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Abstract. In this paper we consider a Bernstein property of 
probability measures on groups introduced by Neuenschwander. We 
discuss this property for discrete groups, compact groups, nilpotent 
groups and some solvable groups. In all these cases we show that 
a measure having the Bernstein-Neuenschwander property must be 
concentrated on an Abelian subgroup. We conclude with an applica- 
tion of this result to the Gaussian measures on non-compact symmet- 
ric spaces. 
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1. hrnstein properties on groups. It is easy to verify that if X and Yare two 
independent equally distributed real Gaussian random variables, then the ran- 
dom variables 

X + Y and X - Y are independent. 

The famous Bernstein theorem states that the inverse is also true: given two 
independent real random variables X and the independence $ , n ~ f  Y and 
X - Y implies that X and Y are Gaussian. 

The above Bernstein property of real Gaussian measures may be formula- 
ted in the same way on any second countable topological group. We wiII say 
that a probability measure p on such a group G has the property (B) if, given 
two independent random variables X and Y with values in G and having the 
same probability distribution p, the random variables 

(B) X .  Y and X - Y-I are independent. 

* The author was partially supported by the European Commission (TMR 1998-2001 Net- 
work Harmonic Analysis). 
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If G is a locally compact Abelian group, Gaussian measures (in the sens of 
Parthasarathy) have dl the property (B), but the converse is no longer true: 
there may be other measures than Gaussian with the Bernstein property (see 
Heyer and Rall [7] and Rukhin [ lo]) .  A complete study of these problems was 
achieved by Feldman [3]. Let us notice that the property (B) has been pro- 
posed as a definition of a Gaussian measure on an Abelian metric group, not 
necessarily locally compact (see Byczkowski [l]). 

In the non-commutative case Gaussian measures may not have the prop- 
erty (B): see Byczkowski and Hulanicki [2], where it was showed that Gaussian 
measures .in the ~ e i s e n b c r ~  group HI are not stable (the condition (B) trivially 
implies that if p is symmetric, then X2 has the distribution P * ~ ,  which is false 
for Gaussian measures on the Heisenberg group). 

In [8] Neuenschwander proposed, in a non-commutative group case, the 
study of another Bernstein-like property, which we will call (N). A probability 
measure p on a topological second countable group G has the property (N) if, 
given two independent random variables X and Ywith values in G and having 
the same probability distribution p, the couples of random variables 

IN) (X Y, Y. X) and (X . Y- l ,  Y- . X) are independent. 

Remark that on Abelian groups the conditions [B) and (N) are equivalent. The 
condition (N) was studied in [8] and [9] for simply connected nilpotent Lie 
groups. In this paper we consider the property (N) on a large class of topologi- 
cal groups, without any use of their eventual Lie structure. 

Let us give now some consequences of the property (N) valid on any 
topological group. 

PROPOSITION 1. Let G be a second countable topologicaE group. 
( 1 )  Suppose that two identically distributed independent random variables 

X  and Y with values in G verij'y (N).  Then 

P{XY= YX} = 0 or 1. 

(2) Let W be an open symmetric neighbourhood of e invariant by all con- 
ju&ztions (W= xWx-' for all X E G )  and let [ x ,  y] denote tfse commutator 

-1 - 1  
[x ,  y] = xyx y on G. Then, if X and Y satisfy (N) ,  

(3) Let G be a topological second countable Hausdorff group and let X and 
Y be two identically distributed G-valued independent random variables with dis- 
tribution p. If XY = YX almost surely, then p is concentrated on an Abelian 
subgroup H of G, i.e. supp (p) c H. 

Proof .  (1) The condition (N) implies that the measurable sets 

(XY=YX) and {XY-l=Y- lX)  
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are independent. On the other hand, they are trivially equal. It follows that 
P ( X Y =  YX) = O  or I. 

(2) The set 

is equal, as W =  W - l ,  to the set 

{ X Y - l ~ - l ~ ~  W }  = ([X, Y-']E W }  = B. 

As [X, Y] = (XY)(YX)-I and [X, Y-'1 = (XY-~)(Y-'X)-~, the condi- 
tion (N) implies-that the &ts A and B are independent. But A = 3, and (2) holds. 

1 

(3) Let x ,  y E supp (p) and let U,, T/, (n E N )  be open neighbourhoods of 
x and y , respectively, such that U,, c U,, + c and - nn U ,  = (x), 
0, l(, = { y } .  As 1-1 (UJ > 0 and p(K) > 0, it follows that for each n E N there 
exist S, E U, and t ,  E V,  such that s, t, = t,s,. Letting n -t co we see that 
xy = yx, so the support of p is commutative. H is the subgroup of G generated 
by SUPPIP). 

