It was shown by K. Bogdan (private communication) that the converse of 
this theorem is not true in general. More precisely, he constructed a region D in 
Rd such that for some y €8, D the function 

h (x) = 
MCx, Y ) ,  XED, 

x  $ D ,  

is not a-harmonic in D. However, if we denote by aa D  the set of those points 
y E d M  D  for which the function h defined by (12) is a-harmonic in D, then we 
have the following theorem. 

THEOREM 5.2. Let h be a nonnegative Bore1 function on Rd vanishing o f D .  
Then h E Xz (D) iff there is a Bore1 measure p on a$ D  such that 

h(x)  = J M ( x ,  y)pCL(dy), XED.  
al;;n 

For the proof of this theorem the following lemma is needed. - 
LEMMA 5.3. Let us assume that x l ,  x z  E D  and yo E 8, D,,are given. Let 

rl, r2 be real numbers with 0 < r1 < dist ( x l ,  Dc) and 0 < r, < dist ( x z ,  Dc). Then 

if and only if 

(14) M ! . ,  Y O )  * € r z { ~ z )  = M(x25 YO) .  

P r o  of of Lemma 5.3. Let us choose any sequence (y,) of points of D 
convergent to yo in D*. Let us consider the following formal equality: 
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Assume that (13) holds. This is equivalent to (D, 1). Since M is nonnegative, 
( D ,  I), together with the pointwise convergence of M (-, y,) to MI., yo), implies 
that M ( a ,  y,) converges in L] (D\B (x, , r,), E,, (x, - z) dz) to M (. , yo). Since 

with e being a real number such that r, < Q < dist (x,, DC), also M ( . ,  y,) con- 
verges to M (. , y 3 in L1 (D\(B (x r ,) u B ( x 2 ,  e)), E~~ (x2 - z) dZ). Hence 
(D\(B (x, , r,) u B (x,, el), 2) is true- 

On the other hand, by (9) and the bounded convergence theorem, we have 
( B h ,  rz) u $ ( x z y  g), 2). Combining 

we obtain (D, 2) which is equivalent to (14). 

Proof  of T h e  orem 5.2, Let p be any Borel measure on d g  D. Let us 
define 

Then for 0 < r < dist (x, Dc) we have by Fubini's theorem 

= j Mtx, Y ) P ( ~ Y )  = W x ) .  
a G D  

Hence h E %",D), and the "if' part of the theorem follows. 
To prove the "only if" part of the theorem note that Lemma 5.3 and the 

Fatou lernma imply that y E dMD\dg D if and only if for each x E D and each r, 
0 < r < dist ( x ,  Dc), we have M (., y) * E,(x)  < M ( x ,  y). NOW, let h be any ele- 
ment of 2 3 D ) .  By Theorem 5.1 there exists a Borel measure p on 8, D such 
that we have (11). Let us fix X E D  and r,  0 < r < dist(x, Dc). T L ~ ?  we have 

= J IM(X,Y)-M(.YY)*E~(X)IP(~Y)- 
~ M D \ ~ & D  

Since the last integrand is positive, we have p (a, D\dg D) = 0. Therefore, by 
(11) we have 
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Now we are going to obtain, as for a! = 2, the uniqueness in the Martin 
representation. The main obstacle is the fact that a pointwise limit of or-har- 
monic functions does not need to be a-harmonic. To overcome this we in- 
troduce the following definition. 

DEFINITION 5.4. Let p be a Bore1 measure on Rd such that plD is ab- 
solutely continuous with respect to the Lebesgue measure and its density u is 
Iocaly integrable. We say that p is a-harmonic on D if for every x E D and for 
every positive number S such that B ( x ,  S) c D the following equation holds: 

- - .  . . (XI = Ex P ( X Z B ( X , B ) ) ,  

5 

where 

(15) Ex p tX,,(,,,)) = j PX (XT,(,,,) f d ~ )  MY) 

