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Abstract. Let D, be the diameter of a partition of the interval [0, t] 

by renewal moments of a standard Poisson process. Then DJln t + 1 for 
t + co, in probability. Other theorems on diameters are obtained. Jajte's 
theorem on random partitions of the unit segment is used. 
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I. Introduction. The aim of this paper is to describe some connections between 
random partitions of the unit segment and the Poisson process. In the first section 
we shall present several limit theorems concerning the random partitions of the 
segment [0, 11 by the sequence of independent random variables uniformly dis- 
tributed on [0, 11. Next we will show that it is reasonable to search for analogous 
theorems for sequences of independent random variables with exponential dis- 
tribution (which can be interpreted as time distances between successive renewal 
moments in the Poisson process). In the last section we prove some limit theorems 
for the Poisson process using analogous theorems for random partitions of the 
unit segment. In particular, we obtain some stochastic limits and limits in law for 
normed sequences 4, D,, where 

d t=min{al ,a2-a  I, . . . ,  t-cr,,) for t > 0 ,  
. , 

Dt=max{crl,a2-a, ,..., t-aN,) for t > 0 ,  

for a,, a2, . . . being successive renewal moments for standard Poisson process 
{N , ,  t 2 0). In the theory of queues, let al, a2, . . . be moments of arrivals of 
successive customers. Let us assume aIso that customers are served at once. 
Then d, and D, are the shortest and the longest time intervals in which no 
customer is served, when we observe the queue to the moment t. 

2. Let tl, r2, . . . be a sequence of independent random variables uniformly 
distributed on the interval [O, 11. Denote by 6 ,  and A, lengths of the shortest 
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and the longest interval, respectively, which we obtain by partitioning the 
segment 10, 11 by the random points t l ,  . . ., 5,- It can be easily shown that 

lim S, = lim A, = 0 with probability one. 
n-r m n-r m 

The following theorem has been proved by Jajte [3]: 

T H ~ R E M  2.1. The sequence ((nA,)/lnn} converges in probability to unity. 

Oae can also prove the foIIowing 

P R ~ P O S I ~ O N  2.2. The joint distribution of the random vector (an, A,), n 2 2, 
is given by 

- ( ) I - - -  for o < x < Y < 1, 
k = O  

where z+ = max (z, 0). 

Now we can easily prove the following 

PR~POSITION 2.3. The sequence (n2 6,) converges weakly to the expoonentiai 
distribution. 

Proof.  ~ r o m ' ( 1 )  we get ' 

P(6n<x)=1-(1-nx)"p1 for x > 0 .  

Hence for x > 0 we obtain , 

(2) Iim P(n26, < x) = I-e-".' 
n - r  m 

We' shall find now the: distribution of the random variable &/An, n 2 3. 

PROPOSITION 2.4. The distribution function of the random variable 6,)dn, 
n 2 3, is given By 

1 n ! 
P - < s  =I-- for s ~ ( 0 ,  1). 

''1 ) l s n + n + , . . ( ~ n + n )  1-s 1-s 1 -s 

. Pro'of. By (1) for 0 < x < y < 1 we get 
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Differentiating the above distribution function we obtain density of the random 
vector (S,, A,): 

where n 3 3, 0 < x  < y 1. After routine calculations we get for s > 1 

Using tlie following formulas: 

Yl ! 
for x $ { - n ,  ..., 

x ( x + l )  ... f x f n )  
- l , O } ,  

k = O  
. . 

we obtain for S E ( O ,  1) 

This completes the proof of the proposition. 

In order to investigate asymptotic behaviour of the sequence S,/A,, 
n = 2 ,  3 ,  . . ., we shall use the following proposition: 

PROPOSITION 2.5. If 9,  5 (by  the symbol - we denote weak convergence 
of distributions) and q,  + c in probability, where c E R, then 

(i) t n  Sn * ~ 5 ,  
(ii) t , / r l n  - 5/c if c Z 0 .  

