PROBABILITY AND MATHEMATICAL STATISTICS Vol. 20, Fasc. 2 (2000), pp. 359–372

DISCRETE PROBABILITY MEASURES ON 2×2 STOCHASTIC MATRICES AND A FUNCTIONAL EQUATION ON [0, 1]

A. Mukherjea J. S. Ratti

Abstract: In this paper, we consider the following natural problem: suppose μ_1 and μ_2 are two probability measures with finite supports $S(\mu_1), S(\mu_2)$ respectively, such that $|S(\mu_1)| = |S(\mu_2)|$ and $S(\mu_1) \cup S(\mu_2) \subset 2 \times 2$ stochastic matrices, and μ_1^n (the *n*-th convolution power of μ_1 under matrix multiplication), as well as μ_2^n , converges weakly to the same probability measure λ , where $S(\lambda) \subset 2 \times 2$ stochastic matrices with rank one. Then when does it follow that $\mu_1 = \mu_2$? What if $S(\mu_1) = S(\mu_2)$? In other words, can two different random walks, in this context, have the same invariant probability measure? Here, we consider related problems.

1991 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE