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Abstract. Some problems of first-crossing times over two time- 
-dependent boundaries lor one-dimensional jump-difiusion proces- 
ses are considered. The moments of the first-crossing times over each 
boundary are shown to be the solutions of certain partial differen- 
tial-difference equations with suitable outer conditions. An approach 
based on the Laplace transform allows us to compare the moments of 
the first-crossing times of the jump-diffusion process with those of the 
corresponding simple-diffusion without jumps. For some examples 
where the boundaries are constant, the results are illustratcd graphically. 
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1. INTRODUCTION 

Many stochastic phenomena in applied sciences are very well described in 
terms of a jump-digusion process X (t), i.e. a diffusion process to which jumps at 
Poisson-distributed instants are superimposed. As in the case of diffusion pro- 
cesses, it is relevant to study the first-passage time of X ( t )  over certain curves. 
Even in the simplest case of constant boundaries, however, few analytical re- 
sults are known. In [9] and [I51 the authors found some recursive differen- 
tial-difference equations for the moments of the first exit time of the process 
X ( t )  from a set A in the phase space, in the case when X ( t )  is a one-dimen- 
sional jump-diffusion process which is temporally homogeneous. These equa- 
tions are the generalization to the actual case of Darling and Siegert's equa- 
tions [ 5 ] ,  holding for simpIe-diffusions. 

In [I21 new integral equations for those moments have been obtained, in 
the case of constant amplitude Poisson time distributed jumps. On the other 
hand, also in the case of simple-diffusion processes, the available analytical 
solutions to first-passage-time problems through time-dependent boundaries 
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appear to be fragmentary (see, e.g., [6]-[g], 131, [43, [lo], Ell], [2], and 
references therein). In the case of time-homogeneous diffusion processes and 
constant boundaries, some closed forms have been obtained in [I] for mo- 
ments of the first-passage time through any of the two boundaries of an inter- 
val @, 8). 

In this paper, going back to the analogous case of simple-diffusions, 
treated in [2] ,  we consider a one-dimensional jump-diffusion process X l t )  
which is temporally homogeneous, and two time-dependent boundaries 
a ( t )  and- 8 (t) such tliat ~l (t) < jl ( t )  for all t 2 s. We suppose that the pro- 
cess start$ at the initial time s from a point x such that u(s) < x < P ( s )  and we 
consider the first-passage time of X(t) through either the curve x = a( t )  or 
x = P(t). More precisely, by using the generalized It8's formula for jump-dif- 
fusion processes (see e.g. [9]), we derive some partial differential-difference 
equations (PDDE1s) which are analogous to the corresponding PDE's found in 
[I41 for the moments of first-exit time of a simple-diffusion from the domain 
52 = {(t, y): t 2 s ,  ~ ( t )  < y < /3(t)}, and to those found in [2] for the moments 
of the first-arrival time at the boundary of f2 with the condition that the exit 
takes place at x = u(t) or x = p(t). 

In Section 2, the main results on first-passage times are shown. 
Section 3 is devoted to the case of constant boundaries; for some exam- 

ples, explicit computations are carried out. Notice that the differential-difference 
equations for the moments of the first-passage time are equations with outer 
conditions, thus, also in simple cases, the analytical solutions are hard to ob- 
tain. Moreover, the uniqueness of the solution has to be proved. Then we 
discuss this issue, and also we point out how to find approximate solutions to 
the above equations, by solving simpler differential-difference equations with 
boundary conditions. 

In Section 4, using an approach based on the Laplace transform, we 
compare, ih the case of constant boundaries, the moments of first-passage times 
of the jump-diffusion process with those of the simple-diffusion obtained by 
disregarding the jumps. - 

2. NOTATION AND MAIN RESULTS 

We consider a one-dimensional jump-diffusion process X (t) which is the 
solution of the stochastic differential equation (SDE): 

+a3 

(2.1) dX (t) = b (X (t)) dt + a (X (t)) d w  + J y (X (t), u) v (dt, du) 

with the assigned initial condition; here, W; is a standard Brownian motion 
and v (t, -) is a temporally homogeneous Poisson random measure. If the func- 
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tions b ( - ) ,  a(-) and y (-, a )  are sufficiently regular, then there exists a unique 
solution to (2.1) which is a temporally homogeneous Markov process: 

where X (s) is the initial value of X(t) at the instant s. For the definitions of the 
integrals on the right-hand side of (2.2) and the Poisson measure, see e.g. [9]. 

We denote by U ( . )  the positive measure defined on a ( R )  such that 
- .  (2.3) - E[v(t,B)]=tlT(B), B E W ( R ) ,  

b 

and we suppose that the jump intensity 
4-4 

(2.4) A =  j IZ(du)BO 
m 

is finite. 
Notice that if y = 0 in (2.1) or v = 0, then the equation (2.1) becomes the 

usual ItB's stochastic differential equation (SDE) for a simple-diffusion. 
In the special case when the measure li' is concentrated e.g. over the set 

(ui, u2} = ( - 1 ,  1) with I7 (ui) = Ai and y (ui) = E ~ ,  we can rewrite the equation 
(2.1) as 

where Ni (t), t 2 0, are independent homogeneous Poisson processes of ampli- 
tudes < 0 and c2 > 0 and rates 1, and A,, respectively, governing downward 
( N , )  and upward (N,)  jumps. 

