A CHARACTERIZATION OF SIGN-SYMMETRIC LIOUVILLE-TYPE DISTRIBUTIONS

BY

WOJCIECH MATYSIAK (Warszawa)

Abstract

Sign-symmetric Liouville-type distributions on n-dimensional space are characterized by certain ($n-1$)-dimensional distribution of quotients in a special form.

1. Introduction. In 1996 Gupta et al. [1] introduced a family of multivariate distributions which is an important generalization of many classes of distributions. It may be obtained by the following construction. For $\alpha, \beta>0$ let $\mathscr{Z}(\alpha, \beta)$ denote a distribution with probability density function

$$
f(z):=\frac{\alpha}{2 \Gamma(\beta / \alpha)}|z|^{\beta-1} \exp \left(-|z|^{\alpha}\right), \quad z \in \boldsymbol{R} .
$$

When Z_{1}, \ldots, Z_{n} are mutually independent, real-valued random variables and $Z_{i} \sim \mathscr{Z}\left(\alpha_{i}, \beta_{i}\right)$ for some positive parameters α_{i} and $\beta_{i}(i=1, \ldots, n)$, then the distribution of the vector

$$
\begin{equation*}
\left(X_{1}, \ldots, X_{n}\right):=\left(\frac{Z_{1} \cdot \Theta^{1 / \alpha_{1}}}{\left(\sum_{j=1}^{n}\left|Z_{j}\right|^{\alpha_{j}}\right)^{1 / \alpha_{1}}}, \ldots, \frac{Z_{n} \cdot \Theta^{1 / \alpha_{n}}}{\left(\sum_{j=1}^{n}\left|Z_{j}\right|^{\alpha_{j}}\right)^{1 / \alpha_{n}}}\right) \tag{1.1}
\end{equation*}
$$

where Θ is a positive random variable independent of

$$
\begin{equation*}
\left(U_{1}, \ldots, U_{n}\right):=\left(\frac{Z_{1}}{\left(\sum_{j=1}^{n}\left|Z_{j}\right|^{\alpha_{j}}\right)^{1 / \alpha_{1}}}, \ldots, \frac{Z_{n}}{\left(\sum_{j=1}^{n}\left|Z_{j}\right|^{\alpha_{j}}\right)^{1 / \alpha_{n}}}\right), \tag{1.2}
\end{equation*}
$$

is called the sign-symmetric Liouville-type distribution and denoted by $\mathscr{S} \mathscr{L}\left(\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{n} ; \Theta\right)$. (Besides, the distribution of the vector (1.2) is called the sign-symmetric Dirichlet-type distribution and denoted by $\left.\mathscr{S} \mathscr{D}\left(\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{n}\right).\right)$

The problem of explaining relations between distributions of random vectors $X=\left(X_{1}, \ldots, X_{n}\right)$ and quotients $\left(X_{1} / X_{n}, \ldots, X_{n-1} / X_{n}\right)$ has a long history. In one of the recent investigations in this field Wesołowski [3] proved a theorem characterizing symmetrically invariant two-dimensional distributions by the Cauchy distribution of quotients. This result was generalized to finite-dimensional α-symmetrically invariant distributions by Szabłowski [2], who con-
sidered a certain Cauchy-like (so-called α-Cauchy) distribution of the quotients. On the other hand, Wesołowski [4] proved that a distribution of an α-spherical random vector is uniquely determined by a distribution of quotients. In this paper, methods adapted from [2] and [4] are applied to obtain a characterization of the sign-symmetric Liouville-type distribution that generalizes previous results.

We will use the following notation: If $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \boldsymbol{R}^{n}$, then

$$
\|x\|_{\alpha}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{\alpha}\right)^{1 / \alpha}
$$

For $x \in \boldsymbol{R}$ and $q>0, x^{\langle q\rangle}:=\operatorname{sign}(x) \cdot|x|^{q}$. Throughout the paper $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$ are positive parameters and $p_{i}:=\sum_{j=1}^{i} \beta_{j} / \alpha_{j}$ for $i=1, \ldots, n$.

