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Abstract. We prove a contraction principle for vector-valued 
martingales of type 

where X is a Banach space with elements x,, . . ., x,,, (A& c Ll (9, P) 
a martingale difference sequence belonging to a certain class, 
(Hi)?, I c L1 ( M ,  v) a sequence of independent and symmetric random 
variables exponential in a certain sense, and A; operators mapping 
each Ai into a non-negative random variable. Moreover, special opera- 
tors Ai are discussed and an application to Banach spaces of Radema- 
cher type u (1 < a < 2) is given. 
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INTRODUCTION 

For vector-valued random variables we relate the prope~ty martingale 
dzflerence sequence to the property independent and symmetric. This..is done by 
the consideration of inequalities of type 

m n 

where X is a Banach space with elements xl, . . ., x,, (Ai)?= c L1 (a, P) a mar- 
tingale difference sequence belonging to a certain class, (Hi)$ l c L1 (M, v )  
a sequence of independent and symmetric random variables, and Ai operators 
mapping each A i  into a non-negative random variable. Our interest in inequali- 
ties of form (1) comes from the following two aspects. First, they extend the 
classical contraction principle to the martingale setting. The classical contrac- 
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tion principle corresponds to the case where A , ,  . . ., A, are independent and of 
mean zero, Hi,  .. ., H,  are the Rademacher variables, and Ai(AJ = Id,[. Sec- 
ondly, in Corollary 7.2 these inequalities lead us to martingale inequalities in 
Banach spaces having type a, which extend the defining inequality from Defini- 
tion 7.1, in which the Rademacher variables are involved. Herewith we want to 
indicate a way for further applications for inequalities of type (1). 

Let us recall known results with respect to (1). Assume that I : = (0, . . ., N )  
with N 2 1 or I : = (0, 1,2,  . . .) and that (gk)k,I is a filtration on a probability 
space La, 9 ,  PI such that 99, = 9 = VkEi gL. We let 

. - 

d((gk)kE~): = (f = tJJkEi c LI @, g, adapted I fo = 0, . 

fk = E(f,Igk) a.s. for k ~ 1  and some f ,~L,( l2 ,  9, P)}, 

with dfR : = fk -fR- for k 3 1 and dfo : = fo. The sequence (h,),"=, c L, 10, 1) 
stands for the Baar functions 

normalized in L,  [O, I), ri , r, ,  . . . E L ,  [0, 1) for the Rademacher variables 

the sequence g,, g2,  . . . for independent standard Gaussian variables, and 
gap,, s.,~ , . . . from L1 (M, v) with 2 < a < oo for independent random variables 
distributed like 

00 

v (ga,i > A) = ua 1 exp (- Itla) d [  for A E  R,  where IC, : = ( j  exp (- ((1") d5)-' .  
1 R 

The known cases in which (1) is satisfied can be listed as follows: 

where 1 = l/a+ 1/b, 0 = 20 < . . . < 2, = N is any sequence of stopping times, 

and (521 (o))f= is a non-increasing rearrangement of ((Ixrri - < k  Gri1 dfk (~)l):= 
Statements (a) and (c) are proved in 191, statement (b) can be found in [Sj. 
There is a basic difference in the proofs of (a) on the one hand, and (b) and 
(c) on the other hand. In (a) an induction argument due to Kwapieri and 
Woyczyliski is implicitly used, whereas (b) and (c) are based on majorizing 
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measure type theorems due to Talagrand. The aim of this paper is the further 
development of the method used in (a). This is done as follows: 

(i) Our basic result is Theorem 3.4. It is based on extrapolation and on 
Lemma 3.5, which contains the arguments of Kwapien and Woyczydski. Theo- 
rem 3.4 aIIows variables HI, . . ., H ,  on the right-hand side of (1) not necessarily 
identically distributed (the results, mentioned above, use identically distributed 
variables). Moreover, Theorem 3.4 provides an alternative approach to asser- 
tions (b) and (c) which does not use deep majorizing measure type theorems 
(see Corollary- 6.6 and -the remark below). 

(ii) ~ h ~ - a s s u m ~ t i o n s  of Theorem 3.4 involve operators A; defined on 
martingales satisfying BMOZr-L, estimates. In Theorems 4.7 and 5.3 (and im- 
plicitly in Example 4.5) we extend the known examples of such operators. The 
corresponding applications to Theorem 3.4 are given in Section 6. 

(iii) In Section 7 we deduce a martingale inequality in Banach spaces 
having the Rademacher type a? (1 < ol < 2) and relate this inequality to a corre- 
sponding inequality in Banach spaces having a modulus of smoothness of 
power type a. 

1. SOME GENERAL NOTATION 

Throughout this paper all Banach spaces and random variables are as- 
sumed to be real. For a probability space [Q, 8 ,  PI and a Banach space X we 
let Lt(Q, 8 ,  P)  be the space of dl Borel-measurable f: 52 -+ X such that there is 
a closed separable linear subspace Xo G X with P (f EX,) = 1, where 

and L ~ ( S Z , ~ , P ) : = ( ~ E L ~ ( Q , B , P ) ~ ~ > O ~ . ~ . ) .  

Given a compatible couple of Banach spaces (X,, XI) and 0 < q < 1 we use 
-,* 

where, for t 2 0, 

is the usual K-functional (see [I] for more information concerning the 
K-functional and interpolation spaces). Moreover, we make the conventions 
that infa:= oo and that A - , B  stands for c-'A < 3 < C A  if c > 0 and 
A, 3 2 0. Finally, we shall use the KhintchineKahane inequality for the Ra- 
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demacher variables stating that 

for all Banach spaces X, n = 1,2, . . ., elements xl, . . ., x, E X, and 0 < p < co , 
where c, > 0 depends on p only. 

Here we introduce the BMO-spaces we are going to exploit. For a com- 
plete probability space [a, 9, PJ we use T: = [0, co) and a filtration (FJO 
such that, see 1151, p. 3, 

(C1) = Fm = VLETq7 
(C2) Po contains all P-null sets of S, 
(C3) Ft = n,,,Fu for t~ T. 
DEFINITION 2.1. (i) We let V 9  be the set of all processes f = ($LET 

E Lo(B, F, P)  adapted to (9r,),,T such that (f,(m)),,, is right continuous 
and has finite left limits a.s. (i.e. f is cadlbgj such that fo = 0 and such that there 
is some f, E Lo (Q, 9, Pj with lim,, , f, = f, a.s. 