If conditions hold in order that the transition probability of X(t) has 
a density p(y,  t lx ,  s), t > s, this density satisfies the generalized backward 
Kolmogorov equation (see [9]): 

ap 1 a2p + m  
(2.6) --= -A~+b(x ) -+ -~~(x ) -+  j p(y, t lx+y(x, u), s)n(du). as ax 2 ax2 - m  

Of course, when A = 0, (2,6) becomes the usual backward Kolmogorov equa- 
-- tion. 

Let D be the class of functions f (t, x) defined in R x R, differentiable with 
respect to t and twice differentiable with respect to x, for which the function 
f (t  , x + y (x, u)) - f (t , x) is II-integrable for any (t , x), We recall the generalized 
It8's formula for jump-diffusion processes (see e.g. [9]): 

[" a ?  
(2.7) df (t 9 X (0) = (t , X (t)) + b (X (t)) (t , X (t)) 
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The differential operator associated with the process X (t) which is a solution of 
(2.1) is defined, for any function f ED, by 

(2.8) Lf (t, x? = L,f(t, x)+Ljf It, x?, 

where the "diffusion part" is 

and the--"jump partw- is 
b 

- m  

Then, from (2.7), taking expectation, we obtain 

Now, let P(X(s) = x) = 1, and let u(t) and P(t) be c'-functions of time such 
that u ( t )  < B(t) for all t 2 s and ~ ( s )  < x < P(s). Assume that 

is the first-crossing time, that is the first time at which the process X(t), starting 
from x at the initial instant s, crosses one of the two boundaries: a(t) or P(t). 

Now, let us suppose that z is an honest random variable, i.e. 
P(z(s, x) < co) = 1, so that X(t) crosses one of the boundaries u(t) or P(t) in 
a finite time with probability one. We denote by n,(s, X) and 
no (s, X) = 1 -x, (s, x), respectively, the probability that the process, starting 
from x at the initial time s, exits for the first time from the domain 

(2.12) !2 = ((t, y)€Rz: t 2 S, ~ ( t )  < y < /?(t)) 

through the boundary u(t) and B(t). Then . 

Let us suppose that the moments of n-th order M,(s, x) A E [(z(s, x)-$1, 
pa = 0, 1, . . ., exist. We have the follo-wing 

THEOREM 2.1. The probability Mo (s, x) that X (t), startingfrorn x at time s, 
ever leaves the domain 51 satisJies the PDDE: 

(2.14) 
8Mo -- 

aMo 1 dzMO +" 

as AMo+b(x)-+-a2(x)-+ ax 2 ax2 - m  J Mo(s, x+y (x, u))n(du) = o 
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with the bozradary condition 

M o ( s , x ) = l  $ ( s , x ) $ D .  

Moreover, let us suppose that the solution uf(2.14) is M,, r 1 for all ( s ,  x ) ~  Sa, 
then the moments of n-th order M,(s ,  x) sutisfi the recursive PDDE: 

with the conditions 

(2.16) M n ( s 7 x ) = O  i f ( s , x ) $ Q .  

Proof.  Let F ( x ,  s ,  t )  = P ( z ( s ,  x) < t )  be the distribution function of 
7 (s, x). Then F ( x ,  s, t )  satisfies the equation 

with the initial condition 

and the boundary condition 

(2.18') F ( x , s , t ) = l ,  ( s , x ) & O .  

Indeed, let us use the argument of the proof of Theorem 2 in [15] ,  and choose 
the function denoted there by @ as follows: 

Then .we infer that the probability P ( x ,  s, t )  that ( t ,  X ( t ) )  E S2 throughout the 
entire time interval [ s ,  t], given X(s )  = x, satisfies 

with the initial condition 

and the boundary condition 

(2.20') P ( x y  s ,  t )  = 0 ,  (s ,  x ) $ Q .  
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Thus, since P ( x , s , t ) = P ( t ( s , x ) > t ) = l - P ( r ( s , x ) < t ) = l - F ( x , s , t j ,  
(2.17), (2.18) and (2.18') easily follow by (2.191, (2.20) and (2.20'). 

Now, the moments M ,  are given by 
+ m  

(2.21) M,(s, x) = j (t-s)"F(x, s,dt), 
S 

where the integral is understood in the Stieltjes sense. Then, if we multiply both 
members of (2.171, (2.18), (2.18') by (t-s)" and we integrate between 's and + coy 
using the fact that-. - 

L 

can be written as 

we easily infer that M ,  satisfies (2.15) and (2.16). In particular, for n = 0 we 
obtain (2.14). 1 

Remark  2.1. The equations (2.15) for n = 1, 2 can be also obtained by 
means of the generalized ItB's formula, following the approach used in the 
proof of the next Theorems 2.2 and 2.3 (see also [9]). 