2. Characterization.

Defintion 1. Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n+1}>0$. We say that a random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ has a distribution $\mathscr{D}\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n+1}\right)$ if its joint density function is

$$
\begin{equation*}
\frac{\prod_{i=1}^{n} a_{i}}{2^{n}} \frac{\Gamma\left(\sum_{i=1}^{n+1} b_{i}\right)}{\sum_{i=1}^{n+1} \Gamma\left(b_{i}\right)} \prod_{i=1}^{n}\left|x_{i}\right|^{a_{i} b_{i}-1}\left(\sum_{i=1}^{n}\left|x_{i}\right|^{a_{i}}+1\right)^{-\sum_{i=1}^{n+1} b_{i}} . \tag{2.1}
\end{equation*}
$$

The distribution \mathscr{D} is a generalization of α-Cauchy distribution defined by Szabłowski [2]. More specifically, we have the following

Remark 1. A random vector $\left(X_{1}, \ldots, X_{n}\right) \sim \mathscr{D}(\alpha, \ldots, \alpha ; 1 / \alpha, \ldots, 1 / \alpha)$ has the n-dimensional α-Cauchy distribution $(\alpha>0)$.

On the other hand, the distribution introduced by Definition 1 is a special case of the sign-symmetric Liouville distribution. Applying Proposition 3.2 from [1] we get

COROLLARY 1. A random vector $\left(X_{1}, \ldots, X_{n}\right) \sim \mathscr{D}\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n+1}\right)$ has the distribution $\mathscr{S} \mathscr{L}\left(a_{1}, \ldots, a_{n} ; a_{1} b_{1}, \ldots, a_{n} b_{n} ; \Theta\right)$, where Θ has the inverted beta-distribution $\mathscr{\mathscr { O }}\left(\sum_{i=1}^{n} b_{i}, b_{n+1}, 1\right)$, i.e. the probability density function of Θ is

$$
f(r)=\frac{1}{B\left(\sum_{i=1}^{n} b_{i}, b_{n+1}\right)} r^{\Sigma_{i=1}^{n} b_{i}-1}\left(\frac{1}{r+1}\right)^{\Sigma_{i=1}^{n+1} b_{i}}, \quad 0<r<\infty
$$

B denoting the Euler beta-function.
The main result of this paper is
Theorem 1. A random vector X without an atom at 0 has the sign-symmetric Liouville-type distribution $\mathscr{S} \mathscr{L}\left(\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{n} ; \Theta\right)$ if and only if the following three conditions hold:
(i) $X \sim-X$ (here the symbol \sim denotes the equidistribution);
(ii) for some $j \in\{1, \ldots, n\}$ and for some $\alpha>0$ the random vector

$$
Y_{j}:=\left(\frac{X_{1}^{\left\langle\alpha_{1} / \alpha\right\rangle}}{X_{j}^{\left\langle\alpha_{j} / \alpha\right\rangle}}, \ldots, \frac{X_{j-1}^{\left\langle\alpha_{j}-1 / \alpha\right\rangle}}{X_{j}^{\left\langle\alpha_{j} / \alpha\right\rangle}}, \frac{X_{j}^{\left\langle\alpha_{j}+1 / \alpha\right\rangle}}{X_{j}^{\left\langle\alpha_{j} / \alpha\right\rangle}}, \ldots, \frac{X_{n}^{\left\langle\alpha_{n} / \alpha\right\rangle}}{X_{j}^{\left\langle\alpha_{j} / \alpha\right\rangle}}\right)
$$

has the ($n-1$)-dimensional distribution $\mathscr{D}\left(\alpha, \ldots, \alpha ; \beta_{1} / \alpha_{1}, \ldots, \beta_{n} / \alpha_{n}\right)$;
(iii) Y_{j} and $\sum_{i=1}^{n}\left|X_{i}\right|^{\alpha_{i}}$ are independent.

It is easily seen that sign-symmetric Liouville distributions contain α-symmetrically invariant distributions as a subclass. Hence and in view of Remark 1, Theorem 1 is an important generalization of Szabłowski's result [2].
3. Auxiliary results and proofs. We begin with three technical lemmas (an easy proof of the first one is left to the reader):

