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Abstract. The purpose of the paper is to establish a large devia- 
tion principle for a certain class of increasing set-valued processes 
obeying Markovian dynamics. The obtained result is then applied to 
investigate the asymptotics of the sequence of successive convex hulls 
generated by uniform samples on a &dimensional ball. 
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1, I ~ O D U C T I O N  AND MAIN RESULTS 

Consider a compact metric space E and denote by 9 (E)  the family of all its 
closed (and hence compact) subsets. We endow 9 ( E )  with the topology in- 
duced by the Hausdorff distance p,. It is known that the resulting space 
( F I E ) ,  p,) is compact (see Chapter 1 in [ l l ] ) .  It is convenient to assume that 
0 €9 (E) and to set p, (0, A) = 1 for all nonempty A E 9 (E). 

The random elements taking values in ( F ( E ) ,  BE), where BE is the Bore1 
a-field corresponding to p,, will be referred to as random closed sets (for 
extensive reference see [8], [ I f ]  or [12]). 

Let $3 be a certain subclass of 9 ( E )  closed with respect to finite unions 
and limits in p,, i.e. 

- - 
(Kl) if A, B €9, then also AuB E $3; 

(K2) if Al, A2, . . . E 9 and limn,, pE (A,, A) = 0, then A E $3. 

In particular, we conclude from (K2)  that (3, p,) is compact. 
In this paper we investigate a general class of growing %valued processes 

which can be represented as successive unions of random closed sets obeying 
Markovian dynamics in the following sense. Let n(- I .) be a certain stochastic 
kernel on 9 given 9, i.e. R is required to be a measurable mapping from $3 to 
the space 9(g) of all the Bore1 probability measures on 9 endowed with the 
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usual weak topology. For each H O € 9 ,  on a probability space (62, 8, pH,,), 
construct recursively the sequence of random closed sets (z~),:, taking 

PHo (Zo = Ho) = 1 
and 

for j 3 0 and 8 G 9. Note that the sequence (U;=, z~),",, is a Markov chain. 
For e&h n E N define the piecewise constant %valued -random process 
(XF)o + as follows : 

- 

(2) x; := u zj. 
j < n t  

We shall call this process the union process associated with Zo ,  . . ., Z,. The 
purpose of the paper is to establish and prove the large deviation principle for 
the sequence Xn. 

It is convenient to consider the union processes as random elements tak- 
ing values in the space Q = @(a) of all nondecreasing (with respect to in- 
clusion) right continuous 9-valued functions defined on [0, 11. Identifying 
each function UE% with the closed set 

we construct an embedding r of % onto a closed (and hence compact) subset of 
the compact space ( F ( E  x [0, I]), p~E,[o, , l , ) .  Let us endow % with the fol- 
lowing metric g induced by this embedding: 

Clearly, the resulting space (%, Q) is compact. 
We impose on the transition kernel n(. 1 -) the regularity conditions given 

- in the sequel. For the notational convenience let us agree to write 'x ( Z  satisfies 
9 I A)' instead of 'n: ({CE 9 I C satisfies B) I A)', where A E 99 and W is a certain 

.. property. 

(Cl) If limn,, pE(An, A) = 0 for A, A,, A,, . . . €9, then for each closed 
family d E 9 we have lim,,, R (8 I A,) = x (8 I A). 

(C2) Let A, B €9, A E B and suppose that R (2 E B I B) > 0. Then for 
each E > 0 there exists m 2 0 such that 

Roughly speaking, condition (C2) requires that the process of successive unions 
Uy=, Zi starting from the neighbourhood of some A E 9 reaches with positive 
probability the appropriate neighbourhood of B for any  BE^ containing 
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A and stable in the sense that n (2 c B 1 3) > 0. Note the unidirectional charac- 
ter of (C2) (transitions are allowed from subsets to supersets only) due to the 
monotonicity of the successive unions process. 

For each H O €  3 we define the rate function IRo: 42 -P R+ u(m) by 

(4) Ino ( U )  := - 1 1 0 g ~  ((ZuHo) G U (t)  I u It)) d t .  
C0,lI 

In Lemma 1 we show that the name rate function used for I is justified in the 
sense of the following definition (see Section 1.1 in [4] or the definition of 
a good rate-function in--Chapter 2 of [3]). 