2. Property (N) oo discrete groups. We consider here the case when G is 
a discrete group (a countable group equipped with discrete topology). Recall 
that a subgroup C of G is called Corwin if G = G(2) = (g2 [ g E G ) .  

THEOREM 2. Let G be a discrete group. Suppose that two identically distrib- 
uted independent random variables X and Y with values in G satisfy (N). Then 
the distribution p of X and Y is concentrated on a finite Abelian subgroup H of 
G and is equal to a shgt by an element of H of a Haar measure of afinite Corwin 
subgroup of H. 

Proof.  X, Y are two independent identically distributed random varia- 
bles on G, so we see that if x E X is such that P ( X  = x) # 0, then 

P{XY= YX) > P ( X = x ,  Y = x ) > O .  

Proposition 1 (1) and (3) implies that supp (p) )c H, an Abelian subgroup of G. 
In order to characterize p we use results from Feldman [3], 9.10, for random 
variables X ,  Y with values in a locally compact Abelian grouF 

*,r, 

3. Property (N) on compact groups. 
THEOREM 3. Let G be a compact, second countable Hausdorfl topologicaE 

group. Suppose that two identically distributed independent random variables 
X a d  Y with values in G satisfy (N). Then the distribution p of X and Y is 
concentrated on an Abelian subgroup H of G. 

Proof .  If G is compact, then there exists a basis of open neighbourhoods 
of e each of which is invariant by conjugation and symmetric (see e.g. Heyer 
[6]). Let W be such a neighbourhood of e. The application 
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is continuous on G x G. Let xo E supp (p). As + (xo, xo) = e, there exists an open 
neighbourhood U of xo such that if x, y E U, then [x, y] E W It follows that 

and, by Proposition 1 (2), the set ([X, Y] E W) has probability 1. There exists 
a decreasing sequence W, of invariant symmetric neighbourhoods of e such that 
0, W, = {el. This implies that 

P ( X Y  = YX) = 1. 
- - 

The statgnknt follows from Proposition 1 (3). B 

Recall that a topological group G is called an SIN-group if it has a basis of 
invariant neighbourhoods of e. The only property of compact groups used in 
the proof of Theorem 3 was the SIN-property, so we have 

~ R O L L A R Y  4. Let G be a second countable Hausdo~topologicaE SIN-group. 
If  a probability measure p on G satisjes (N) ,  then supp(p) c H, an Abelian 
subgroup of G. 

Remark. A precise determination of measures satisfying (If) in the com- 
pact (or SIN) case, using the results of Feldman for Abelian groups, depends on 
properties of Abelian subgroups of G (see Feldman [3], 9.10, and [4]). These 
results allow us to formulate the following property, easy to verify on the level 
of the group G. 

We denote by T ( H )  the set of Gaussian measures in the sense of Par- 
thasarathy on a locally compact Abelian group H and by IB(H) the set of 
(shifted) idempotent measures on H, satisfying the condition (B). Recall that an 
element X E  G is of order 2 if x # e and xZ = e. 

COROLLARY 5. Let G be a. second countable Hausdor$ topological SIN-group. 
Each measure p satisfying (N) beEongs to I,{H) a T(H)  for an Abelian subgroup 
H if and only if no connected Abelian subgroup of G contains more than one 
element of order 2. 

- 

4. Property (N) on milpotent groups. We formulate first a Iemma valid in 
a general case. 

LEMMA 6. Let G be a topological second countable Hausdor-group and let 
X and Y be two identically distributed G-vaiued independent random variables 
with distribution p. Suppose that there exists X Q E  G such that 

X Y  = xo Y X  almost surely. 

?%en xo = e. 

P r o  of. Take x E supp &) and U, a decreasing sequence of open neigh- 
bourhoods of x such that 0, U,  = {x] .  For each n there exist y,, z, E U ,  such 
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that y, z, = x, z, y,. Otherwise, we would have 

As y, + x and z, + x when rz + a, it follows that x2 = xoxZ and xo = e. a 

We start the study of the nilpotent case by an algebraic property of all 
nilpotent groups of step 2, that is groups having the property 

for all elements x, y, z. - .  . . . 