Lemma 1. If $q>0$, then $Z \sim \mathscr{Z}(\alpha, \beta)$ if and only if $Z^{\langle q\rangle} \sim \mathscr{Z}(\alpha / q, \beta / q)$.
Lemma 2. Let Z_{1}, \ldots, Z_{n} be mutually independent, real-valued random variables and $Z_{i} \sim \mathscr{Z}\left(\alpha_{i}, \beta_{i}\right)$ for some positive parameters α_{i} and $\beta_{i}(i=1, \ldots, n)$. Fix $j \in\{1, \ldots, n\}$ and let $q_{i}>0$ for $i \neq j$. Then the joint density function of the random vector

$$
\underline{Z}^{凶}=\left(\frac{Z_{1}^{\left\langle\alpha_{1} / q_{1}\right\rangle}}{Z_{j}^{\left\langle\alpha_{j} / q_{1}\right\rangle}}, \ldots, \frac{Z_{j}^{\left\langle\alpha_{j}-1 / q_{j-1}\right\rangle}}{Z_{j}^{\left\langle\alpha_{j} / q_{j}-1\right\rangle}}, \frac{Z_{j+1}^{\left\langle\alpha_{j+1} / q_{j+1}\right\rangle}}{Z_{j}^{\left\langle\alpha_{j} / q_{j+1}\right\rangle}}, \ldots, \frac{Z_{n}^{\left\langle\alpha_{n} / q_{n}\right\rangle}}{Z_{j}^{\left\langle\alpha_{j} / q_{n}\right\rangle}}\right)
$$

is

$$
\begin{equation*}
\left.\int_{R}\left|\prod_{i \neq j} z^{\left\langle\alpha_{j} \mid q_{i}\right\rangle}\right| \prod_{i \neq j} g_{i}\left(x_{i} z^{\left\langle\alpha_{j} / q_{i}\right\rangle}\right) \cdot \frac{\alpha_{j}}{2 \Gamma\left(\beta_{j} / \alpha_{j}\right)}|z|^{\beta_{j}-1} \exp (-|z|)^{\alpha_{j}}\right) d z, \tag{3.1}
\end{equation*}
$$

where g_{i} stands for the probability density function of $Z_{i}^{\left\langle\alpha_{i} / q_{i}\right\rangle}$.
Proof. Let $f: \boldsymbol{R}^{n-1} \rightarrow \boldsymbol{R}$ be a bounded function. Since Z_{i} are independent, we see that

$$
\begin{aligned}
\mathbb{E} f(\stackrel{\aleph}{\boldsymbol{Z}})= & \int_{\boldsymbol{R}} \int_{\mathbf{R}^{n-2}} f\left(\frac{z_{1}}{z^{\left\langle\alpha_{j} / q_{1}\right\rangle}}, \ldots, \frac{z_{j-1}}{z^{\left\langle\alpha_{j} / q_{j-1}\right\rangle}}, \frac{z_{j+1}}{z^{\left\langle\alpha_{j} / q_{j+1}\right\rangle}}, \ldots, \frac{z_{n}}{z^{\left\langle\alpha_{j} / q_{n}\right\rangle}}\right) \\
& \times \prod_{i \neq j} g_{i}\left(z_{i}\right) d z_{1} \ldots d z_{j-1} d z_{j+1} \ldots d z_{n} \cdot g(z) d z,
\end{aligned}
$$

where g is the probability density function of Z_{j}. Let (with z fixed)

$$
x_{i}:=z_{i} / z^{\left\langle\alpha_{j} \mid q_{i}\right\rangle} \quad \text { for } i \neq j .
$$

The Jacobian of this transformation is $\prod_{i \neq j} z^{\left\langle\alpha_{j} / q_{i}\right\rangle}$. Formula (3.1) is now easily seen. -

Lemma 3. Let $\quad X=\left(X_{1}, \ldots, X_{n}\right) \sim \mathscr{S} \mathscr{L}\left(\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{n} ; \Theta\right)$. Fix $j \in\{1, \ldots, n\}$ and let $q_{i}>0$ for $i \neq j$. The random vector

$$
\underset{X}{X}=\left(\frac{X_{1}^{\left\langle\alpha_{1} / q_{1}\right\rangle}}{X_{j}^{\left\langle\alpha_{j} / q_{1}\right\rangle}}, \ldots, \frac{X_{j}^{\left\langle\alpha_{j}-1 / q_{j}-1\right\rangle}}{X_{j}^{\left\langle\alpha_{j} / q_{j}-1\right\rangle}}, \frac{X_{j}^{\left\langle\alpha_{j}+1 / q_{j}+1\right\rangle}}{X_{j}^{\left\langle\alpha_{j} / q_{j}+1\right\rangle}}, \ldots, \frac{X_{n}^{\left\langle\alpha_{n} / q_{n}\right\rangle}}{X_{j}^{\left\langle\alpha_{j} / q_{n}\right\rangle}}\right)
$$

has the distribution $\mathscr{D}\left(q_{1}, \ldots, q_{j-1}, q_{j+1}, \ldots, q_{n} ; \beta_{1} / \alpha_{1}, \ldots, \beta_{n} / \alpha_{n}\right)$.