Now we can easily prove the following 

PROPOSITION 2.6. The following formulas hold: 

(9 l imP(nInn(SJA,)<x)=l-e-" for x > O ,  
n+m 

lim (6,/A,) = 0 in probability. 
n- fm 
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Proof.  (i) can be obtained immediately from Proposition 2.5, Theo- 
rem 2.1 and (2). Formula (ii) follows from (i) and the equality 

8, 1 - =- 8, nlnn-. s 
A, n lnn  An 

3. Let cl, t2, . . . be a sequence of independent random variables uniformly 
distributed on the interval [O, 11. By < ,:,, 9 ,:,, . . . , <,:, we denote the sequence 
t l ,  ta, . . ., En arranged in increasing order. One can show (see E21) that for 
k < n and .tl, ..., tk  > 0 we have - 

Therefore we obtain 

lim P ( n t l , ,  > t l ,  n(52:n-  el:,) > t Z ,  . . ., n(rE:,-ck-  l : n )  > tk)  = e-'I . .. e-fk, 
n-  m 

which means that random variables nt l , , ,  n (t2:,- el:,) ,  . . ., n (Tk:, - Ck- con- 
verge weakly to the exponential distribution and are asymptotically indepen- 
dent. This fact may suggest some analogies between random partitions of the 
unit segment and the Poisson process. 

Let q l ,  q 2 ,  . . . be a sequence of independent random variables with ex- 
ponential distributions. We can interpret ql, q2 ,  . . . as time distances between 
successive renewal moments for the Poisson process. We shall consider now the 
following two random variables: 

The joint distribution of the random variables dn and D, is given by 

(4) P ( x  < d,, D, < y) = (e -x-e -Y)"  for 0 < x < y .  

In particular, we have 

( 5 )  

and - .- 

(6) 

P(dn < x) = 1-e-"" for x > 0 

P ( D ,  < ~ ) = ( l - e - ~ ) "  for y >0. 

We prove the following 

FROPOSITION 3.1. The sequence (D,/n) converges with probability one to 
zero. 

Proof.  Let us compute the second moment of D,. It is well known that 
for any nonnegative random variable 5  we have 

m 

E S P  = p j y ~ - l  ~ ( 5  2 y)dy  for p > 0. 
0 
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From (6) we have 

and, consequently, 

We put' 

It 'can be shown (see [3]) that 

and 

lim 2y$ln2 n = 1. 
?I-+ 02 

Thus from (7) and (8)  we have 

and 

Since C z  (On n)/n)2 < a, (9) implies that 

Therefore we can deduce that 

lim (D,/n) = 0 with probability 1. 
n+ ca 

This completes the proof of the proposition. ra 
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It is easily seen from (5) that for x > 0 we have 

P(nd,  < x) = 1 -eA".  

Let us consider now the random variable D,/lnn. From (6 )  we get 

P ( D , f l n n < y ) = ( l - n - Y ~  for y > 0 .  

Now it is easy to verify that . 

Thus, we have proved the following 

PROPOSITION 3.2. The sequence {DJhn) converies in probability to unity. 

We shall prove now the following 

PROPOSITION 3.3. Distributions of the random variables 6,/An and dn/D, for 
n 8 3 are identical. 

Proof.  Let us put 

where q l ,  . . ., qn are independent and have exponential distributions. 
It is known (see Feller [2]) that distributions of the random vectors 

(c l :n-  c2:,- - . . .¶ 1 - tn- and (cl, . . . , in) are identical. ~ r o m  
this the concIusion follows almost immediately. 

From Propositions 2.6 and 3.3 we get 

P ~ o ~ o s ~ n o ~  3.4. The following equalities hold: 

(4 lim (dn/D,) = 0 in probability, 
n+ m 

limP(nlnn(d,/Dn)<x)=l-e-" for x > 0 .  
n+ cc 

4. Let (N, ,  t 2 0) be a standard Poisson process. Let us remind that d, and 
D, are minimal and maximal waiting times given by (0). 