(ii) For f ~ % . 9 ( ( ~ ) , , ~ )  and stopping times 0 < a d z < co we let 

"f; (4 : =f,(,) r (4 -fmc,, . t (4, T : = rf &T, and f' : = Of'. 
(iii) A subset E c_ %'9 is closed under starting and stopping pro- 

vided that " f ' ~  E for all f E E and all stopping times 0 6 a < z < m. 
(iv) We let be the set of uniformly integrable martingales 

f = {ftlte~ from g g  ( ( % ) t e ~ ) .  

So, given f ~ q . 9  ((SQET) and a stopping time z: L! + [0, mJ, we also have 
f, and f,, which are unique a.s. 

DEFINITION 2.2. (i) Let 9 be the set of all increasing bijections 
$: [I,  CO) + [l , CO) and 9 c 9 the subset of all $ E 9 such ,(hat 

(ii) Given $ E 9 we let 

Obviously, $E 9. For a stopping time z: L? -, 10, m] and f = (fltET E 

g.9(L%)tET) we use 
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where 0, is a set of measure one on which is right continuous and has 
finite left limits. The random variablef,- is unique as. Moreover, given B E  .F 
with P ( B )  > 0, we let P, be the normalized restriction of P to 3, otherwise we 
set B B : =  0. 

DEFINITION 2.3. Let f E GR9 ((9t),T) and tl/ E 9. 
(i) Il/llsuo+ : = infc, where the infimum is taken over all c > 0 such that 

for all stopping tunes z : Sa [0, ao] and B E  Fz one has 

P~(lf,-f,-I>A)<exp(l-Cl,(ll/c)) . - .  for A>c.  

(ii) 11 f llao; : = ids where the infimum is taken over all c z 0 such that 
for all stopping times z: D + LO, co] and B E  FT one has . 

PB(sup  Ifr-fi-l>A)<exp(l-+(~/c)) for 1 8 c .  
r d t d m  

For the classical notion of bounded mean oscillation for adapted cadlag 
processes the reader is referred to [5], Chapters VI and VII. In 171 it is shown 
that $ is the right tool to classify BMO*-spaces of adapted sequences. The 
following assertion is proved in [7], Theorem 4.6, for the discrete time setting. 
For the convenience of the reader we recall its proof for the continuous time 
setting in the appendix. 

THEOREM 2.4. For I J E ~  one has 

(i) I~.~~BMO; = ~~.IIBYo; c 4 $-I (3) I / . ~ ~ M O * .  
(ii) If IlfllBMo; = 1, L>O. r >  1, a n d f * : =  supt,Tlf,l, then 

P(f* > I + p )  < e 1 - T ( ~ ) ~ ( f *  > A). 

Besides the above theorem we shall use the relation 

where z: Q -+ [0, ao] is a stopping time and $EL@. 
- 

.<,m7 
3. A GENERAL CONTRACTION PRPNCIPLE 

Throughout this section we assume that conditions (Cl), (C2), and (C3) are 
satisfied. Let us first summarize some assumptions needed in the formulation of 
the main result, i.e. Theorem 3.4. 

DEFINITION 3.1. An operator A: E -+ L: (52, 9, B) satisfies property (S) (I) 
with constant d > 0 provided that the following conditions are satisfied: 

(S1) E E %'9((&),T) is closed under starting and stopping. 

(') The symbol (S) should indicate an assumption related to stopping of cidlig processes. 

7 - PAMS 20.1 
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(52) I I A ( s ~ ) I I L , ( ~ , ~  < d IIAgll~,raz,~) for all ~ E E  and stopping times Q. 
(53) For all 0 < 1 < co and f E E  there is a stopping time Q such that 

< d1. (i) @ = 0, a.s. on ( A f <  A),  IIA ( f Q I I I  L_(Q,P) . 
Although the above condition looks quite technical and somewhat ar- 

tificial, it seems that this condition is a right one to guarantee the extrapolation 
of a BMO-L,  estimate to an Lp-L, estimate, needed in the proof of Theo- 
rem 3.4. Moreover, this condition is satisfied in the situations relevant for our 
purpose (see Lemma 6.3). The next definition we need is 

. . - - 
DEEJN&ION 3.2. For F E L: (M, v )  and JI ~ . 9  let 

IlFlly sup - IIFllv := l h r < m  a )  

Remark  3.3. First, note that l]Fll@< m implies FELT(M,v) for 
1 < r < m. The quantity l l - l l l k  is often used because of the following: 

(i) One has 

i n f { c  > 0 I v(llFll > A) < exp(1-$(R/c)) for jl 2 c) < ellFll* 

(a converse inequality fails to be true in general). 
(ii) If there are a, f i  > 1 with a$ (A) < IF/ (PA) for all R 2. 1, then there is 

a converse inequality: For example, by Lemma 3.7 one can see that 
v(JlF1l > A) < el-*(" for R 2 1 implies that llFllQ < c ($ ,  a, /?) < oo. 

THEOREM 3.4. Let a),, ..., $ , ~ 9 ,  H I ,  . .., H,EL , (M,  v) be independent 
and symmetric with 

~( IH~l>A)=exp( l -a )~ (Av l ) )  for L 2 0 ,  and Hi :=4$ ;1 (3 )~ i .  

Assume that Al , . . . , A,: A ((&)tET) 2 E + Lo+ (Q,9, P)  satisfy property ( S )  with 
constant d > 0, that 0 = z,, < zl < . . . < z, < co are stopping times, and that 

II"-Lf'lleMo;i <IIAi("-l/")llLw(a,n for 1 < i < n  and f e E .  
- 

Then the following holds: *,- 

(i) For all a) E 9 there is a c > 0 depending on d and I) only, such that for 
f E E, elements x l ,  . . ., x,  of a Banach space X ,  and 1 < p < co one has 

(ii) There is a c > 0 depending on d only, such that for f~ E ,  elements 
x l ,  ..., x, of a Banach space X ,  and 1 < p < co one has 
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Before we verify Theorem 3.4 some lemmas are needed. The first: one 
follows directly from the induction argument given by Kwapien and Woyczyri- 
ski in [12], Theorem 5.1.1. 

LEMMA 3.5. Let 1 d r <  m, let (3i)r=o be a filtmtion, and let 
(Ai): ,  c L, (a, B) be adapted with respect to (gi)q=, . Assume independent 
HI ,  . . ., H,,E L,(M, v)  and a Banach space X be such that for all 1 6 i 6 n and 
x ,  YE X one has 

E(llx+Aiyllr] gi-1) G Ellx+Hiyllr a-S- 
- - .  . . 