Remark  2.2. Lf A = 0, (2.15) become the well-known equations (see [14]) 
for the moments of the first-crossing time of a simple-diffusion process. 

If a(t) = u = const and 8 (t) = /3 = const, then the moments M ,  are in- 
dependent of the initial instant s, and (2.15) become the well-known equations 
obtained by Tuckwell 1151. 

Finally, if A = 0 and the boundaries are constant, then (2.15) become the 
well-known Darling and Siegert's equations (see [53) for the moments of the 
first-exit time of a diffusion process from an interval (a, 8). 

Notice that, while for simple-diffusions we have to do with a PDE, when 
A # 0, the equations (2.15) are PDDE's. 

Now, we go to consider the distribution of the first-exit time of X(t) from 
- the domain in, with the condition that the exit has occurred through the par- 

ticular boundary a (t) or /3 (t). 

THEOREM 2.2. Let us suppose that, for any continuous function h (s, x), there 
exists w(s, x)ED, bounded in (s, x), which satisfies the problem: 

w(s,y)=h(s,y), yGa(s)  or y>B(s).  
Then x,(s, x) satis$es the following PDDE: 
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Analogously, n~ (s, X) satisfies 

Proof .  It follows easily by a straightforward modification of the analo- 
gous result holding for simple-d8usion processes (see [2]). Indeed, let h be 
a continuous function, w the solution of (2.22) and X(t) the solution of (2.1) 
starting f r o n x  at- the initial instant s. By using the generalized Itb's formula for 
functions of the solution of the jump-diffusion process on the bounded Markov 
time-interval (see [9]), if z (t) = min (t, z (s, x)), we get 

Taking expectation, we obtain 

and therefore 

Now, letting t + co, we get w(s, x) = E [h (z (s, x), X(z (s, x)))]. Then, consider- 
ing in place of h a sequence (h, (t, y)j of continuous approximations of the 
indicator function of the set U = ((t, y): y d a(t)), the result for R, easily fol- 
lows. The second part can be proved analogously. s 

Now, if X (s) = x, let Z, (s, x) and zg (s, x) be, respectively, the first-crossing 
time of X(t) over the boundary of 52, with the condition that the-exit takes - 
place'. through a(t) and B(t). We are interested in the quantities: 

Then we have 

THEOREM 2.3. Assume that T,(s, x) = x,(s, x)E[za(s, x)-s]. Then T,(s, x) 
satisfies the PDDE: 
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Analogously, $ T'(s, x) = np (s ,  x) E [zs (s, x)-s], then Tp (s, x )  satisfies: 

(2.27) 
aw/ds+Lw = - K a ,  ( s ,  x)ESZ, 

W ( S ,  X) = 0, (s, ~cl&fi. 
Pro of. Let X (t) be the solution of (2.1) starting from x at the initial time s. 

Once again, by the generalized It& formula, if T ( t)  = rnin(t, ~ , ( s ,  x)), we get 

Then, $hen t -+ m, we obtain 

Therefore, by using the boundary condition T,(t,, X(z,)) = 0 (in fact, 
IT,, X (2,)) 4 a), we have 

But the last quantity is equal to TC, (s ,  x) E [t, (s, x) - s ] .  Indeed, by ItG's for- 
mula, we have 

r r 8% nu (r, x (r)) = nu ((s x)  + 1 (8za/at + Ln,) d t  + 1 a (X (t)) - dK + o (r), 
S S 

ax 
where 

r 

w(r)  = j J [ ~ a ( t ,  X ( t ) + y ( X ( t ) ,  u))-z,(t,  X( t ) )]  ;(at, 
S 

v" being defined by v"(dt, du) = v (dt, du) -dtli' (du) and E (w  (r)) = 0, due to (2.3). 
Then, by (2.30) and (2.23), we obtain 

where the last two expectations are zero; indeed, by changing the order of 
integration, the first integral is equal to 

Similarly, as easily seen, the expectation of the second integral is zero. 
The second part of the theorem can be proved analogously. rn 

Remark  2.3. By summing the equations in (2.26) and (2.27), since n, and 
are supposed to sum up to unity, the functions T, and Tg satisfy (2.15) with 
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n = 1. Then (if the uniqueness holds), we get T,+ Tp = E(z-s), that is 

Remark  2.4. In Theorems 2.1, 2.2, and 2.3, we have limited ourselves to 
show that the functions M,,  n,, ?r8, c, Tp,  there involved, satisfy certain 
PDDFs with suitable conditions. Concerning the uniqueness of the solutions 
of these PDDE problems, we notice that no general result can be achieved, 
without supposing any further condition on the operator L. Instead, if L, is 
uniformly eliptic in D (i.e. a(x) > 0 for all x), then by a maximum principle 
argument, analogous to that used in [I31 and [9] to prove similar results for 
homogeneous SDE's, it follows that MI (s, x) = E [z (s, x)- s], for instance, can 
be determined as the smallest positive solution of the problem (2.1 5)  with n = 1. 