LEMMA 1; If G is a nilpotent group of step 2, then 

Cx, y-l l  = Lv, XI. 
Proof .  The equality to be proved is equivalent to 

y - l  Ex, Y-ll = y-I [Y, xl ,  

which is true, by applying (1) to the left-hand side. a 

PROPOSITION 8. Let G be a second countable Hausdorff nilpotent topologi- 
cal group of step 2. Suppose that two identically distributed independent random 
variables X and Ywith values in G satisfy (N). Then the distribution p of X and 
Y is concentrated on an Abelian subgroup H of G. 

P r o of. On any group we have Cy , x] = [x, y] - l. Using Lemma 7 we 
infer that for any x, y E G 

(2) 1x9 y1-I = Cx, y - l l .  

By the condition 0, the random variables [X, Yj and [ X ,  Y - I ]  are indepen- 
dent, and so are [X, YI-' and [X, Y-'1. This together with (2) implies that 
the random variable [X, is independent of itself. Hence there exists xo E G 
such that [X, Y ]  = x, almost surely. By Lemma 6 we get xo = e. An applica- 
tion of Proposition 1 (3) completes the proof. E 

THEOREM 9. Let G be any second countable Hausdorflnilpotent topological 
group. Suppose that two identically distributed independent randm variables 
X and Y with values in G satisfy (N). Then the distribution p of X and Y is 
concentrated on an Abelian subgroup H of G. 

Proof.  We prove by induction that for any n 2 1 the following holds: 
(H,) If p is a probability measure on G, nilpotent of step n, satisfying (N) ,  

then p is concentrated on an Abelian subgroup of G. 
This hypothesis is trivially true for n = 1. Proposition 8 states that it is 

true for n = 2. 
Suppose that G is a nilpotent group of order n and that two identically 

distributed independent random variables X and Y with values in G satisfy (N). 
Let Z be the center of G, and n: G + G/Z the canonical projection. The group 

10 - PAMS 20.1 
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G/Z is nilpotent of step n - 1. The identically distributed independent random 
variables n (X) and n (Y) with values in G/Z satisfy (N), so by (H,- l )  they take 
their values in an Abelian subgroup A of G/Z. 

Let B = TC-'(A). Lf x, ~ E B ,  then x ( [ x ,  y ] )  = [ ~ ( x ) ,  n b ) ]  = e Z € G / Z ,  so 
[ x ,  y] E Ker(x) = Z. This implies that B is nilpotent of order 2 (in other words, 
the fact that B / B n Z  s A is Abelian is equivalent to 3 nilpotent of step 2). 

As X and Y take values in B, by Proposition 8 we deduce (H,). 

Remarks.  1. In [9] it was stated, with an uncomplete proof, that Theo- 
rem 9 is true if G is a simply connected nilpotent Lie group. Weproye this result 
in a ge~eral nilpotent case, without using the Campbell-Hausdorff formula. 

2. The Remark after Corollary 4 and Corollary 5 appIy in the case when 
G is a second countable Hausdorff nilpotent topological group. If G z Rd is 
a simply connected nilpotent Lie group, a measure p satisfying iN) must be 
a standard Gaussian measure on an Abelian subgroup H z Rk. 

5. Property (N) on some solvable groups. It is natural to ask whether the 
statement 

p has the property is concentrated on an Abelian subgroup, 

that we proved for all discrete groups, compact or SIN-groups and nilpotent 
groups (for which this question may be asked), remains true for other classes of 
groups. In this section we show that the answer is "yes" also for some solvabIe 
groups. 

The simplest solvable Zstep group is the so-called "ax + b" group, It is the 
group S = {(a,  b) I a E R + ,  b E R} with a multiplication (a, ,  b,)  (a,,  b,) given by 
composition of two affine maps a ,  x +  b1 and a,  x +  b,: 

(a , ,  b1)@2, bz) = (al a 2 ,  al b,+ b l ) ,  (a,  b)-I = ( a p 1 ,  - a - l  b). 

P ~ o p o s r n o ~  10. If S is the "ax+ b" group and p is a probability measure 
on S having the property (N),  then ,u is concentrated on an Abelian subgroup of S. 

Proof.  It is easy to verify that if x = (a, ,  b l )  and y = (a,,  b,), then 
- 

(3) 1x9 Y I  = (1, a l b z - a z b l f b l - b z ) ,  'en 

(4) [ x ,  y - l ] - l  = (1 ,  a y l ( a l  b z -a2b l+b l -b , ) ) .  