Then, for all, xl, . . ., x, EX,  one has 

LEMMA 3.6. Let $ EB and A E L1 (0 ,  P) of mean zero. If for A 2 1 one has 

P(lA1 > A )  g el-$(') 
I and if H ( t )  : = ( 1  +logtbl)€ Lo(O, 11, then 

for all 1 < r < oo, all elements x ,  y of a Banach space X ,  and c : = 4$-'(3). 

P r o  of. First we remark that [7], Lemma 4.4, implies $(A) 2 ;l/c* for 
some c* 2 1 and all I 2 1 so that el-$(') < exp (1 -(lie#)) for 1 2 1  and 
AEL,(O, 9, P) as well as HEL,(O, 11. 

(a) We show that 

Since 

2exp 1-1) - v l  1 for ABc,  ( 6 )) 
it remains to check that 

2exp 1-$ - Gexp 1-I) - for A2 c. ( (:)I ( (3) 
Setting po : = $-I (1 + log 2) we get 

which implies the desired estimate. 
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(b) Now let A' be an independent copy of A.  Then, for 1 3  0, 

and 

cf. [13], Lemma 4.6. a 

The last lemma we need is Lemma 7.1 of [2]: 

LEMMA 3.7, Let f, g~ L: {M, F, PB) and 0 < p < c~ be such that for some 
P > 1  and 6, E > O  with P P E <  1 one has 

P r o o f  of Theorem 3.4. For fixed O < c  < m we introduce 
U, .V: E EL:  (a, 9, P) as 

n 

Uf(a):=IIE ri-tf:i(~)]~iI(X and Vf(o):= sup Ai("i-tf'i)(w). 
i = l  1 CiSn 

The constant c is introduced for convenience to define US (w) uniquely without 
the closure fa. Note that (f ,U),,T : = (U (f t))tET E %?Y ((%)tET). 

(a) Let z: D + [0 ,  m] be a stopping time and B E F ~  of positive measure. 
Then for 1 < r  < and a :=  z A T ,  n c  we obtain - 

C,,!. 

IIf E -f r"-IIL,(B,PB) IIf Y-f aU- IIL,{B,P~) + IIf Urn -f YIIL,(B,PB) 

The first summand can be estimated via 
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ToestimateS, welet Bi :=Priv,and di:=ri - l f~- ' l - f f :*Acfori=  1, ..., nand 
obtain a martingale difference sequence (d i):= c L1 (0, 9, B) with respect to 
(Bi);=, . Assuming Bi - E gi- of positive measure, IIV(f 911L,(a,P) < B, and 
1 3  1, our assumption implies IIG-l(fc)"llBMo;, < /? and 

. . - - 
P . , - , ( B - ~  1 ~ 4 ;  aj= p B , , ( p - l  1 ~ - 1 ( p y ; - ~ - 1 ( ~ ? : ; - ~ . . 1 ,  A) G e ~ p ( l - ~ l , ( q ) .  

Applying Lemmas 3.6 and 3.5 yields 

so that 

(b) For the proof of assertion (i) we continue by dividing (3) by $- (r) and 
by taking the supremum over 1 < r < ao so that, by Theorem 2.4 and Re- 
mark 3.3, 

- 
(c) For the proof of assertion (ii) we use $(A) := 1 +log1 and obtain 

from (3) (P = 1) and Theorem 2.4 

(d) Now let us fix f E E ,  0 < 6 < 1, and i > 0. Property ( S )  implies the 
existence of stopping times e l ,  .. ., en such that 

ei = m as. on {Ai ("- Y m )  I di)  and IIA~(C~-Y")~~)II,,,,, djn. 
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Setting Q : = infi= l,...,, ei we get 

g = cg a.s. on {Vf 6 61) and 11 V (f @)llL,(O,p) G d2 6A.  

Hence, for g : = f a ,  

~ { V J S ~ A )  U*f if UU*g G U*f a.s., 

where U*h (w) : = sup,,, U (K) (w). Let v > 0 be such that 

in the case of assertion (i) and v > 41,b-' (3) (1 + d )  llz=, f l i  xillL:(M,;) in the case 
of assertion (ii). Inequalities (4) and (5) yield 

l l ( ~  ( g t ) ) t e ~ l l ~ ~ 4  vdZ 61. 

so that, by Theorem 2.4, 

P (U*f > (1 + d2) d, Vjh< 6A) < P(U*g > (1 + d2) vR) 

< exp (1 - $ (1/6)) B(U*f > >A) 

and 

P(U*f > (1 + d2) 2 ,  vVf < SR) d exp (1 - $(1/6)) P ( u * ~  > A) 

for 11 > 0 and 0 < 6 < 1. Choosing K: 2 1 with 

e l - " ( l+dZ)<$  and 1/6:=$-l(xp)for 1 < p < o o ,  

from Lemma 3.7 we derive that 

IIUYIIL, < 2(1+d"~$-~(~p)IIVf IIL,. 

Exploiting $ - l ( r c p )  < ex$-'@) ([7], Lemma 4.4) and $-l@) < ep if 
t,b (1) = 1 +log 11 (173, Example 4.3) we arrive at our assertion by c + co chosen 
in the beginning. H 

- 
<,n 

4. OPERATORS WITH TAIL BEHAWOUR exp (-I) (A)), WNERE sm,, A'/$ (A) = 0 

In 191, Lemma 3.5, it is shown that 

(6) p(lf~l > a ~\ll(d&)~=~!i~7,m\\L~~Q,p,) < exp (1 - (jl/cp)Ol) 

for f E P ( ( ~ ~ ) & ~ )  and 1 2- cp,  where 1 < p < 2 < u < co, 1 = l /a+ l/p, and 
where l;, is the usual Lorenz sequence space. Therefore, in order to obtain 
BMO$,-L, estimates needed for Theorem 3.4, we introduce the following ope- 
rators. 
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DEFINITION 4.1. Let y = (yk)F= be a sequence with 0 < y 6 y ,  < . . . < cn 
and limk,,yk = a. 

(i) We let 

where (tz,N)El'= is a non-increasing rearrangement of (ISk[);= 
(ii) We let S,: 9((gk)p=0) 3 E,  3 Lgf (a, Y? P)  by given by 

on (Il(dfk))Am=~\II~.m < m) and S, f (a):= 0 otherwise, where 

E, : = { f E 9 ((gk)P=()) I (dfk)?= I E l Y s m  as.). 