= S E ~ ( x - Y ) u ( Y ) ~ Y  + j E . ~ ( x - Y ) ~ P ( Y ) .  
D Dc 

Note that we may put u = 0 on DC. Then every function fe *",a may be 
considered to be an a-harmonic measure p such that piDc = 0. It is easy to 
verify that the basic properties such as the Poisson integral representation and 
the Harnack principle remain true also for a-harmonic measures. Since the 
notion of a-harmonic measure is a natural extension of the notion of an 
a-harmonic function, as for functions we will denote the set of these measures 
by 2" (D). We will also denote by &'",D) the set of the measures p  E &'" (D) 
such that PI,, = 0. Moreover, from now on we will denote the densities of some 
measures p,  v E S" (D)  by u and v, respectively. 

Now, let %? = X",D) and let X = ( p  E 2; (D): u (x,,) = 1). Both %' and 
X are convex. Moreover, X is the intersection of % with the hyperplane 
{p: Lp = I), where L is a linear functional defined as L(P)  = u(xo). 

To start with the next theorem we need some technical lemmas. 

LEMMA 5.5. Let A be an open subset of Rd. Let p be a measure on Rd. Let 
v be a measure which is iabsoluteEy continuous on A with respect to the Lebesgue 
measure and let its density be given by the formula - 

. e m  

(I6) v (x) = Ex P (XzA) = j PX (X,A E d ~ )  d~ (Y), x A .  
AC 

Moreover, let v p on A'. Then v E Xa (A). 

Proof.  Let B be an open subset of A such that B E  A. Let x E 3. Hence, by 
the strong Markov property and the Fubini theorem, we have 

= Ex (EX"" p (X,,); z, < T A )  + j Px (X,, E d y ;  TB = T ~ )  d p  ( y )  
A f 
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= j Px(X,, E dy) dv ( y )  = F v (X,,) = u (x). 
A= - . 

This completes the proof. 

We will call the measure v defined in Lemma 5.5 an a-harmonic extension 
of p onto A. 

LEMMA 5.6. Let S be a positiue number. Let + E  C" (R) be u nonnegative 
function for which j, 4 (x)dx = ~i~ $(r) dx = 1. D@ne rhe kernel E? as 

Then E ~ E C " ( R ~ ) .  Moreover, p € X a ( D )  $f for each X E D ,  for every 
6 < dist(x, 8D) and for each function 4 dejined as above we have 

u(x)  = S E $ ( X - Y ) ~ P ( Y ) .  
Proof.  The proof of the first part is easy. To prove the second part 

consider the following two equations: 

and 
6 

(18) u ( ~ )  = 1 J ~ ( ~ ) E , I X - - Y ) ~ Y ) ~ ~ ~ Y  = J $ ( ~ - Y ) ~ ( Y ) ~ Y -  

I f  (17) holds, then (18) is an immediate consequence of the Fub-@ theorem. 
Conversely, if (18) holds for every 4 defined in our lemma, the?- we have 

for almost every r ~ ( 6 / 2 ,  6). Since E, (z) is a continuous function of r for r < 121, 
we obtain (17). This completes the proof. 

THEOREM 5.7. The set X is compact and rnetrizable in the topology of weak 
convergence of measures. The set is a vector lattice (in the sense of the dejini- 
tion from 111). 

P r o  of. Let p,, E X for each n~ N. Let r be a positive number such that 
B (xo,  r) E D. By the Harnack principle, the functions u, are uniformly bounded 
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on B (x,, r) . Moreover, we have 

Since D is compact, id,, E,(x,,- y) > 0. Therefore, for each n, p,, (D\B (xo, r)) 6 c 
for some constant c. This implies that the total masses of the measures p, are 
uniformly bounded. Hence for some sequence nk we have A, +- ,u. By the Har- 
nack principle, the densities un are uniformly bounded on every compact set 
A ED. Therefore, p must be absolutely continuous on A with respect to the 
Lebesgu~ ikasure and its density u is equal to limb.+, u,. Let XEA. Since 
u, are or-harmonic on D, by Lemma 5.6, for sufficiently small 6 > 0 we have 