D E ~ I ~ N  1. A nonnegative function J defined on a Polish metric space 
X is called a ratefunction if its level sets { X E ~  1 J(x) 6 M )  are compact for 
O < M < o o .  

Note that in particular each rate function is lower semicontinuous. Fur- 
ther, in view of the compactness of %, each lower semicontinuous function on 
%' is a rate function. 

The main result of the paper is 

THEOREM 1. Under conditions (Cl) and (C2) the sequence X" with the initial 
condition Zo  = H o  sati$es the large deviation principle on 42 with the rate 
function Ino, i.e. for each open set 9? G F 

1 
lim inf -log P,, (X" E 59) 2 - inf I,, (U)  

n+m fl Us9  

and for each closed set JP 5 F 

1 
lim sup -log P,, (Xn E &') 6 - inf I,, (U) . 

n + w  7l UEX 

The next section contains the proof of the above statements. In the final 
section, as an example of application, we use Theorem 1 to prove the large 
deviation principle for sequences of successive convex hulls of uniform samples 
on a d-dimensional ball (see Theorem 2). 

-It is to be emphasised that all the definitions and results presented above 
can be easily extended to a more general case with the setting space E which is 
not necessarily compact, but is metrisable, separable and locally compact. The 
topology induced by the Hausdorff metric is then to be replaced by the vague 
(Fell) topology on 9 (E) (for the definition see Chapter 1 in [l l j  or Section 1.1 
in [12]). However, since the resulting topological space can be embedded in 
a natural way into the space F (E)  of closed subsets of the one-point compact- 
ification E of E (see the remark on Theorem 1.4.1 in [I I]), we have decided to 
confine ourselves to the apparently less general case of compact E, which 
allows us to simplify the presentation of certain details of the proofs due to the 
convenient form of the Hausdorff metric. 
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2. PROOFS 

2.1. Lower semicontinuity of IH,. To justify the name rate finetion used for 
I,, in (4) we prove the following lemma: 

LEMMA 1 .  For Ho E 3 thehnction I H o  given by (4) is lower semicontinuous. 

P r o  of. We shall show that the mapping F 3 A w .n ((2 u H,) G A I A) is 
upper semicontinuous, i.e. if lim,, , p, (A,, A) = 0, then 

( 5 ) .  - - l i m s u p ~ ~ ( ( Z u W o ) ~ A , ~ A , ) d ~ ( ( Z v H o ) c A ~ A ) .  
4 n+ m 

-- 

From condition (C1) we conclude in particular that the sequence of probability 
measures R ( -  I A,) converges weakly to TC (. I A). Applying Skorokhod's represen- 
tation theorem we construct random sets El, E,, . . . and B distributed accord- 
ing to R(-  I Al) ,  x (. I Az), . . . and n (- I A), respectively, and such that almost surely 
limn,, p~ (En, 5) = 0, and hence limn,, p~ (8, u H o ,  E u H o )  = 0. Further, 
note that we have (Z,uH,) $ A, for n large enough whenever (EuHo) $ A, 
so that 

lim sup l ~ ( ~ , u ~ o ) s  A,) < ~ ( ( S L J H ~ ) E  A).  
n+ m 

Taking the expectations of both sides and applying Fatou's lemma we ob- 
tain (5). 

To proceed take an arbitrary sequence (Urn),"=, c 42 convergent to a cer- 
tain U € 4 2  and observe that for each t  ~ ( 0 ,  11 at which U is continuous with 
respect to p, we have limn,, p, (U,, ( t ) ,  U (t)) = 0, so by (5) we have 

(6) lim sup R ((2 u Ho) G U, ( t )  I U ,  ( t ))  ,< n: ((z u Ho)  z U ( t )  I U ( t ) ) .  
n- w 

However, since U is nondecreasing, the number of its discontinuity points is at 
most countable. Indeed, let 6 be a countable open set basis of E. Then each closed 
set A G E is uniquely determined by the subfamily OA = ( G  E 6 1-G n A # Dl. 
Now, let t ,  ~ ( 0 ,  1)  be a discontinuity point of U .  Then, obviously, there exists 
G,, E 0 such that G,, $ QU(,, for t < t1  and G,, E OU(,) for t 2 t ,  . Further, if t ,  and 
t ,  are two different discontinuity points, then G,, # G,,. This proves that U can 
be discontinuous at a countable number of points only. 