We are going to replace in Theorem 4.7 the quantity Il(dfk);= lIIl;,m of (6)  by 
S ,  f with y E 9: and exp (1 -(A/c,).) of (6) by exp (1 -I) (jllc)) with $ E 9$ (9': 
and 93% are given by Dehition 4.2). It turns out that there is a complete 
interplay between 9, and 9': which will be described in Proposition 4.3. 

4.1. The sets 99% and 9:. 
DEFINITION 4.2. (i) The set of all convex decreasing bijections 

W 11, m) 4 (0, I] is denoted by W. An increasing bijection I): [I,  oo) + [I, co) 
belongs to 9$ provided that there is some WEW such that 

(ii) We let y = (y,),",l~9': if 1 < y1 G yz  < ... < a, 

One easily sees that a$- c 3. Now we describe the interplay between 
W and Yf, and therefore between 9: and 9':. 

PROPOSITION 4.3. (i) Let y = (y$L E 9': and define W,: [I, oo) (0, 11 by 

and piecewise linear otherwise. Then W, E W. 
(ii) Let W E W  Then there is a unique sequence yw = (y,,,)?=, c (1, co) 

such that 

Moreover, y, E 9':. 
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(iii) For Wi , W, E W with y,, = y W ,  and I >, 1 one has 

Wl (24 6 W' (A) and Wz (24 < WI (A). 
Proof.  (i) The function W, is strictly decreasing and satisfies 

lim,,, W,(2) = 0. Moreover, W, is convex because of 

for k = 1, 2, ..., x, := 1, n, := l+x;=, ( l /y , )  for 1.1, and B k € ( O ,  1) chosen 
such that xk = (1 - Ok) xk - + flk xk+ I .  Consequently, Wy E ̂W: _ 

(ii) Sin&-/?, -+ w (1 +PI) is convex, /I1 -t 1 - P: concave, limpl + W (1 -k P I )  = 
= 0, and-iima,,, (1 -8:) = - oo, there is exactly one 0 < < 1 such that 

Now assume that we have 0 < fll, ..., /Ik i,< 1 such that 

Using the argument from the first step we find exactly one 0 < fi, + < 1 such 
that this equality is satisfied for k-t- 1 instead of for k. Setting ykPw := 1/Pk we 
have found the unique sequence y w .  It remains to show that y , ~  9:. Since 
W is convex, one can deduce from (7) with y j , ~  instead of y j  in the definition of 
the x, and Winstead of W, the inequality y,,, < yk+ ,,,. Finally, we verify that 

Assuming 

and observing that 

we obtain a contradiction to the fact that there is some E > 0 such that for all 
1 < a < b < a one has 

W P ) -  W ( 4  < -1. 
b-a 

(iii) Let y = yj,wi = y j , ~ *  and ( ~ $ 2  be given as in the proof of (i). As- 
suming A 2 1 with xi- d 2A < xl for some 1 3 1, we can conclude 
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DEFINITION 4.4. The pair ($, y ) ~ g $  x 9: is called related provided that 
for r(r (A) = AZ/W(R) one has yw = y, where y w  is the sequence from Proposi- 
tion 4.3 (ii). 

EXAMPLE 4.5. Let 1 < f l < 2 < a <  a, 1 = l / P + l / a , u ~ R ,  and A, B > 0 .  
Define 

yk : = rckl'fl [ A  +log k]" and $,,,(A) : = 1" [I + B log A]"" for I 2 1 

with rc2 : = Zkm=, k-=I' [Atlog klWZu. Then one has the following: 
(i) y := ( Y ~ ) ~ = ~ E ~ ~  and $ I , , ~ E ~ $  for A,  B 3 C(E, pa) > 0. 

(ii) If A ,  B S  b (M, u)-> 0 and if t,b E 53$ and y are related, then 

for 11 3 1, where c 2 1 depends on a, u, A, and B only. 

P r o  of. (i) follows from a simple computation. For example, for y E Y i  
one can check the monotonicity of the function t + t1/b [A +log t]" for t B 1. 

(ii) Since for h~ 9$- and 1, p 2 1 one has pZ h (A) < h (PA), it suffices to 
show that 

$ a , t , b  (A)  for A 2 I and some c' 2 1, 
or 

9 (4 0 < inf - 9 14 < sup --- < cO 
A>no $a," (IZ) l a l o  $a,u (2) 

for some A,, 5 1. Setting xk : = 1 + x:=, ( l /yd for k 2 1 it is known that 
k 1'" " 1 k1 -(ZIP1 

xk -d and 
[1+ log k]" ~ = k +  1 -i"d[l+logk]2y' Y I  

where d 2 1 depends on p, u, and A only. Hence 

xk" k2ja/[l + log kI2" 
(xk) = ,(x3 "" kl -@/bI/[l+ log k]" = 

(note that W(xk) = l -z:=, (l/y?) = ELk+ I (I/$)) and, for xk <-A G xk+ I,  
rri* 

Moreover, there are ko E (1, 2, . . .) and d' 2 1, both depending at most on 
a, u, B, and d such that 

for k 2 ko. Hence we have (8) and are done. H 
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Remark  4.6. Let $ and $,,, be from Example 4.5 (ii) and take symmetric 
i.i.d. I f 1 ,  , . ., H ,  E Lo (M, v) and symmetric i.i.d. Hy, . . ., Hi," E Lo ( M ,  v )  with 

v (IHil > A) = el-*'') and v ((HTu( > A) = exp (1 - t,ba,u(,l)) 

for II 2 1. Then it can be easily seen that 

1 i =  1 i U  i =  1 
for l S r < m ,  

where c > 0 is taken from Example 4.5 (ii). 
- - 

42. ~ h k  itail ~behaviow generated by the operators S,. In the sequel we use 
the ~ e b & u e  measure 1 . 1  on [O, 1) and the dyadic a-algebras on 10, 1) given by 

w 

59dgyad : = {a, LO, I ) ) ,  spd : = c { r l ,  . . ., rk), and $Zd : = V 91fyad, 
k =  0 

where (rk)F= c L,  LO, 1) is the sequence of Rademacher functions. 

THEOREM 4.7. There exists an absolute constant c 3 1 such that for all 
related pairs (t,b, y )  E 9. x YT the following is sati@ed: 

(i) For f E ET G 9 ((gk)P= 0) one has 

S,f(s)=I  for s ~ [ O , l )  and I{(fml>1)12e1-*'""'or 1 > c .  

