PROBABILITY AND MATHEMATICAL STATISTICS Vol. 20, Fasc. 2 (2000), pp. 287–291

ON DISTRIBUTIONS OF CONDITIONAL EXPECTATIONS

ADAM PASZKIEWICZ* (Łódź)

Abstract. Let F and G be distribution functions on **R**. Then there exist a random variable X and a σ -field \mathfrak{A} satisfying P(X < a) = F(a), $P(E(X | \mathfrak{A}) < a) = G(a)$ iff $\int_{(a,\infty)} (F(t) - G(t)) dt \leq 0 \leq \int_{(-\infty,a)} (F(t) - G(t)) dt$ for any $a \in \mathbf{R}$. The consideration is kept on a rather elementary level.

AMS 1991 Subject Classification: 60E05.

Key words and phrases: distribution of random variable, conditional expectation.

All distributions on R used in the paper have finite first moments. We shall give an elementary proof of the following

THEOREM 1. For any distribution functions F and G on R the following conditions are equivalent:

(i) there exist a random variable X and a σ -field of events \mathfrak{A} satisfying

$$P(X < a) = F(a), \quad P(E(X | \mathfrak{A}) < a) = G(a) \quad \text{for } a \in \mathbb{R};$$

(ii)

 $\int_{(a,\infty)} \left(F(x) - G(x) \right) dx \leq 0 \leq \int_{(-\infty,a)} \left(F(x) - G(x) \right) dx \quad for \ all \ a \in \mathbf{R}.$

We start with some comments. Let distribution functions F and G correspond to random variables Y and Z defined on a classical probability space $\Omega = \{\omega_1, \ldots, \omega_N\}$, $P(\omega_i) = 1/N$. Then condition (ii) is equivalent to the classical majorization condition for sequences $(Y(\omega_i)) \prec (Z(\omega_i))$. In this case Theorem 1 can be obtained by a classical and old construction of a suitable bistochastic matrix. In [3], a number of other relations between majorization and matrix theory are described. Some non-expected applications are also given.

5 - PAMS 20.2

^{*} Faculty of Mathematics, University of Łódź. Research supported by KBN grant 2 P03A 023 15.

On the other hand, condition (ii) is equivalent to the famous Karamata condition:

 $\int \phi(x) dF(x) \leq \int \phi(x) dG(x)$ for any convex positive function ϕ ,

given at first at [2]. Thus, for distributions concentrated on a bounded intervals, Theorem 1 is a very special case of (for example) Theorem T2 in [4]. But the general theory is abstract and based on the Choquet theorem. So, we show perhaps as much as possible on a completely elementary level. Distributions of some systems of random variables are specially interesting. Thus the Karamata condition is still attractive for probabilists and new methods appear; see [1] and [5]:

Now we establish some notation.

For convenience, random variables appearing in different formulas in the paper can be defined on different probability spaces. We use the standard notation: $p_X(A) = P(X \in A)$, $F_X(a) = P(X \leq a)$, $F_p(a) = p(-\infty, a)$, $A \in Borel R$, $a \in \mathbb{R}$, for a random variable X and a probability distribution p on \mathbb{R} .

We denote by $X^1(x^1, x^2) = x^1$ and $X^2(x^1, x^2) = x^2$ the coordinate functions on \mathbb{R}^2 and, for a distribution d on \mathbb{R}^2 , by d_{X^1} and d_{X^2} the margin distributions, by $d(X^2|X^1)$ and $d(X^2|X^1 = t)$ the conditional distributions, and by $E_d(X^2|X^1)$ and $E_d(X^2|X^1 = t)$ the conditional expectations. A special role will be played by the class

(1) $\mathscr{S} = \{F; F \text{ is a simple distribution function on } R\};$

thus $F \in \mathcal{S}$ if it describes probability concentrated on a finite set.

LEMMA 2. If conditions (i) and (ii) are equivalent for any $F, G \in \mathcal{S}$, then (i) and (ii) are equivalent for any distribution functions F and G on \mathbf{R} .

