PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 20, Fasc. 2 (2000), pp. 359-372

DISCRETE PROBABILITY MEASURES ON 2×2 STOCHASTIC MATRICES AND A FUNCTIONAL EQUATION ON $[0,1]$

A. Mukherjea
J. S. Ratti

Abstract: In this paper, we consider the following natural problem: suppose μ_{1} and μ_{2} are two probability measures with finite supports $S\left(\mu_{1}\right), S\left(\mu_{2}\right)$ respectively, such that $\left|S\left(\mu_{1}\right)\right|=\left|S\left(\mu_{2}\right)\right|$ and $S\left(\mu_{1}\right) \cup S\left(\mu_{2}\right) \subset 2 \times 2$ stochastic matrices, and μ_{1}^{n} (the n-th convolution power of μ_{1} under matrix multiplication), as well as μ_{2}^{n}, converges weakly to the same probability measure λ, where $S(\lambda) \subset 2 \times 2$ stochastic matrices with rank one. Then when does it follow that $\mu_{1}=\mu_{2}$? What if $S\left(\mu_{1}\right)=S\left(\mu_{2}\right)$? In other words, can two different random walks, in this context, have the same invariant probability measure? Here, we consider related problems.

1991 AMS Mathematics Subject Classification: Primary: -; Secondary: -;
Key words and phrases: -