The function f (x, y) = e$ (x - y )  is uniformly continuous on K . x  D and 
P(R~) < a, SO u is continuous on D. Hence we obtain 

lim u,, (x) = u (x) = S ~f (x - y) dp. (y).  
k- r  rn 

Clearly, u(x,) = 1. Hence, by Lemma 5.6, p is a-harmonic on D. Therefore we 
have proved that every sequence chosen from X has a point of accumulation 
which is also an element of X. This shows that X is compact. Since X is 
a bounded set of measures on a compact and metrizable set, the weak conver- 
gence topoIogy on X is a metric one. 

Now let us focus on the second part of the theorem. Let ply j i2 E &'",D) 
and let p = pl v p,. pis  the least measure that dominates both p1 and p2. Since 
jil and ,u2 have densities on D, the same property holds for ,u and its density is 
equal to u = u1 v u, . For each n E N, let v,, be an a-harmonic extension of 
p onto D,. Since ,u < pl +p2, for each x E D, we have 

Naturally, v, = u < ul +u2 on D\D, and v, = p on D" Hence we obtain 
Iv,l < lpll + 1p21. The similar arguments as in the first part of the-theorem show 
that for some subsequence nk we have v,, =- v E Xg(D and u = lim,, , un, is the 
density of v on D (with respect to the Lebesgue measure). Moreover, if U is an 
open neighbourhood of aD, then we obtain 

and since ul, u2 are integrable, the following statement is true: 
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But this implies that v = p on aD. Moreover, if X E D , ,  then 

Hence v 2 ui on each D,, so on D. Therefore, v dominates p1 and ,u2 on Rd. 
Now let v' E &?$ (D) be another upper bound for p, and pz. We have v' 2 ,u and 
v' 3 u ,  v u, on D. Then for x E D, we get 

Hence vl(x)  2 v (x), so v' 3 v on D. Moreover, since v' 2 p and v = j ~ o n  aD, we 
I see that v' 2 y on dD, so v' 2 v on Rd. Therefore, v is the least upper bound for 

Ply P2. 

The existence of the greatest lower bound can be proved analogously and 
the vector part of the definition is immediate. The proof is now completed. 

Next we have to identify the extreme points of X.  

D E F ~ T I O N  5.8. A measure p E &'"(D) is called minimal harmonic on D i f  
for every measure v E #a ID) such that v < p there exists a number c for which 

i v = cp* 

PROPOSITION 5.9. A measure p is an extreme point of X I# p is minimal 
harmonic on D. 

P r o o f  The proof is similar to that for oc = 2 (cf. [I]). 

Now recall the fundamental Choquet theorem: 

THEOREM 5.10. If a set A is convex, compact and metrizable, then for every 
X E A  there exists a probability measure p supported on the extreme points of 
A such that x is the barycenter o fp .  IJ in addition, A  is the intersection of some 
cone C with some hyperplane and C is a vector lattice, then p is unique. 

Our sets X and W satisfy the assumptions of this theorem. Now fix x ED. 
Define a linear functional Lx as Lx (p) = u (x). By the Harnack principle, 
lu(x)l < c for each p E X ,  SO Lx is continuous. Therefore 

where 1 - 1 ~  is a unique probability measure concentrated on the extreme points 
of x. I 

We now turn back to a-harmonic functions. Recall that each function 
u E XE (D)  is a density of some measure p E &x(D such that pi,, = 0. We may 
assume that u(x,) = I. So if B is a subset of D such that B E D  and x E B, then 
by the Fubini theorem 
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But, from Definition 5.4 we obtain EXv(X,,) 6 v(x), so we get 

~ ( 4  C) j V ( ( X P X ( V )  = d x ) .  
;a 

This implies that py is concentrated on these measures v for which 
Ex v (X,,) = u (x). Hence we have proved that px is concentrated on the 
a-harmonic functions V E  #",Dl which are minimal harmonic. But we also 
have the following 

PROPQSITION 5.11. If a function f E 2; (0) is minimal harmonic on D, then 
f - MC;, y) for some y € d M D .  