P r  o of. (i) Because of fN -t f, with respect to the Ll-norm and because of 
IJS, fNJILm < IISyf l l L m  it is sufficient to prove the first assertion for f N  with 
N > 1 instead of for f itself. For 5 ,  2 5,> . . . 2 tN 2 0 and 1 2 1 we first 
show that 

By an extreme point argument it is enough to consider y k &  = 1 for 
k = 1,  . . . , N .  Since the case z:= ( l / y k )  < l is trivial (here we obtain 

N II(G)f= l l l l y  C 9, we consider zk = ,  (l/yk) > 1 and choose 1 <'Go < N with 

We obtain 
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SO that $ (A)'/' (~~=,+, ti)'i' < 21. Since also 

inequality (9) follows by using the decomposition 

Now, according to Theorem 4.1 in [I11 (see also the proof of Lemma 3.5 in [B]) 
one has - . . . 

(10) ~.(lhl > c l l ~ ( ( d f 3 = , ,  p; C, l!)llr.la,m) < exp(1 -p2) 

for p 2 1 and f €9' (($Fk)[=,,), where c > O is an absolute constant. Combining 
(10) for p = $ (A)lI2 with 

where (df: (a))[= is a non-increasing rearrangement of (dS, (o)),N_, , and (9) 
yields assertion (i). 

(ii) We apply [13], Lemma 4.9, and get an absolute constant c 2 1 such 
that for R 2 c with 

z-L<J.< and n e { 2 , 3 ,  ...} 
k = l  Yk k =  1 Yk  

we can conclude that 

with d := ,/- (we use 8 $(2A) 6 $(23A) in the last - step). H 

5. QPERATORs WITH TAIL BEHAVIOUR exp (- $t (A)), WHERE $(A) = I?" A N D  a E [I, 2) 

The situation of this section differs basically from the situation of Sec- 
tion 4 which can be illustrated by the following example: 

EXAMPLE 5.1. For some N 2 1 let P: RN + [O, CQ) be Borel-measurable 
with 

F ( t 1 ,  .--, 5 ~ )  = F ( 8 1 5 1 , . . - ,  0 ~ 5 ~ )  for all o k ~ { - ~ >  

Let E be the set of mean-zero dyadic martingales f = (fk)F= c L1  [0,  1 )  and 
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assume that 

(11) A: E + L: [ O ,  I), given b y  Af (w) := F ( d ' ( w ) ,  . . ., dfN(w)),  

satisfies for some fixed O < p < a and all 12 2 1 the tail estimate 

Then there is a c, > 0, depending on p only, such that for all ~ E E  one has 

. . 
N N 

~ r ~ o f .  For o = €RN and f'" := (El= ,  x~~~~~ a,r&=o e E  we obtain 
by Khintchine-Kahane's inequality for the Radernacher functions 

Ilalll~ 4 cpllf!t)HL,,,ro,l, G cpIIAf'Q'llL,ro,ll = c p F ( ~ l ,  - -  ., NN). 
But now Azuma's inequality (see [4], [16], [lo]) implies for all f EE and all 
a > o  

Consequently, the 'mild' tail behaviour of (12) already implies the 
sub-Gaussian tail behaviour of (13). This means, in order to find operators 
which describe the tail behaviour exp ( - i,lt (A)), where $ (2)  = A" and or < 2, in 
a proper way we have to look for operators which are not generated as in (1 1). 

DEFINITION 5.2. For 6 = (8k)2= with Ok E ( - 1, 1) and 2 < g < o~ we let 

be given by 
N 

N on (sup IE,=, dk kllp d ? (  < OO) and (S,,, f) (m) : = 0 otherwise, where 
N 3 1  

THEOREM 5.3. Let 1 < a < a < 2 < p < p < CQ with 1 = l /a  -I- 1/B and 
l=l /c~- t l /e  or l = a = a  and g = f i = a o .  

(i) There is some c > 0 depending on e and P only, such that for all 
8 ~ ( - 1 ,  I)* and f E E ~ , ~  one has 

P (Ifml > llSe,ef l l  m) B ~ X P  (1 -(a/c/c)") for a 2 c. 

(ii) For f : = (E (f, 1 9tyad))r=, and Ok : = (- with 
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one has 

For the proof of Theorem 5.3 the following lemmas are used. 

LEMMA 5.4. There is some c > 0  such that for 2 d r < a and 
f E A ((gk)f= O) one has 

where II(Sk)~==illvZ(e~:= ~ u p l ~ ~ ~ ~ l 0 1 < l + . . . + 8 ~ 5 ~ 1  and O = ( 8 k ) r = 1 ~ { - l ,  1IN. 
T - 

P r o  of. One has to use Theorem 11.1.1 of [ d l ,  Theorem 3.1 of [3], and 
Doob's maximal inequality. a 

LEMMA 5.5. For 0 <?/< 1,  8=(dk )F5 '=l f ( - l ,  1 I N ,  and x = ( < ~ ) ~ = ~ E R  N 

one has 

SUP k - ( l - ~ ) i Z ~ e , t , + . . . + s , r k ~  G Il(tk):=,II,,,,,,,, ,,,,,. 
1 B k S N  

Proof.  We fix 1 < ko < N and set to : = k; lt2. For x = y + z  we obtain 

Hence k;(1-q)12 10, t1 + . . . + dk, tkol < to" (x, to;  1$,  V: (0)). H 

LEMMA 5.6. For 0 < 6 < c <  1, N >  1, and ( < k ) & l € ~ N  one has 

Sup II-E<l+...+k-Etkl<C SUP k-61<1+...+{kl, 
A= 1,. ..,N k =  1, ..., N 

where c > 0 depends on 6 and E only. 

Proof.  We let q o : = O  and ~ ~ : = c ~ + . . . + @ ~  for 1 < k < N .  Hence we 
have to show that - 

SUP Il-"(ql-qo)+. . . + k - " ~ ~ - ~ ~ - ~ ) 1  < C Sup k-']val. 
k = l .  ..., N k= 1, ..., N 

This can be rewritten as 

sup ( v l ~ k - ~ + q k - ~  [(k- l ) -E-k-E]  +.. .+ql [1-E-2-EjJ < c SUP k-'tykl. 
k= 1,. ..,N A= 1, ..., N 

To check this inequality it remains to consider qk = k' so that we are done. E 

The last lemma we need is known and completely standard. 