Thus, we can integrate both sides of (6) over [0, 11 neglecting the discon- 
tinuity points and apply Fatou's lemma to get 

I H ~  ( U) < lim inf IH,  (U,) , 
n+ m 

as required. H 
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2.2. Proof of Theorem 1. The scheme of the proof is the following. First we 
apply Theorem 1.3.7 of [4], originally due to O'Brien and Verwaat [I41 and 
Pukhalskii [IS], formulated below. 

PROPOSITION 1. Let (n') s N be a certain sequence of natural numbers. If 
a sequence of random elements Y"' taking uahes in a Polish metric space 9" is 
exponentially tight, i.e. for each R > 0 there exists a compact set K c 55 such 
that 

5 

then there exists a further subsequence (n") r (n') such that Y"" satisfies on E the 
large deviation principle with a certain rate function J ,  i.e. for every open set 
gc9" 

I 
Jim inf - log P (Y"" E Q) 3 - inf J (x) 
nss+m a'' a% 

and for each closed set A@ c 4 

To proceed we fix some Ho €9 and a subsequence (n'). Note that since 
4Y is compact, it is immediately obvious that Xn' is exponentially tight. There- 
fore there exists a further subsequence (n") E (n3 and a rate function JH,  on 
Q such that the sequence Xn" under Pa, satisfies the large deviation principle 
on 9 with the rate function JRo.  Since the subsequence (n') was chosen arbi- 
trary, the proof of Theorem 1 will be complete if we succeed to show that 
JHo = I=,, where I,, is defined by (4). We do this in three steps. First, in 
Lemma 2, we prove that JHo (U) 2 I,, (U) for all U E 9. Then, in Lemma 3, we 
show that the converse inequality (and hence equality) holds for ail piecewise 
constant U E a. Finally, in Lemma 4 we extend the latter result onto the whole 
Q, thus completing the proof. 

--LEMMA 2. For each U E $2 we have JBo ( U )  2 IHo ( U ) .  - .  

Proof. Fix some U E $2 and choose an arbitrary E > 0. We claim that 
there exists an increasing sequence 0 = to < tl < . . . < tk = 1 such that 

To see this define for each t€[O, 11 
* 

$(t):= min( s  > t ( s = 1 or p,(U(s),  ~ ( t ) )  2 ~/2) .  

Note that the correctness of this definition follows from the right continuity 
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of U .  Now set 

to := 0 and t i+l  := $(ti) for i 2 0. 

It remains to show that there exists some k for which t,  = 1. If it were not the 
case, we would have an infinite sequence U(tO) c U(tl) c U(fZ) c . . . with the 
property that p, (U (ti), U (tj)) 2 .5/2 for i # j (because far i < j we have 
U (ti+ ,) c U (t,) so that pE(U (ti), U(t j ) )  2 pE (U (ti), U (ti+ 3 ~/2). Since 9 is 
compact, it cannot happen, so (7) holds. 

T~proceed  take some 6 > 0 such that S < minf~ , j  (ti+ - ti)/2-and 6 < ~ / 2  
and defme d(6) to be the open '6-sausage' around U ,  i.e. 

A@):= ( V E I  I Q ( V ,  U) < S ) ,  

where q is the metric on 9 given by (3). We will investigate the asymptotic 
behaviour of the quantity 

Define for A E  9 

yith sup 0 = 0 and A(" = {XE E I dist (x, A) < E ) .  Further, for &l 0 < i < k 
choose arbitrary Z~ E [ti, ti+ l). Then. for sufficient'ly large n" we have 

with [u ]  denoting the greatest integer not exceeding u. Indeed, if Xn" E A (a), 
then in particular 