Proof.  Since Theorem 5.2 holds, the proof is similar to that for a = 2 
(see 113). 

We denote by d,D the points Y E  aMD for which the kernels M (., y) are 
minimal harmonic. The set d,D is called the minimal Martin boundary. Thus 
we have proved the formuIa 

Since M ( - ,  y,) # M I . ,  y,) for yl # y,, we may assume that is a measure 
concentrated on 8,D. Therefore, we have proved the following 

THEOREM 5.12 (the Martin representation for a-harmonic functions). 
A function u is w element of 2 5  (D)  ifl there exists a unique measure ,LI concen- 
trated on d,D such that for every x E D 

= 1 M t x ,  Y ) ~ P ( Y ) .  

We wil l  end this paper showing an exampIe of a set D for which 
a,D # 8, D. The idea comes from K. Bogdan (private communication). 

Let points x,, n  > 1, be elements of a ray, which has its origin at x,. 
Moreover, let dist(x,,xl)<dist(x,+l,xl) for each- n, and let 
d, = dist (Bn, B,+ ,) > 0, where B, = B (x,, r,), and C , ( d ,  + 2r,),,< a. Then if 
we set D = U,Bn, we obtain an open bounded subset of Rd. 

Put x, = xl and embed D into D4. Since D* is compact, we can find some 
subsequence of (x,) which converges to some y E 8, D as n + co. From now on 
we will denote by xh the elements of this subsequence. We will show that 
y $8, D. Since M (., xk) is a-harmonic on D\(xL), for every x E D  and sdllciently 
small 6 > 0 we have 

Hence it is enough to show that there exists a positive E such that for each 
open neighbourhood U of y there is a positive integer n such that X L E  U and 
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j, M (2, xk) dz 2 E. For if this condition holds, then the sequence of measures 
with the densities (with respect to the Lebesgue measure) M ( . ,  xk) is convergent 
to an a-harmonic measure with a positive mass at y and with the density on 
D equal to M ( - ,  y)  (see Theorem 5.7). Hence we will obtain the inequality 

Let pa be a natural number for which B, c U. We use the following es- 
timation (see [?I): 

go?, x n ) 2  gBm&, x.) 2 A, min 
1.2 - xnld -a ' Iz - xnld 

5 

where 8 (x) = dist (x, dB,) and A, is a constant which depends olily on d and ol. I 

In our case 6 (x,) = r,, 6 jz) = r, - Iz - xnl. Therefore, 
I 

where 

Substituting Iz-x,l = r, t we see that 

A = ( Z :  O <  (1-tyi2 <tor  < 1 ) = ( ~ :  €0 < t <  I), 

where EO = ($ - 1)/2. Hence 

1 (r,, - r, t)"I2 (1 - tY2 
= A2 r$j2 1 (trJd- ' rndt  = A2r i  s- dt = C, r;, 

Eo (trJd eo t 

where. the constant C1 does not depend on U. 
Now, since x0 E B,, for n 2 2 we have 

For i = 1 we see that Ixn-zl 2 dl +rn and we have 
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where the constant A, does not depend on U .  
If we assume that the sequence (di)i31 is nonincreasing, then for i 2 2 we 

have Iz-xnl 2 di + r, and Iz- xol 2 dl ,  so 

and, again, the constant ' A ,  does not depend on U. Hence 

If we set d ,  = 2 - i  and ri = 4-', then we obtain g,(xo, x,) G C ,  r i ,  where 
C, does not depend on U. Thus we have proved that for every positive integer 
n such that B, E U, 

J M (z, x,) dz = 
Ju g~ (2, xn)dz 

2 ClIC2, 
U S D ( ~ O ,  XJI)  

which we wanted to show. 

Remark.  If we put D' = D\U, {x,), then the above calculations show 
that there exists a sequence of a-harmonic functions on D' which is convergent 
on D' and its limit is not a-harmonic on D'. 
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