Let X = ( A , ,  B,) and Y = (A,, B,) be two independent identically distributed 
random variables with the same law p. Let us write 

We have 

[ Y - l ,  XI = [ X ,  Y-']-'  = (1, A,' U) = (1, W ) ,  

where we put W =  A; U .  The random variable [ X - l ,  Y l  has the same law as 
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[Y-I, Xj since the laws of the'couples (X, Y) and (I: X) are identical. On the 
other hand, by (4) 

where we put T = - AT1 U. It follows that W A T (equality in law). By the 
property (N) the random variables U and Ware independent. FN) implies also 
that the couples (XY, YX) and ( Y X - l ,  X-' Y) are independent, so [X, Y ]  and 
[X-I, Y] = (X-I Y)(YX-I)-' are independent, and U and T are also inde- 
pendent. 

The independence of U and the independence of U and ?, and the 
equality of diitributions of W and T imply that 

as random variables on R2. By Proposition 1 (1) we know that 
P { [ X ,  Y ]  = (1, 0)) = 0 or 1. Suppose that this probability is 0. By (3) this 
means that U # 0 almost surely. Then (5) implies that 

This is impossible because Al > 0 and A, > 0. Hence P ( X Y  = YX) = 1 and 
the application of Proposition 1 (3) completes the proof. 

Remarks .  It is evident that Proposition 10 is also true, with the same 
proof, for more general Zstep solvable groups S = R +  >a Rn. Moreover, the action 
of R' on Rn may be non-homogeneous, i.e. if a > 0 and n = (xl, . . ., x,) E R", 
then 

a - x = ( a d L x l  ,..., adnx,) for dl ,..., d, fixed. 

Let us notice that a slight modification of the proof of Proposition 10 
allows us to see that it remains true for the group R* x Rn. As A, and A, are 
independent random variables with values in the Abelian group R* r R f  Z(2)  
such that A,  A,  and A,  AT1 are independent, they must have Gaussian dis- 
tributions and, in particular, they are both concentrated on R+ *or on R-. 
Hence the equality A;' A - AT1 is also impossible. 

6. Gaussian measures on symmetric spaces and property (N). Let G be 
a semisimple Lie group with finite centre and K its maximal compact sub- 
group. In this section we show how to deduce from the results of Section 3 the 
answer to the question whether Gaussian measures on a Riemannian symmet- 
ric space of non-compact type G/K have the property (N). Recall that these 
measures are defined as the measures in the heat semigroup (y,),,, generated 
by the Laplace-Beltrami operator on G/K.  

We first formulate a general result. 



148 P. Graczyk and J.-J. Loeb 

PROPOSITION 11. Let G be a metrizable group. Let {p,),,N be a sequence of 
probability measures on G,  each of which has the property 0. Suppose that 

where p is a probability measure on G. Then p also has the property (N). 

P r o  of. In the case of a locally compact Abelian group this property may 
be seen, writing a functional equation for the Fourier transform of the dis- 
tributions p, equivalent to IN) and going with n + co. This does not work in 
the non-commutative case. 

Let p.ln A p .  Using results of Skorokhod [ll] we may construct two in- 
depend& sequences of random variables {X,) and (Y,,) such that 

(i) X, and Y, have the distribution p, for all  EN; 
(ii) Xn + X and Y ,  4 Y almost surely, where X and Y are two indepen- 

dent random variables; 
(iii) X and Y have the distribution p. 
As the measures p, satisfy the condition (N), it holds for each couple 

(X , ,  IF,). We write the condition (N) in the form 

for ( = ( X ,  x ,  Y, X,) and v = (X, Y ;  l ,  Y,-' X,).  The property (6) is equivalent 
to the independence of random variables { and v with values in a metric space 
(see Feller [ 5 ] ;  the proof in the real case may be modified to metric spaces). By 
the dominated convergence theorem, when n +  oo, we obtain (6) for 
< = (XY, Y X )  and v = ( X Y - I ,  Y-I X).  If (N) holds for one pair of independent 
random variables with distribution it holds true for any other pair of indepen- 
dent random variables with distribution p. In fact, the condition (N) may be 
written down in terms of the distribution p and the joint distribution pQp only, re 

Remark. Proposition 11 remains true for the property (B) instead of the 
property IN). 

THEOREM 12. The Gaussian measures y, on a Riemannian symmetric space 
G/K of nun-compact type, with K non-commutative, do not satisfy the condition 
(N) for suficiently small t > 0. ",* 

Proof.  We know by Theorem 3 that the Haar measure K of K does not 
satisfy 0. On the other hand, if (y,),,, is the continuous semigroup of 
K-invariant Gaussian measures on G/K (seen as K-biinvariant measures on G), 
we have 

yt-IC, t + O + .  

The theorem follows from Proposition 11. 
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