P E  (U (ti), Z') < SUP pE (U (z~), U(S))+ inf PE (U(s): X?") < -42 + 6 < E 

~ [ t i , t ~ +  1) ~ ~ [ t i p t i  + 1) 

for t E [ti + 6, ti + - 61. Thus, during the whole period [ti + S, t, -81 the pro- 
' cess Xn", performing at least I(ti + - ti - 26) n"] - 1 transitions; each with 
probability at most PU(ri)(~), remains in the E-neighbourhood of U (q), which 
yields (8). Letting n" + co we conclude from (8) 

k - 1  

Thus, since X"'' satisfies the large deviation principle with the rate function J,,, 
taking into account that A (6) is open, we get 

k-  1 

JHo (U) B inf JHo (V) 2 - lim inf Ln,, B - z (ti+ - t - 26) log P,(,,) ( E ) .  
V ~ d ( 6 )  n"+m i = O  
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Since ri€ [ti, t i + l )  were arbitrary, taking S 0 we conclude that 

(9) JH, (U)  2 - J log P,(t, (4 at. 
[0,11 

We will show that for each A E ~  

lim sup P A  (a) < x ((2 v Ho) E A I A).  
E-'O 

Clearly, we can confine ourselves to the case H o  E A, for otherwise both sides 
equal 0. Choose some q > 0. Let .sk -+ 0 for k + 00 and Iet Ho G A, E 9l be such 
that pE(Ak, A) < E ,  and 

Further, take an arbitrary 8 > 0. Then, for k such that E~ < 0 we have 

PA ( E ~ )  < R (Z  E A["'I Ak) + tl 
I with = {X E E I dist (x, A) < 0). Letting k + co we get from (Cl) 

lim sup PA (E) < (2 E A['] I A) i- q . 
E + O  

Taking in turn q, 0 + 0 we obtain (10). 
Finally, combining (10) with (9) and applying Fatou's lemma we conclude 

that 

JH0(U) 2 - logn((ZuH0) c u( t )  I u(t)) = I H , ( ~ ) ,  
['J.ll 

as required. rn 

We pass now to the second step of the proof showing that the inequality 
converse to that established in the previous lemma is satisfied for all piecewise 
constant functions U E 9. 

LEMMA 3. Let U E 4 be piecewise constant. Then JH,, (U) < LH, (U). 

- P r o  of. To simplify the notation we assume without loss of generality that 
U is of the form 

A i f O < t < a ,  u (t) = 
B otherwise, 

where A ,  BE 9, A E 3 and 0 < a < 1. Also, we can require that H ,  G A, for 
otherwise I,, (U) = + oo and the assertion of the lemma becomes obvious. For 
the same reasons we assume that x ( 2  E A ( A) > 0 and .n (2 c B I B) > 0. Take 
some E such that 

min(a, 1-a) ' ~ 

O < E <  
2 9 
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and define 

a(&):= {VE* I Q(V, u) < E }  

to be the closed '&-sausage' around U .  Let 

Choose M E N  such that 
. . m 

5 P H ~ + A @ )  := B ~ ~ ( P ~ ( U  zj, A) < &) > 0 
j = O  

and 
m 

P A - B I E ) : = ~ ~ ~ ( P ~ ( P E ( U  Z j ,  3) G E ) ]  C f 9 , p E ( C ,  A ) < & )  > O .  
j = O  

The existence of such m follows from condition (C2) (recall that H ,  E A G B 
and both K ( Z  c A I A) and a ( Z  E B I B) are positive). Further, let 

and 

pB(e) := inf(n(Z G B ( C) ( C E ~ ,  pE(B,  C) < E) 
Take k~ N such that m/k < e. Then, for n" > k we have 

To see this observe that the right-hand side of the above inequality does not 
exceed the probability of the following event U ( E ) E ~ :  

U (6): During thefirst rn steps the process X"" passesfi.om Xr = HHo to some 
_X;,&.., such that p,(X$', A) < e. ?ken, for m < j < an", XIj;nr., remains in the 
E-neighbourhood of A. During the further m steps it pe$orms a transition to 
a state which lies in the E-neighbourhood of B. Finally, pE(X$;,,,,, 3) < e for 

.- [an"] + m < j < n". - - 

Since X"" is nondecreasing, in view of the definition of J(2e) and because 
of (3) the event U ( E )  entails Xn" E 1 (24. Hence (1 1) is established. Passing with 
n" to infinity we easily obtain 

lim sup An-, (24 2 u log pA (E) + (1 - a) log p, (E) . 
n"+m 

Using the fact that x*" satisfies the large deviation principle with the rate 
function JHo and taking into account that a (24 is closed we conclude that 