Proof. Since for every $k \in\{1, \ldots, j-1, j+1, \ldots, n\}$

$$
\frac{X_{k}^{\left\langle\alpha_{k} / q_{k}\right\rangle}}{X_{j}^{\left\langle\alpha_{j} / q_{k}\right\rangle}}=\frac{Z_{k}^{\left\langle\alpha_{k} / q_{k}\right\rangle}}{Z_{j}^{\left\langle\alpha_{j} / q_{k}\right\rangle}},
$$

the probability density function of $\tilde{X}^{\mathbb{X}}$ is defined by (3.1). Consequently,

$$
\begin{aligned}
& g\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right) \\
& =\int_{\boldsymbol{R}}\left|\prod_{i \neq j} z^{\left\langle\alpha_{j} / q_{i}\right\rangle}\right| \prod_{i \neq j} \frac{q_{i}}{2 \Gamma\left(\beta_{i} / \alpha_{i}\right)}\left|x_{i} z^{\left\langle\alpha_{j} / q_{i}\right\rangle}\right|^{\left(\beta_{i} / \alpha_{i}\right) q_{i}-1} \exp \left(-\left|x_{i} z^{\left\langle\alpha_{j} / q_{i}\right\rangle}\right|^{q_{i}}\right) \\
& \\
& \quad \times \frac{\alpha_{j}}{2 \Gamma\left(\beta_{j} / \alpha_{j}\right)}|z|^{\beta_{j}-1} \exp \left(-|z|^{\mid \alpha_{j}}\right) d z \\
& =\frac{\alpha_{j} \prod_{i \neq j} q_{i}}{2^{n} \prod_{i=1}^{n} \Gamma\left(\beta_{i} / \alpha_{i}\right)} \prod_{i \neq j}\left|x_{i}\right|^{\left(\beta_{i} / \alpha_{i}\right) q_{i}-1} \int_{\boldsymbol{R}}|z|^{\left(\alpha_{j} p_{n}-1\right.} \exp \left[-|z|^{\left(\alpha_{j}\right.}\left(\sum_{i \neq j}\left|x_{i}\right|^{q_{i}}+1\right)\right] d z .
\end{aligned}
$$

Using symmetry and the integral formula ($\mu, v>0$)

$$
\int_{0}^{\infty} x^{v-1} \exp \left[-\mu x^{p}\right] d x=\frac{1}{|p|} \mu^{-v / p} \Gamma\left(\frac{v}{p}\right)
$$

we get

$$
\int_{\mathbf{R}}|z|^{\alpha_{j} p_{n}-1} \exp \left[-|z|^{\alpha_{j}}\left(\sum_{i \neq j}\left|x_{i}\right|^{q_{i}}+1\right)\right] d z=\frac{2}{\alpha_{j}}\left(\sum_{i \neq j}\left|x_{i}\right|^{q_{i}}+1\right)^{-p_{n}} \Gamma\left(p_{n}\right) .
$$

Therefore

$$
\begin{aligned}
g\left(x_{1}, \ldots, x_{j-1}\right. & \left., x_{j+1}, \ldots, x_{n}\right) \\
& =\frac{\alpha_{j} \prod_{i \neq j} q_{i}}{2^{n} \prod_{i=1}^{n} \Gamma\left(\beta_{i} / \alpha_{i}\right)} \prod_{i \neq j}\left|x_{i}\right|^{\left(\beta_{i} / \alpha_{i}\right) q_{i}-1} \frac{2}{\alpha_{j}}\left(\sum_{i \neq j}\left|x_{i}\right|^{q_{i}}+1\right)^{-p_{n}} \Gamma\left(p_{n}\right) \\
& =\frac{\prod_{i \neq j} q_{i}}{2^{n-1}} \frac{\Gamma\left(p_{n}\right)}{\prod_{i=1}^{n} \Gamma\left(\beta_{i} / \alpha_{i}\right)} \prod_{i \neq j}\left|x_{i}\right|^{\left(\beta_{i} / a_{i}\right) q_{i}-1}\left(\sum_{i \neq j}\left|x_{i}\right|^{\mid q_{i}}+1\right)^{-p_{n}} .
\end{aligned}
$$