LEMMA 5.7. Let 1 < a <  co and f~ L:(L?, P)  such that for all 2 < r < co 
one has 1 1  f < t/;. Then there is some constant c > 0, depending on a only, 
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such that 

P(f > A ) < e x p ( l - ( V c ) " )  for L a c .  

Proof  of Theorem 5.3. (i) For the same reason as in the proof of 
Theorem 4.7 (i) we can replace f by f for N  E (1, 2 ,  . . .). The case 1 = a = cr 
and Q = fi = oo follows directly from the second inequality of Lemma 5.4 and 
Lemma 5.7. To consider the case 1 < a! < a < 2 < Q < P < UI we let 0 < q < 1 
with (1-g)/2 = 1//3. Then, for 2 < r < co from Lemmas 5.6, 5.5, and 5.4 one 
gets, for a martingale (Mk}t= ,, c L1 (a, P) with M O  = 0, 

- - . . 

I I l - l { e o l d ~ l +  . . . $ N - " Q ~ ~ ~ M ~ I I ~ ~  

Consequently, I I ~ ~ I I ~ ,  < c c 5 . 6 ) c c 5 . 4 ) ~  I I S ~ , ~ ~ ~ I I ~ , .  for 2 6 r < co so that we can 
use Lemma 5.7 and finish the proof of assertion (i). 

(ii) One observes for k E {I, 2, . . .) and (k - I)"" 6 1 < kli" that 

I(lfml > 3 l{lfool > kliU)] 2 ((rl = .. . = r k + ~  = 1, r k + ~  = -111 
= l / Z k +  >, $exp (- A"). 

PROBLEM 5.8. Is there a way to remove the gap between assertions (i) and 
(ii) of Theorem 5.3? 

6. SPECIAL CASES OF THEOREM 3.4 - 
irzx 

In this section we replace in Theorem 3.4 the abstract operators Ai by the 
concrete operators examined in Sections 4 and 5. 

DEFINITION 6.1. Let (P'),, be a filtration on [Q, 9, PI satisfying (Cl), 
(C2), and (C3) such that for ti,, : = i- l/(k+ 1) with i = 1,2, . . . and 
k = 0 , 1 , 2 ,  ... one has 

(14) gS = & whenever tiqk < s < t < t i ,k+ l  and E. = V Ft. 
OGt<i 

(i) We let 9((&)),,) be the set of f€M((9JtET) such that 
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(a) .)Ask - f t i , , -  ,I is Pt ,-measurable for i, k 2 1, 
(b) f,(cu) = J;(w) for wgQ and t i , k , ( s < t < t i , k , ,  with iB 1 and k20. 
(ii) Let r : = (yci))s G 9'!, @ : = ( d ( 0 ) ~  = ((6y1, Og) ,  . . .))z c { - 1, lIN, 

and 2 < Q < m. Given f E P ((9JtET), we define 

where we set these operators zero on those o for which the corresponding 
right-hand sides are infinite, and the ranges of definition .t$ , 

~ Remark 6.2. In the definition above condition (C3) automatically fol- 

I lows from assumption (14). 

LEMMA 6.3. (i) YQ,o(i~ f (a) < *Ye,g(i) f (w) < 39e,9(i)  f (w). 
(ii) The operators 

Y,(i): cTr + Lo+ (0, F, P) and * 9 e , o c i ) :  ge,8 -+ LDf (Q, 9, p) 

satisfy property ( S )  with constant 1 .  

Proof. (i) and properties ( S 1 )  and (S2) of (ii) are standard. For example, to 
check that - af ;i,k- 1 1  is l-rnea~~rable for stopping times o < T and 
f E 9' one can use 

0 a r  f tt,k- f ti ,k-l  = X { b < f i , k < +  [ f t i , k - f t i , k - l l '  
- 

i'W 

To show (S3) of (ii) we fur i 2 1,0 < i, < oo, and f from the corresponding 
range of definition. Then we can use the stopping time 

in the first case and 

in the second case, where inflir : = oo (note that Y4(i) ( f f ' m k +  ') and (*Ye,9(3)) ( f t i , k c l )  
are 9ti,k-measurable). H 
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COROLLARY 6.4. For all $ ~ 9  there is a constant c > 0 such that for 
($Jim, c 9$, r = (yti))g c Y:, where i,hi and y(')  are related, f E Cr, 
1 < p < a, and fir all elements x l ,  . . ., x, of a Banach space X one has 

where H I ,  . . ., H,  E L, (M, v) are independent and symmetric and satisfy 

(1 5) ~ ( H ~ ) = e x p l - ~ ( ) )  for 121. -. 

COROLI;A~Y 6.51 k t  1 < a < 2 < g < B < co with 1 = I/a+ I/p or o: = 1 
and p = = m. Then there is a constant e > 0, depending on Q and /3 only, such 
that for all 8 = (O'O)i", c (- I ,  1JN, f E ge,@, 1 < p < m, and for all elements 
x , ,  ..., x, of a Banach space X one has 

where . . ., Hn,= E L1 ( M ,  v) are independent and symmetric avld satisfy 

(1 6) v(JHi,,l>A)=exp(l-2) for 131 .  

Proof  of Corollaries 6.4 a n d  6.5. Fix i ~ ( 1 ,  ..., n), a stopping time z, 
B E F ~  of positive measure, and SE (Y;<i,, *Ye,oaj). Let c >, 1 be the constant 
from Theorem 4.7 if S = Y7(i,, and from Theorem 5.3 (i) if S = * 9 e , o ( i l .  First we 
observe that Fi = V, ,t, % implies that 

(17) lim f, = J;: a.s. and in the Ll-norm. 
t - i f  < i  

Moreover, 

and - 
i - 1  i *.n 

I -  I f i  - -  f - I l L (  I ( f )IIL,(*,P)Y 

where we also use (17). Then, for A >, 1, 
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Because of 

B n ( z < i - l ) ~ f l - ~  a d  B n ( t i , k < ~ < t i , k + l ) ~ % f , k  

and because of (17) and (18) we can apply Theorems 4.7 and 5.3 (to i-lfi re- 
stricted to B n  (z < i- 1) E & and *i*yi restricted to B n ititk < T < ti,k+ l) €%,,,) 
to derive 

Consequently, by Theorem 2.4, 

and 

with $")(A) := A? where we used $r1(3) < fi and ($('))-'(3) < 3, NOW we 

! can apply Lemma 6.3 (ii), Theorem 3.4 with r ,  : = i (observe that fl, g 4+61fi  
in the case of Corollary 6.4 and Bi,, 6 12 Hi,, in the case of Corollary 6.51, and 
Lemma 6.3 (i). 