(12) inf J H ,  (V) < -1im sup An,. (24 < -(a logp,(~) + (1 -a) log P,(E)). 
v~A(2 . z )  n"+ m 



Large deviation principle 28 1 

Condition (GI) together with the definitions of PA(&)  and p , ( ~ )  yields by stan- 
dard arguments 

and 

Thus, letting E + 0 we conclude from (12) and the lower sernicontin$ty of - - .  .- . . 
J H ,  that. , 
J H , ( U )  < - a l o g ~ ( ( Z u H ~ )  G A I A)-(~-E)~o~K((ZUHO) G B 13) = IH,(U), 

as required. r 

The last step of the proof of Theorem 1 is to extend the above result for a11 
u € %. 

LEMMA 4. For each U E alG we have JH, ( U )  < iHo (U). 

Proof ,  Take an arbitrary E > 0 and let 0 = t o  < tl < ... < tk = 1 be as 
in (7). For each 0 6 i c k choose ai E [ti, ti, ,) so that 

Define the piecewise constant function by 

UE(t):=U(ai) for t ~ [ t ~ , t ~ + ~ ) ,  O < i < k .  

Then, by (7), g (U, U" < 4 2  and, by (13), I,, (U") < I,, (U). Thus, letting E + 0 
we obtain, by the lower semicontinuity of J,, and by Lemma 3, 

JHo (U) d Iim inf JRo (U3 d lim inf IH, (U" < I H ,  (U). - 
n"+m n"+ m - - 

This yields the assertion of the lemma. rn 

Combining Lemmas 2, 3 and 4 completes the proof of Theorem 1. 

3 CQNVEX HULLS OF UNIFORM SAMPLES 

Let c, cl, c2, . . . be a sequence of i.i.d. random vectors uniformly distri- 
buted on the d-dimensional unit ball Bd c Rd and define C,  to be the convex 
hull of {cl, ..., cn}: 

Cn := conv((l1, C29 . - - 3  5.)). 
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It can be easily verified that C, converges almost surely to Bd (for instance, in 
the Hausdorff metric). Since the pioneering papers of Rknyi and Sulanke [16] 
and Efron [ 5 ]  the speed of this convergence and related questions have been 
thoroughly investigated in the literature by various authors. For an extensive 
reference of these results see e.g. [I71 and the references therein. Over the last 
decades important progress has been made in the particular two-dimensional 
case where very strong limit theorems for some functionals of C, (such as 
volume and perimeter) have been proven since the paper of Groeneboorn [ 6 ]  
followed by other authors (e.g. [I], [2 ] ,  [7], [9]). Several results, though weak- 
er, h a ~ , a l s b  been obtained in higher dimensions (see [lo] and the references 
therein). However, there remains a number of open questions. 

The asymptotic behaviour of the sequence of successive convex hulls 
can be studied by means of the growing random processes (Bn),,Io,ll given for 
 EN by 

In this example we aim at applying the general results presented in the previous 
section to establish the large deviation principle for en. 

Let us define 

C(Bd) : = (C C. Bd I C is closed and convex) 

and endow this space with the usual Hausdorff metric denoted by pC. For the 
formal presentation of our theorem we need to impose a topological structure 
on the family % of a11 nondecreasing right continuous C(Bd)-valued functions 
defined on [0, I]. We do it exactly in the same way as we did in the case of 
'32 (see (3)), thus making % a compact metric space. 

As an application of Theorem 1 we prove 

THEOREM 2. For 8 E V de$ne 

(14) f (@) : = log A (B,) - j log a (@ (t)) dt , 
[as11 

..where d is the d-dimensional Lebesgeae measure. Then f is a rate function and the 
sequence On satisfies the large deviation principle on V with the rate function f. 