Let t2, . . . be a sequence of independent random variables uniformly 
distributed on the interval [0, t j  for t > 0. Denote by 6:' and At )  lengths of the 
shortest and the longest interval, which we obtain by partitioning the segment 
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[0, t] by the random points tl, . . ., tn- By An we shall denote a random 
variable A:'). One can easily see that random vectors ( A t 1 / t ,  St) / t )  and (A,, 6,) 
have the same distributions. It is known (see [2]) that if N ,  = n- 1, then the 
random vector (al, az - o l ,  . . ., o,, - a,, - ,) has a conditional uniform distri- 
bution on the set {(sly . . ., sn- 0 < sl +. . . + s,- < t}.  Since the distribution 
of the random vector (tl:,- tlLn- - . . ., Sn- - {,- ,:.- ,] is the 
same, we conclude that if N,  = n- 1, then the conditional distribution of the 
random vector (D,, dJ is the same as the distribution of (A!),  6;'). , 

Let us prow now the following lemma: - .- 

LEMMA 41. Let F,, la = 0, 1 ,  . . ., be a sequence of distribution functions 
weakly convergent to the distribution function F. If for every t > 0 a given se- 
quence pn ( t ) ,  n = 0 ,  1, . . ., satisjes the following two conditions: 

(ii) for every E > 0 and k = 0 ,  1 ,  . . . there exists T > 0 such that 

m 

w) C p , ( t ) > l - - E  for euery t > T ,  
n = k  

then distribution functions F,  = znm=O F,  pn ( t )  are weakly convergent to F. 

Re mark. Condition (ii) is equivalent to the following: 

l imp,( t )=O for 1120. 
t+ m 

Proof  of Lemma 4.1. Let X E R  be a continuity point of F. Take E > 0. 
We can choose  EN such that 

IF, ( x )  -F (x)l < E for every n 2 k. 

Let T > 0 satisfy (10); then for every t > T we have 

and 

Thus 

( F  ( x )  - E )  ( 1  - E) < l im inf Ft ( x )  < lim sup F, ( x )  < F (x )  + 2 ~ .  
t-t m t-r co 
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Letting E -+ 0 we get 

lim F,  (x) = F (XI. 
t -  c4 

This completes the proof of the lemma. 

We shall use the above lemma to investigate asymptotic behaviour of the 
random variables d, and D,. Let us prove the following theorem: 

THEOREM 4.2. The sequence { ~ ~ f l n t ) ~ , ~  converges in probability to unity. - .. 

' P r o of. Let us consider first the random variable 

For x > 0 we have 

Nt 4 m 

P ( - -  l ~ * >  11 < X  = Z P  -- Nt Dt ) .=. (In,, , I(N~> 11 lnN, t 

It is easy to see that the sequence {e-'t"-'/(n- l)!} , t > 0, satisfies the as- 
sumptions of Lemma 4.1. By this, Lemma 4.1 and Theorem 2.1 we conclude 
that 

that is, 

Nt Dt lim - I{N~> 11 - - 1 in probability. - t+mlnN, t 

It is known that lirn,,,(Nt/t) = 1 with probability one (and, in consequence, 
also lirn,,, (lnNt/lnt) = 1 with probability one). From this, Proposition 2.5 
and the equality 

Dt - (--)-- t lnN, N, D, 
- I [ N ~  > I} - In t Nt lnt  hN, t  IN^ > 11 

we deduce also that 

Dt lim -I{,,, = 1 in probability, 
i -*m In t 
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but as the sequence ( N ,  > I},, , increases and lim,,, P ( N ,  3 1) = 1, we finally 
get 

lim (D,/ln t) = I in probability. 
1- m 

This completes the proof of the theorem. 

In the same way, using analogous formulas for random partitions of the 
unit segment, we can prove the following 

PROPOSITION 4.3. The following formuias hold: - 
L 

(9 lim P(td,  c x) = 1-e-" for x >0, 
t-'w 

lirn (d,/D,) = 0 in probability, 
i + m  

(iii) l i m P ( t l n t ( d , / ~ , ) < x ) = l - e - "  for x > 0 .  
t+  m 
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