Now we are in a position to prove Theorem 1.
Proof of Theorem 1. Let $\tilde{\mathbb{X}}:=\left(X_{1}^{\left\langle\alpha_{1} / \alpha\right\rangle}, \ldots, X_{n}^{\left\langle\alpha_{n} / \alpha\right\rangle}\right)$ for some $\alpha>0$. Then $\tilde{X}=\mathbb{U}_{\alpha} \cdot \Theta^{1 / \alpha}$, where

$$
U_{\alpha}:=\frac{\left(Z_{1}^{\left\langle\alpha_{1} / \alpha\right\rangle}, \ldots, Z_{n}^{\left\langle\alpha_{n} / \alpha\right\rangle}\right)}{\left\|\left(Z_{1}^{\left\langle\alpha_{1} / \alpha\right\rangle}, \ldots, Z_{n}^{\left\langle\alpha_{n} / \alpha\right\rangle}\right)\right\|_{\alpha}}
$$

(U_{α} and Θ are independent). From Lemma 1 we get

$$
U_{\alpha} \sim \mathscr{S} \mathscr{D}\left(\alpha, \ldots, \alpha ; \frac{\beta_{1}}{\alpha_{1}} \alpha, \ldots, \frac{\beta_{n}}{\alpha_{n}} \alpha\right)
$$

and

$$
\tilde{X} \sim \mathscr{S} \mathscr{L}\left(\alpha, \ldots, \alpha ; \frac{\beta_{1}}{\alpha_{1}} \alpha, \ldots, \frac{\beta_{n}}{\alpha_{n}} \alpha ; \Theta\right) .
$$

Furthermore,

$$
X \sim \mathscr{S} \mathscr{L}\left(\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{n} ; \Theta\right) \Leftrightarrow \tilde{X} \sim \mathscr{S} \mathscr{L}\left(\alpha, \ldots, \alpha ; \frac{\beta_{1}}{\alpha_{1}} \alpha, \ldots, \frac{\beta_{n}}{\alpha_{n}} \alpha ; \Theta\right) .
$$

Wesołowski [4] showed the following fact. Let the distributions of random vectors

$$
\left((-1)^{\varepsilon_{1}} Y_{1}, \ldots,(-1)^{\varepsilon_{n}} Y_{n}\right),
$$

which have been constructed from a random vector $\boldsymbol{Y}=\left(Y_{i}, \ldots, Y_{n}\right)$ concentrated on the unit α-sphere $S_{\alpha}:=\left\{x \in R^{n}:\|x\|_{\alpha}=1\right\}$, coincide for any $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1\}^{n}$ and let a random vector $P=\left(P_{1}, \ldots, P_{n}\right)$ take the form $\boldsymbol{P}=R \mathbb{Y}$ (for some positive random variable R independent of \mathbb{Y}). Then the distribution of the vector \boldsymbol{P} is uniquely determined by the distribution of the quotients $\left(P_{1} / P_{j}, \ldots, P_{j-1} / P_{j}, P_{j+1} / P_{j}, \ldots, P_{n} / P_{j}\right), j=1, \ldots, n$. Since \tilde{X} obviously satisfies the assumptions of the above statement, applying Lemma 3 we obtain the result of Theorem 1. ㄸ

Acknowledgement. The author is indebted to P. J. Szabłowski for valuable suggestions and remarks and to J. Wesołowski for showing the contents of paper [4] prior to publication.

REFERENCES

[1] R. D. Gupta, J. K. Misiewicz and D. St. P. Richards, Infinite sequences with sign-symmetric Liouville distributions, Probab. Math. Statist. 16 (1996), pp. 29-44.
[2] P. J. Szabłowski, Uniform distributions on spheres in finite dimensional L_{α} and their generalizations, J. Multivariate Anal. 64 (1998), pp. 103-117.
[3] J. Wesołowski, A characterization of the bivariate elliptically contoured distribution, Statist. Papers 33 (1992), pp. 143-149.
[4] J. Wesołowski, On a uniqueness property of α-spherical distributions, Probab. Math. Statist. 19 (1999), pp. 123-132.

Faculty of Mathematics
and Information Sciences, Warsaw
University of Technology, 00-661 Warszawa, Poland
E-mail address: Wojciech.Matysiak@prioris.mini.pw.edu.pl