Remark  2.5. Let f, g e D ;  then it is easily seen that 

Moreover, 

Then 

(2-34) L (f . g) Is, x) = (L, +Lj)  W'. g) (s, x) = f (s, x) Lg (s, x) + gLf 

Now, setting N G alas + L and za = T +r, and using (2.34), we can write the 
equation (2.26) (see also [I] and [2]) in the form 

N (xu E (t,)) = N (z, E (Z + r)) = =a N (E (T)) + na N ( E  (r)) 

+E(z+r )Nza+u2n&~(z+r ) '  

+J[E(za)(s, x+y(u))-E('~a)(s, x)] [na(sY x+Y(u)) 
-za(s, x)] n(du) = -n,(s, x) 

and, since N (E (z)) = - 1, Nna = 0, after some manipulations, we finallyabtain 

where ' indicates derivation with respect to x. However, in the actual case, we 
are not able, as done in [2], to rewrite (2.35) as the equation for the mean of the 
unconditional exit time of a suitably modified jump-diffusion process. Indeed, 
in the case of simple-diffusions the integral in (2.35) disappears, so by a Gir- 
sanov transformation of the drift, it is possible to achieve the result for the new 
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process 3 (t) which is a solution of the SDE dz (t) = (b + X, a2/n,)dt + mi$, 
gt being another suitable Brownian motion (see [Z]). Now, unlike the diffusion 
case, due to the integral in (2.35), we are not able to use the argument of [2] to 
obtain an equation for the second order moment of the conditional exit time 
through one of the two boundaries a( t )  or P[t ) .  However, the equation (2.35) 
may be more convenient for explicit calculations. 

- .  .- 3. CONSTANT BOUNDARIES 

I 

In this section, we consider the special case of constant boundaries; the 
corresponding results can be obtained from the general case of Section 2, by 
setting to zero the derivatives with respect to the initial time s. Thus, the 
PDDE's become ordinary differential-difference equations (ODDE's). Let 
u(t) = a = const, /I (t) = P = const and let X(t) be the solution of (2.1) starting 
from x such that a < x < p. Now, we denote by D the class of functions g (x) 
defined and continuous in R, twice differentiable in (a, 8) for which the function 
g(x+ y (x, u))-g(x) is Il-integrable for any x. 

TI-IEOR~M 3.1 (Tuckwell [IS]). Let us suppose that the moments 
Mn [x) = E (T:~ (x)) exist fop. all n = 0, 1, . . . Then we have: 

(i) the probability Mo(x) that X(t) ever leaves the internal (a, /I) satisfies 
the equation 

dMo 1 d2Mo 

(3.1) 
-AMo-fb(x)-+-~~(~)-+~~~(x+~ dx 2 dx2 (x, tl))n(du) = 0, 

(ii) i j  the solution of (3.1) is Mo (x) = 1 for all x ~ ( u ,  P), then the moments 
. Mn s~tisfy 

Remark  3.1. If there exists a function g E D, bounded in R and satisfying 
(3.2) with n = 1, then M ,  (x) = 1 for all x E (a, P), i.e, r , ~  (x) is finite with proba- 
bility one. 

Indeed, by the generalized It6's formula, if z, (x).= min (t, z (x)), we have 
for any  ED: 
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Since, by hypotheses, Lg = - 1, we obtain 

E ( T S  = s (4 - E [g (X ( ~ t ) ) ]  

Finally, by the Lebesgue theorem, passing to the Iirnit as t -t co, we obtain 

E (z (x)) = lim E (z,) < a, 
t+m 

i.e. t (x) is finite with probability one. 
.- - 

THEORE$ 3,2. n,(x) satiSJies the equation 

Analogously, TCB (x) satis$es: 

THEOREM 3.3. If T, (x) = n, (x )  E (z,(x)), then T, (x) satifies the following 
problem: 

Anah!ousl~, if ( x )  = np ( x )  E ( T ~  (x)), then (x)  satisfies 

-Now, we will consider a simple example of jump diffusion allowing only 
upward jumps, and we will carry out explicit calculations. 

.-EXAMPLE 3.1 (Brownian motion+upward Poisson jumps with constant 
amplitude). For fixed E > 0, let us consider the SDE 

(3.8) d X ( t )  = d w  t;f &dN+ (t) 

with the initial condition X (0) = x, and take ol = 0, = 2 ~ ,  the Poisson process 
intensity, 2 = 1. 

(I) For any x, Mo(x)  = 1. 
Indeed, Mo(x)  is the solution of the problem 
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We consider separately two cases: 

(i) min(,,2E, z = z (0) or flljn(0,2,1 z = ~(2.5). 
Then it is clear that z (x) - 1 for all x E R. 