In particular, we obtain statement (b) from the table in the Introduction. 

COROLLARY 6.6. Let 1 < /3 < 2 < a < oo with 1 = l /a+ l/fl and $ ~ 5 + .  
Then there is u constant c > 0 depending on a and i,b only, such that for 

f ~ 9 ( ( 9 d r = ~ ) ,  1 < p < a, elements xl, .. ., x, of a Bunach space X ,  and stop- 
ping times 0 = zo < zl < . . . ,< zn = N one has 

where y := (kliS)k",l, Sy is deJined as in DeJinition 4.1, and 
- 

T i - 1  T , . -  N f '.- ( ~ { r i - l < k < r i ] ~ f k ) k = ~ .  ',,I 

Proof.  First we complete the filtration (%,):= =, and apply Lemma B.l to 
come formally in the continuous time setting. Then we apply Corollary 6.4, 
Example 4.5, Remark 4.6, and 

exp(-(~~A)")<v(l~~+~l>3L) for A > L a > O  and some c a > O .  a 

In the same way there is an approach to statement (c), mentioned in the 
table of the Introduction, where we have to replace Theorem 4.7 by [9] (Lem- 
ma 3.5, p = q = 2). Now we check that Corollary 6.4 is optimal whereas Corol- 
lary 6.5 is 'nearly7 optimal. This is done in the following way. 

8 - PAMS 20.1 
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! 
I 

I Using (Bkdyad)k"=o introduced in Section 4.2 we equip 
i 

w m 

 dyad . . = x [o, 1) with pyad := X 1.1, 
i=  1 i = l  

the product measure of the Lebesgue measure, and with the filtration 

9 ; y a d ; O  = [ x g z d ]  g d y a d  x [ x $:yad] for ti,k 2 s < t i , k + l  

x - j= 1 j=i+ 1 

m and i 2 2, and 4Fpd10 := gl","*, This Ptration can be completed to 
(F~Yad)06t , ,  SO that conditions (Cl) ,  (C2), (C3), and (14) are satisfied. The 
corresponding sets 8, and b,,, from Definition 6.1 are denoted by b p d  and 
b2gd, respectively. 

Now Theorem 4.7 implies 

I 
I 

PROPOSITION 6.7. Let ($ti)S c i9$ and r = (y(q)im_ c Y: be such that 

! $i and y(') are related. For i 2 1, k 2 0, and s = (si)E E SZdyad we Iet 

00 r .  i - l  
r ~ ( ~ i )  

A i  := [O,  1) and i;i,k(s):= C dj(sj)+ C 7. 
~ = I ? J  j= 1 1=1 Yr  

where sums of type C:=, are treated as zero, and complete this to a chdldg -. 

process f = such that f" E &:yad for n = 1 ,  2, . . . Then the following holds: 

(i) .4p,<i, (i- 'fi) (s)  = 1 for all s E Odyad. 
1 (ii) (5-fi- is a sequence of independent and symmetric random var- 

iables. 

(iii) If 13. 2 0 and K : = supi2 exp ($i ( ~ 6 . ~ ) )  - 1) < a, where c{4.7) 2 1 is the 
constant fporn Theorem 4.7, then one has 

In the same way Theorem 5.3 gives 

PROPOSI~ON 6.8. Assume that 1 < cr < 2 < Q < oo with 1 = l / g  + l / a  and 
8(') : = ((- . For i 2 1,  k 2 3,  and s = (si)im_ E Qdyad we let 
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and 

where the sum zy=, are treated as zero, and complete this to o cddldg process 
f = (aeT such that fn E &?id for n = 1 ,  2 ,  . . . Then the following holds: 

(i) YQ,ec.~ (I- Yi) (s) < 2 for all s E Qdyad. 

(ii) (f; -A- ,)g is a sequence of independent and symmetric random variables. 
(iii) For *A 5 0 and 1 = l/a + l/p one has 

Let {Ai);, , c Lo (O, F) and (Hi);= , c Lo (M, v) be sequences of indepen- 
dent and symmetric random variables such that 

for some IC 2 1 and all 1 2  0. Then Lemma 4.6 of [I31 gives 

for all Banach spaces X with elements x,, . . ., xn and all 1 < p < oo. Hence, for 
the process f considered in Proposition 6.7 and Hi as in (15) we obtain 

for all 1 < p < a. Analogously, for the process f considered in Proposition 6.8 
and Hi,, as in (16) we obtain 

In this way we obtain a converse statement to Corollary 6.4 and nearly a con- 
verse statement to Corollary 6.5 (Hi,, is replaced by Hi,,). 

Remark  6.9. One can take advantage from the operators Yy(,, and 
YP,,(i, in the factors of correction in Corollaries 6.4 and 6.5. For example, for 
the process f from Proposition 6.7 in the case = $z = . . . or for the process 
f from Proposition 6.8 one has, without the corresponding operators, 
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The optimality of Corollary 6.4 can be expressed in a more elegant way. As 
a direct consequence of (19) and Corollary 6.4 we obtain 

COROLLARY 6.10. Let t,b E 23, n 2 1, ($& , c G$-, and (Hi)!= , c L, ( M ,  v) 
be independent and symmetric with 

v (IHil > A) = exp (1 - $i (4) for A 2 1 

Then, for all elements x,, .. ., x, of a Banach space X, one has 

where c ~ ~ . ~ )  2 1 is takenfiom Theorem 4.7, rc : = sup, G i G .  exp ($i (cf4,,)) - 1), and 
the constant C(6,4) > 0 is taken from CoroIIary 6.4. 

Note that for t,h E G one has @(A) G $ (A) for 12 1 and 

where the converse with some multiplicative constant is not true in general (for 
instance, use $(,I) := A, F(t)  := (1 +log t - ' ) ' ~  L, (0, 11, Remark 3.3, and 
$ ( A )  2 A/c from 171, Lemma 4.4). 

PROBLEM 6.11. IS it possible to replace in Corollary 6.5 in the case 
2 < Q < 8 < co the variables Hi,, by Hi,,, where 1 = l/a + l / ~ ?  

7. AN APPLICATION TO SPACES OF TYPE a 

By means of Corollary 6.5 we demonstrate, in Corollary 7.2, how one can 
apply the results from the previous sections. For this purpose we recall that 
(h,),"=, c L,  [0, 1) is the normalized sequence of Haar functions and 
(r,),"=, c L, LO, 1) the sequence of Rademacher functions. Moreover, we use 
the operators 9@,, ( t ) :  G,* + LO+ (a, 9, P)  from Section 6 for Q = oo. 