Proof.  Since it is not convenient for us to deal directly with the convex 
sets, because this class is not closed with respect to set-theoretic unions, we 
choose to represent each convex set C by the subgraph of the restriction of its 
support function (see e.g. Section 1.7 in [18]) to the unit sphere S,- ,  = dBd. 
Namely, we associate with each C E C (B,) the closed set h (C) given by 

S d - l ~ [ - l ,  I] 3 h(C):= {(u, y ) ~ S ~ - ~ x [ - l ,  11 I y<max(x ,  u)), 
XEC 

where ( ., a )  denotes the scalar product. By convention, we set h (0) : = 0 .  
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Since k(C) determines C uniquely, we can identify C with h(C), thus ob- 
taining an embedding of C (B,) into the space P (Sd- ,  x [- 1 ,  11) of all 
the closed subsets of x [-1, 11. It is not difficult to verify that this 
embedding is in fact a homeomorphism of compact spaces (C(Bd),  and 
h (C (Bd)) G (9 (Sd - x [- 1, I]) , p(ss - [ - Hence, defining 9 as the image 
of 1, i.e. 23 : = {k (C) ] C E C (Ball, we note that 9 satisfies condition (KZ). To see 
that also (Kl) is fulfilled check that 

(15) h (conv (A u B)) = h (A) u k (B) 

for A, BEC-@~). Formula (15) allows us to replace, using k, the operation of 
taking the cohvex hull of union of two sets by the operation of sektheoretic 
union. In particular, we obtain 

This identity allows us to establish a handy representation for C, and On, 
which fits well into the general setting of Theorem 1. Namely, let almost surely 
Z ,  : = 0 and Zi : = h ({ti)). In view of (1) this corresponds to choosing the 
stochastic kernel n independent of the second variable and given by 

for B c 9 and B E  9. Further, (1  6) translates into k (C,) = UE Zi, and there- 
fore 

(18) h (OF) = X: 

for all t~ [0, 11, where (Xn),,co~,l is the union process defined in (2). 
Consider 42 = 42 (9) defined as usually (see the discussion following the 

definition of the union process (2)). Recall the definition of %' given before the 
formulation of Theorem 2 and observe that the mapping k: % -+ 42 (9)  given by 
[k (I791 (t) : = h (F (t)) for F E  'it establishes a homeomorphism of the compact 
spaces % and % endowed with respective topologies. Note also that (18) trans- 
lates into i(8") = X". Therefore, to prove Theorem 2 it suffices to-show that 
the sequence X n  satisfies on 4 the large deviation principle with a certain rate 
function J such that 

with f defined as in (14). 
We will proceed as follows. First we shall argue that the regularity con- 

ditions (Cl) and (C2) are satisfied. Then we will apply Theorem 1 to establish 
the large deviation principle for Xn. Finally, we will show that (19) holds, thus 
completing the proof. 

Condition (Cl) is obvious because n: does not depend on its second varia- 
ble (see (17)). To establish (C2) fix E > 0, take some A ,  3 E 9, A E B, and let 
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C,, C, E G(Bd),  CA c CB, be the corresponding convex sets, i.e. A = h (C,) and 
B = h (C,). Choose q > 0 such that pod-, ,I- ,,,,, ( h  (C), B) < E for each 
CE C(Bd)  such that f (C ,  Cs) 6 q (such a choice is possible because k is con- 
tinuous). Since n(Z c 0 1 0) = 0, we can assume without loss of generality that 
C, is nonempty. The boundary aCB is compact, so we can cover it with a finite 
number m(6) of open balls K,, . . ., K,(,) with common radius 6 > O such that 
pC (C, CB) 6 q for each C E C (B,), C G conv (K, u. .  . u Kml,,), such that 
CnK,  + 0 for all i = 1, ..., rn(8). Then, for each D E ~  , such that 
P ( s ~ -  a * [ - ~ , ~ l ) l D r  AI.5 E We have - 

Since this bound does not depend on A, condition (C2) holds true. 
Thus, applying Theorem 1 we conclude that the sequence X" satisfies on 

42 the large deviation principle with the rate function 

Taking into account the identifications made in the course of the proof we see 
that this identity translates into 

(20) I@(u) = - j l ~ ~ ~ ( [ ~ h - l ( v ( t ) ) ) d t .  
lOS11 

Clearly, for each C E C (B,) we have P (c E C )  = 1 (C) /A  (B,). This proves (19) with 
J = I @ .  The proof of Theorem 2 is thus complete. 
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