(ii) There exists XE(O, 28) such that rnin(,,,,,z = z(2) < 1 with zV(x)  > 0. 
If 2 E (E, 24, from (3.9) we have z (Z) = 1 + $z" (2) > 1, which is a contra- 

diction, since z (x) is a probability. If X ~ ( 0 ,  c),  from (3.9) we have 
z (2 + E) - z (2) = - $ Z" (2) < 0, which implies z (2 + E) < z (21, i.e. 2 is not the 
point at which z(x) attains its global minimum; this is a contradiction. 

- W r  conclude from (i) and (ii) that z (x) = 1 for all x E R. 
b 

(11) The solution of the equation (3.2) for M1 is unique. 

First, we show that the problem 

has only the trivial solution z (x) - 0. If not, z (x) should have a positive maxi- 
mum or a negative minimum. Let us suppose, for instance, that the first case 
occurs; first, we observe that if z (E) > 0, then z (x) has to be decreasing in ( E ,  28). 
Indeed, for x E (E, 281, from (3.10) we have z" {x )  - 2z = 0, which has a solution 

and Z(E) > 0 implies c > 0; thus 

i.e. z ( x )  is decreasing in (E, 28). Then, if 2 is the point at which z(x) attains its 
global maximum, it must be 3 < E, and therefore 

From (3.10) we have z (2) - z (2 + E) = 4 z" (2) < 0, i.e. z(2) < z (2 + E), which con- 
tradicts (3.11). 

If Z(E) < 0, a contradiction is obtained in an analogous manner (now, 
i(x) is increasing in (E, 28)). The case when z(x) has a negativedminirnum 
can be treated similarly. We conclude that (3.10) has only the trivial solution 
z (x) = 0. 

From this fact it follows easily that the solution of the equation (3.2) for 
M, is unique. Indeed, if zl (x), z2 (x )  are two daerent solutions of (3.2), then 
z(x) = z2 (x)-z1 (x) satisfies (3,10), and therefore z (x) r 0, i.e. z1 (x) = 2, (x). 

(111) The equations (3.4) and (3.5) for n, and z8 haue a unique solution. 

Also now, if z, (x), z,{x) are two different solutions, e.g. of (3.4), then 
z(x) = z2 (x)-z1 (x) satisfies (3.10), and therefore zl (x) = z2 (x). 

(IV) The equations (3.6) and (3.7) for T, (x) and Tg (x) have a unique solution. 
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Indeed, let us consider the problem 

where xO(x) is the (unique) solution of the problem 

Let u, (XI, ar2 (x) be two different solutions of (3.12); then u + uz -ul satisfies 
(3.101, a$d tl'ierefore ul = u2. 

After checking for the uniqueness of the solution of the equations involved, 
we can proceed to find their explicit formulas. To this end, for every equation, 
first we have to find a solution in the interval ( E ,  24, up to some undetermined 
constant, then we must find a solution in (0, E ) ;  finally, the constant has to be 
determined requiring the solution to be .CZ in the whole interval (0, 2.5). By 
a straightforward, very long calculation, we obtain: 

(V) The solution of the problem for E(z): 

(3.13) 3 z " ( x ) + z ( ~ + ~ ) - ~ ( ~ ) =  -1, X E ( ~ , ~ E ) ,  
z(x)=O,  x4 (0 ,2~) ,  

is given by 

where 
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0.0 
0 0.5 1 1.5 2 

Fig. 1. For the process X(t )  which is the solution of dX(t) = dW+&dN: (Example 3.1), ~ ( t , , , , ( x ) )  
is compared with E(fOqZ,(x))  (higher curve), that is the expected first-exit time of simple-diffusion, 
i.e. the Brownian motion, from the interval (0,Ze). The two expected exit times are reported as 
a function of the starting point x ~ ( 0 ,  26) for a set of values of E = 1, 0.5, 0.2, 0.1 from the right to 
the left. Notice that the greater E,  the more accentuated the asymmetry of the graph of E (t (x)); for 
instance, when E = 1, the maximum is attained at Z = 0.83. Further, the smaller E, the more the two 

curves become close one to the other; for E = 0.1, no difference can be detected. 

As expected, the point at which z (x )  = E (z (x)) attains its maximum does not 
coincide with x = E, but it is shifted towards the left, i.e. E (z  (x)) is not symmetric 
with respect to the middle point of the interval ( 0 , 2 ~ ) .  This is because the process 
can exit on the left only trough continuous trajectories, while it can also exit onthe 
right by a jump. The greater the jump amplitude E, the more accentuated the 
asymmetry of the graph of E ( z  (x)); for instance, when E = 1, the maximum is 
attained at 2 w 0.83. In Figure 1, the graph of E (z (x)) is reported as a function of 
the starting point x ~ ( 0 ,  2.4, for a set of values of E and it is compared with that 

.corresponding to simple-diffusion, i.e. the Brownian motion. Of course, if f ( x )  
denotes the first-exit time of the Brownian motion from the interval (0, a), with 
the condition that it has started from x, we have E ( ~ ( x ) )  < E(z"(x)). 