DEFTNITION 7.1. For 1 < ct 6 2 a Banach space X is of-type a provided 
that there is a constant c > 0 such that for all n = 1, 2 ,  . . . and x, , . . ., X , E X  
one has 

We let t ,  (X )  : = inf c. 

COROLLARY 7.2. For a Banach space X and 1 < a Q 2 the following asser- 
tions are equivalent: 

(i) X is of type cl. 

(ii) There is a constant c2 > 0 such that for all n = 1 ,  2, . . ., O = 
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=(8'i ')~=lc{-1, 1IN, f ~ g - , ~ ,  l < p < m ,  and xl ,..., X , E X  one has 
n n 

(iii) There is a constant c3 > 0 such that for all n, N = 1, 2 , .  .., all se- 
quences ofstopping times 0 = zo 6 r ,  d . . .d z, = N with respect to (Fk)$o, all 
ti, . . ., tN€R, and all xi, . . ., x, E X one has 

Proof. (i) = (ii) follows from Corollary 6.5 and (with the notation of Co- 
rollary 6.5) 

(ii) (iii). We let : = (1, 1, . . .) and apply Lemma B.1 with Yk : = Fi. 
Hence we have c3 < c2 or. 

(iii) = (i). Taking N : = 2"- 1, T~ : = 2i- 1, and ti: = 1 we get 

sup 1 1  h and [ G h k ] x i l l y = I I ~ r i x i l ! v -  
1 d i S n  k=y-1+1 i = l  k=*. c -  t + l  i =  1  

Using (2) we obtain ta(X) < cc, with an absolute constant c > 0. 

Remark 7.3. (i) In the same way as described in Remark 6.9 one can 
take advantage from the factor Ilsupi Ym,o~i, (i-  I f  ')1ILp in Corollary 7.2 (ii). 

(ii) The La-norm on the left-hand side of the inequality in Corollary 7.2 
(iii) can be replaced by any L,-norm with 1 < p < m. To relate this assertion to 
Proposition 7.5 (ii) we have chosen the La-norm. 

We conclude with Proposition 7.5 which provides a counterpart to Corol- 
lary 7.2 in Banach spaces having an equivalent norm with a modulus 'b smooth- 
ness of power type or. According to [14] those Banach spaces are charac- 
terized by the foIIowing 'martingale-type' property: 

DEPINITION 7.4. Given 1 < u < 2, a Banach space X is said to be of mar- 
tingale-type a provided that there is a constant c > 0 such that for all 
n = l , 2 ,  . . . and all martingale difference sequences (dfi)r=l c Lf one has 

We let A4 - t, (X) : = infc. 
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PROPOSITION 7.5. For a Banach space X and 1 < a < 2 the following asser- 
tions are equivalent: 

(i) X is of martingale-type a. 

(ii) There is a constant c2 > 0 such that for aII n ,  N = 1, 2,  . . ., all se- 
quences of stopping times 0 = zo < r1 < . . . < z, = N with respect to (5F#=o, all 
tl, . . ., tN E R ,  and all xl , . . ., X, E X one has 

P r & of, ji) * (ii) follows from 

(ii) +- (i). Choosing N = pa = 2L- 1 for L 2 1 and zi : = i we obtain 

so that we are done according to [I41 (Theorem 3.1 and Proposition 2.4); note 
that x:L:-, hi xi are the martingale diaerences of a dyadic martingale. H 

APPENDIX A. PROOF OF THEOREM ZA 

Given (f,),,, we fix Go G of measure one such that (a,,, has right- 
-continuous paths with finite left limits on 8, a n d f , ~  Lo(51, 9, P) such that 
f ,  = lim,,, f, a.s. Moreover, we fix a stopping time z: B + [Q, oo] and  BE^^ 
of positive measure. Now for v > 0 we define the stopping Cmes 

ev := inf{t 2 r I If,-A-I > v) 

and we can follow the proof of Theorem 4.6 in [7]. 

(a) If IlfllBMo; = 1, A > 0, and p 2 1, then we get 
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< el-*(p)PBB(el  < CO) = el-*(t'BRfsup lJ-f,-I > A). 
tar  

M For pi 2 1 with y = Ci=, pi the iteration gives 

so that assertion (ii) ('E = 0,  3 = 52) and ((.((,,,$ = of (i) follow. 
(b) For 1 1  f llmO, = 1, p > p - E  2 2, B c Q0 (3 E Fr was fixed above) we get 

which implies 

P~(~~~ I f t - L - l >p )<2exp ( l - $ (p /2 ) )  for p 2 2 .  
tar 

Applying the iteration argument carried out in (a) for M = 2 and el-@(@) replaced 
by 2e1-9(pi2) we obtain for p = pl +p, with pi > 2 and A > 0  the inequality 

Q 2exP (1 - $ (~1/2)) 2 exP (1 - $' (~2/2)) PB (SUP Ift -Sr-I > A)- 
tat 

Now one checks that - 

[2 exp (1 - $ (,u/4))] d exp (1 - 1I, (p/c)) for p 2 c : = 4$- $.(3) 

and obtains the remaining part of assertion (i). rn 

APPENDIX B. A RESCALING ARGUMENT 

LEMMA B.1. Let t i ,k:=i-l/(k+l) for i = 1 , 2  ,... and k=O,  1 ,2  ,... 
Assume stopping times 0  = .co Q < . . . < r, = N with respect to a Jiltvation . . 
(gk)f= and f E 9 (('3J;= ,,). Let 

+ and + for t i ,k<t<ti ,k+l,  l < i < n ,  
%:= 5YZn = 2fN and X:=f,"=fN for n <  t < c ~ .  
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Then t k  following holds: 
(i) gG; = nU,,Fu for a11 0 < t < co and R,,, = Fi for all i 2 1. 

(ii) jx t,,c i l  is % i , k -  l-musuruble for i, k 2 I. 
,, rl A-fi-I = zk=ri-l+l df, for i = 1, ..., n. 

P r o  of. Assertions (i) and (iii) are evident, To prove (ii) it is suiTcient to 
observe that If, -f,) is 9dmeasurable whenever f E B (($k)t=o) and the stopping 
times 0 6 a, z < N with respect to (g,),N=, satisfy c < z < n+ 1 .  H 
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