(VI) ?he solution of the problem for n,(x):  

is given by 
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where a is given by (3.151, b = -eeC3'*/$, B = 1 -A,  and the ualues of A and 
c are obtained by requiring that z(x) E C2 (0, 24. 

(VII) Analogous calculations aIIow to obtain the formula for 
E ( T ,  (x)) = T (x)/.x, (x), where T (x )  is the solution of the problem 

Remark  3.1. Actually, the calculations required to obtain the explicit 
solutions oLproblems with outer conditions, such as (3.13), (3.18), (3.18), are 
very long and tedious. By the way, we observe that if one had considered e.g. 
boundaries or = 0 and P = n ~ ,  n being an integer, the calculations would be still 
more complicated; indeed, the solution should be searched first in the interval 
((n- 1) E, n ~ ) ,  up to a set of undetermined constants, then it should be searched 
back in the preceding interval ((n -2) E ,  (n - 1) E), and so on, recursively, until 
the first interval (0, E )  is reached. Finally, aII the constants should be found, by 
requiring the solution to be CZ in the whole interval (0, n ~ ) .  

Remark  3.2. If the jump amplitude E is small enough, the solutions of 
the above problems are close to those (easier to obtain) of the corresponding 
problems with boundary conditions. 

(i) Let us consider the problem with outer conditions 

(3.19) 
Lz (x) & (1/2) o2 (x) 2" (x) 

+ ~ ( x ) ~ ' ( x ) + S [ Z ( X ~ Y ( X , U ) ) - Z ( X ) ] ~ ( ~ U ) = - ~ ,  x ~ ( a , p ) ,  
z(x) = 01 x4!a, B), 

whose solution is z (x) = E (zag (x)) and let Z(x) be the solution of the correspon- 
ding problem with boundary conditions 

Lz(x)=-1, x ~ ( a , p ) ,  
(3.20) 

Z(a) = z(p) = 0. 
-- 

By Its's formula and taking expectation we obtain 

Since X ( z ) ~ ( a - E , u ] ~ @ , ~ ? + E ) ,  for M =maxi-5(a-E), - Z ( ~ + E ) )  > 0 ,  
from (3.21) we get (notice that Z(X(z)) < 0): 

Thus, since 5€C2 and Z(u) = 518) = 0, if E is small, also M will be smaEl, 
and (3.22) gives an approximation (easier to calculate) of the solution of 
(3.19). 
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(ii) The equation that gives ~ ( x )  is 

and the corresponding problem with boundary condition is 

Let Tt. (x) be the solution of (3.24); since X (z) E (a -E, a] u [fly f i  +E) ,  by the 
same ",rguUment as that used in the proof of Theorem 2.2 we obtain 

Since ? 5 , ~  C2, if E is small, the term in the brackets is also small. Thus (3.25) 
gives an approMation of the solution of (3.23). 

(iii) Let T (x) = E(t,n,) be the solution of the problem with outer con- 
ditions 

LT = -x,, X E ( U ,  P), 
(3.26) 

T(x) = 0, xl(a,  BY 
and let us consider the solution T(x) of the problem with boundary conditions 

As in the case (i), we obtain 

Since a-E < X (z,) 3) a, and T(x) is increasing on the left of a, i.e. 
T(X(z,)) > T(a-E), we have (notice that T(x(T&) 3) 0): 

Of course, the approximation above is meaningless for x close to B (at x = fl, 
a, (x) becomes zero). 

Returning to Example 3.1, we consider now the corresponding problems 
with boundary conditions, discussed in Remark 3.2. 

Actually, (3.20) becomes 
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which has the solution 

where B is the negative solution of the equation 

(3.31) B2/2 + eB" 1 = 0. 

The approximati-ng problem (3.24) becomes 

which has the solution 

where B is given by (3.31). 

Fig. 2. For the same process as shown in Fig. 1, the solution E(z,,,,(x)) of the problem with 
outer conditions (3.19) is compared with the solution E(f0, , , (x))  of the corresponding problem 
with boundary conditions (3.20) (lower curve). They are reported as a function of the starting 
point x ~ ( 0 , 2 ~ )  for a set of values of E = 1, 0.5, 0.2, 0.1 from the right to the left. The smal- 
ler 8, the more the two curves become close one to the other; for E = 0.1, no difference can 

be detected. 

13 - PAMS Zf.2 
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The approximating problem (3.27) is 

which has the solution 

(3.35) T(x) = eBx(ax+b)+cx+d, 

where B is given by (3.31) and 

In Figure 2, the solution of the problem with boundary conditions (3.20), 
relative to the SDE of Example 3.1, is compared with that of the corresponding 
problem with outer conditions (3.19) for a set of values of E. 

4. FIRST-PASSAGE-TIME DENSITY AND THE LAPLACE TRANSFORM 

In this section, unlike the previous ones, we shall follow an approach 
based on the Laplace transform; indeed, our goal wilI be to express the con- 
ditional moments of first-passage time (FPT-moments) of a jump-diffusion 
process through each of two constant boundaries, in terms of the Laplace 
transform of the simple-diffusion FPT-density; moreover, in some cases we 
shall compare the jump-diffusion FPT-moments with the simple-diffusion ones. 
The unconditional case has been already considered in [12]. 

Let X(t) be the jump-diffusion process which is the solution of the equa- 
tion (see (2.5)): 

(4.1) dX (t) = b (X (t)) dt + a (X (t)) d W + E I dN1 (t) + EZ dN2 (t) 
-and let 

be the probability density function of the first-exit time (FPT-density) of the 
process X(tf from (a, P), with the condition that X(0) = x. Moreover, let 

be the FPT-density of the conditional first-exit time through the end a and P, 
respectively. The n-th order moment of zar(x) is given by 

and analogous definitions hold for E (T: (x)) and E (7; (x)). 
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Now, let 8 (t) be the simple-diffusion process obtained from the equation 
(4.1) disregarding the jumps, i.e. z ( t )  is the solution of (4.1) with = EZ = 0: 

We denote, respectively, by @(t 1 x), &(t I x), and lfl (t 1 x) the probability density 
functions of the first-exit times 'F"(x), fa(x), and G(x), relative to the simple- 
-diffusion process x (t), i.e. 

and analogous formulas hold for E ( c  (x)), E (q (x)). Finally, we denote by 8 and 
4 the Laplace transform of the densities g and fl: 

and analogous definitions hold for 8, and JAY A = o?, /I. 

41. Constant amPr;hade Poissoian jumps. In this subsection, we deal with the 
case of constant amplitude Poissonian jumps. As already noted (see e.g. Example 
3.1 of Section 3), a heavy computation is required to solve explicitly the differen- 
tial-difference equations (3.2) satisfied by the moments M,,(x) = E(zn(x)). Then it 
would be useful to find alternative formulas, involving the Laplace transform of 
FPT-densities. 

Let us consider the special case in which el = 0, c2 = E > 0 in (4.1) 
and Al  = A; therefore, we consider upward Poisson-distributed jumps with 
constant amplitude E and intensity A. The equations (3.2) for the moments 
M,, (x) become 

We further suppose that f i  is an absorbing barrier for the simple-diffusion 
process x ( t )  associated with the equation (4.1). Let &(y, t 1 x) be the transition 
probability density function of 2 (t) constrained to be absorbed at the bound- 
ary /I and denote by 

its Laplace transform. Then, by adapting the results of [I21 to the actual case, 
we are able to obtain: 
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THEOREM 4.1. The probability q ( x )  of ultimate absorption of the process 
X ( t )  at the boundary P is the solution of the following integral equation: 

8 - E  

where is the indicator function of the interval (a ,  b). 

T H L ~ O R E ~  4.2. Ij'np(x) -- 1 (i.e. the boundary a is repelling), then the Jirst 
~ n d - s s c ; ~ d  moments of the fist-passage time of the process X ( t )  through x = fl 
are solutions of the following integral equations: 

(4.1 0) E (7 (x))  E ( z ~  (x)) 
B * 1 

a-e 

(4.1 1) E (zZ (x))  = E (z$ (x)) A 

B * 

= A  ~ ( 6 @ ) ) 6 V ,  z - ~ I x ) I ~ , + ~ , ~ ( z ) d ~ - 2  
(1 I 4 

a-e .+ d A 

where Fb (21 x )  is the Laplace transform of the cumulative transition probability of 
the process ( t )  constrained to be absorbed at the boundary j ,  with respect to the 
parameter A. rn 

The analogous results hold for the moments of z, (x), in the case when a is 
absorbing and ~ ( x )  E 1. 

4.2. Large Poissonian jump. Now, we suppose that the amplitudes and 
EZ of the jumps are not constant, but they are state-dependent, in order that, at 
-any jump instant, the process exits from (a, j), irrespective of its state before 
the occurrence of the jump. For the sake of simplicity, we model the upward 
and downward jumps by means of a unique Poisson process with intensity 1, in 
-such a way that, at each jump instant, an upward jump occurs with probability 
p, and a downward one occurs with probability q = 1-p. Then we have 

PROPOSITION 4.1. If z, za and zs are honest random variables, then the 
probability densities g ( t  1 x), g, ( t  1 x )  and gp (t 1 x) are given by 

m 

(4.12) g ( t Ix )  = e - " ' g " ( t I ~ ) + A e - ~  J J(sIx)ds ,  
I 

m 

(4.13) g , ( t ~ ~ ) = e - ~ [ [ g " , ( t 1 ~ ) + a ~ g " ~ ( ~ 1 ~ ) d ~ + a ( l - ~ ) ( a t - 1 ) ] ,  
t 

m 

(4.14) g a ( t I ~ ) = e - " [ ~ ( t I ~ ) + l j # D ( ~ I ~ ) d ~ + l ( l - p ) ( l t - l ) ] .  
f 
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Proof.  We shall prove only (4.14), since the other relations can be proved 
analogously; for p = 1 the equation (4.14) reduces to equation (5) of [12], i.e. 
the right member of (4.14) becomes that of (4.12). 

The path of the process can be divided into two disjoint classes: one 
consists of the realizations which exit through before the occurrence of 
a jump, the second class consists of all the others. Of course, the probability 
that, until the time t, the first jump has occurred upwardly (and the successive 
jumps have occurred upwardly or downwardly) is 

- pl2teUAf i- l-e-At-Ate-" = 1 -e-"(At(1 - p ) +  1). 
I 

Then 

Differentiating (4.15) with respect to t, we easily obtain (4.14). 

PROPOSITION 4.2. The Laplace transform of g p  is given by 

where q = I - p  and iB is the Laplace transform of the density of thefirst-exit time 
of the simple-difusion through the end #?. Analogous formulas hold for gj and 9,. 

The proposition can be obtained by a straightforward calculation, by 
using (4.14). 

Remark  4.1. The Laplace transform of the density of the first-exit time 
~ ( x )  from (a, /3) is given by 

It can be obtained by the same argument as that used in [I21 to get the 
Laplace transform of the density of the first-passage time zs of a process -- with 
upward jumps through a barrier S. Then 

(When p = 1, (4.17) reduces to the equation (7) of [12].)  

THEOREM 4.1 (cf. [12]). If z (x)  is an honest random variable, its moments of 
n-th order satisfy the following recursive equations (n = 1, 2, . . .): 
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Moreover, 

(4.19) I3 (zn (4) d (F b)), 

i.e. the moments of the first-exit time of the jump-diffusion process from the 
interval (or ,  j?) are less than those of the corresponding simple-d~flusion. 

P r 0 of. The theorem can be obtained by the proof of the analogous Theo- 
rem 2.2 of [12], concerning the first-passage time zs. 

Now, we are going to investigate the moments of t, and -ip. 
. TFIEOREM 4.2. Under the hypotheses of Proposition 4.1, the moments of 

TP (x) safisfj the following recursive equation (n = 1 ,  2, . . .): 

and an analogous formula holds for E ( r ~ ( x ) ) .  

Proof.  By differentiating (4.17) with respect to p, we obtain 

where Q is the Laplace transform of the density g of z. Then, taking into 
account the equality 

obtained from (4.18), putting p = 0 in (4.21), we easily get (4.20). 
- Now, we give an integral representation of the moments of first-exit times. 

THEOREM 4.3. The following formula holds for the n-th order moment of 
.t, (x): - 

(4.22) E (z2x))  = E (q (x)) 

P r o  of. From (4.14) we have 
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Integrating by parts we obtain for the second integral J2(X): 

where I, (t) = j tn e-"dt can be found recursively by the relation 

.- . 

Analogousl~ J ,  (i) can be found in terms of integrals of the form (4.25).  hen it 
is straightforward to check that (4.22) holds. 

COROLLARY 4.1. If p  is large enough, then 

(4.26) E (G (XI) < E (5 (x)) .  

If p = I, (4.26) becomes (4.19). 

Proof,  Let us put 

As easily seen, h(0) = 0 and h (t) < 0, t > 0. Then the integral in (4.22) is nega- 
tive, and thus (4.26) holds provided that 1 - p  is small enough. 

Remark  4.2. Notice that by using (4.20) one can obtain (4.26) for n = 1, 
while, for n 2 2, only the weaker estimate can be found: 

The result of Corollary 4.1 is easily understood if one observes that, 
although the n-th order moment of the unconditional first-exit time of the 
jump-diffusion process from (a, P) is less than that of the simple diffusion 
(see (4.19)), in the case when the probability p of an upward jump-is small, it 
might take a longer time to exit on the right. On the contrary, if p x-1, the 
process exits for the first time on the right more likely than in the simple- 
-diffusion case. 

We observe that (4.19) and (4.26) can also be proved by solving the equa- 
tions obtained from (4.8) putting equal to infinity the amplitude E of the jumps, 
and then by comparing those solutions with the moments of the simple dif- 
fusion. For instance, in the case when only upward large jumps are allowed, 
E (~ (x ) )  is the solution of the equation 
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whiIe E ( f ( x ) )  is the solution- of the equation 

If b ( x )  and a(x) are explicitly known, then by solving (4.27) and (4.28) it is 
possible to verify directly that z (x )  < v (x) for all x E (a, 8). 

Acknowledgment. I am deeply grateful to my wife Laura for carrying out 
all the long and tedious calculations needed to obtain the explicit solutions of 
the-dSyential-difference equations of Section 3. 
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