Proof. Let F and G be any distribution functions satisfying (i). Denote by d the joint distribution of the random variables $E(X | \mathfrak{A})$, X on \mathbb{R}^2 . Let (d_n) be a sequence of distributions on \mathbb{R}^2 concentrated on finite sets such that $d_n \to d$ weakly as $n \to \infty$, and

$$E_{d_n}(X^2 | X^1 = t) = t$$
 if only $d_{n,X^1}\{t\} > 0$.

Then, for random variables X^1 and X^2 on the probability space (\mathbb{R}^2 , Borel \mathbb{R}^2 , d_n), the distribution functions $F^n = F_{X^2}$ and $G^n = F_{X^1} = F_{E(X^2|X^1)}$ satisfy (i), and thus (ii). Moreover, $F^n \to F$ and $G^n \to G$ weakly, and condition (ii) is satisfied for the original distribution functions F and G.

Now, let the condition (ii) be satisfied. Then $\int t dF(t) = \int t dG(t)$ and we denote this value by *m*. For any sequences (F^n) and (G^n) in \mathcal{S} , satisfying

 $F^n 1_{(-\infty,m)}$ decrease to $F1_{(-\infty,m)}$, $F^n 1_{(m,\infty)}$ increase to $F1_{(m,\infty)}$, $G^n 1_{(-\infty,m)}$ increase to $G1_{(-\infty,m)}$, $G^n 1_{(m,\infty)}$ decrease to $G1_{(m,-\infty)}$,

288

we have (ii) for F^n and G^n instead of F and G, respectively. Thus there exist some distributions d_n on \mathbb{R}^2 , appearing as the joint distributions of pairs $E((X_n | \mathfrak{A}_n), X_n)$, satisfying

$$d_{n,X^2} = F^n$$
, $d_{n,X^1} = G^n$, $E_{d_n}(X^2 | X^1) = X^1$.

Obviously, the sequence (d_n) is a tide one and there exists a weak concentration point d. For the probability space $(\mathbb{R}^2, \text{ Borel } \mathbb{R}^2, d)$, the coordinates X^1 and X^2 satisfy

$$F_{X^2} = F_{E_d(X^2|\mathfrak{A})} = G \quad \text{for } \mathfrak{A} = \sigma(X^1).$$

To prove Theorem 1, it is enough to show some properties of the class \mathcal{S} , often elementary, concerned with conditions (i) and (ii). For $F \in \mathcal{S}$, let us put

(2) $\mathscr{C}(F) = \{ G \in \mathscr{S}; (i) \text{ is satisfied} \}, \quad \mathscr{S}(F) = \{ G \in \mathscr{S}; (ii) \text{ is satisfied} \}.$

Remark 3. If $G \in \mathscr{G}(F)$ and $H \in \mathscr{G}(G)$, then $H \in \mathscr{G}(F)$.

LEMMA 4. For a random variable $X = \sum_{1 \le i \le n} \lambda_i \mathbf{1}_{A_i}$ with $(A_1, ..., A_n)$ being a partition of Ω on disjoint events, and for $\mathfrak{A} = \sigma(A_1 \cup A_2, A_3, ..., A_n)$ we have

$$F_{\boldsymbol{E}(\boldsymbol{X}|\mathfrak{A})} \in \mathscr{G}(\boldsymbol{F}_{\boldsymbol{X}}).$$

Proof. An elementary calculation is sufficient. One can assume that $\lambda_1 < \lambda_2$, and check that

$$F_{X}-F_{E(X|\mathfrak{A})}(x) = \begin{cases} 0 & \text{for } x < \lambda_{1}, \\ P(A_{1}) & \text{for } \lambda_{1} \leq x < \lambda, \\ -P(A_{2}) & \text{for } \lambda \leq x < \lambda_{2}, \\ 0 & \text{for } x \geq \lambda_{2} \end{cases}$$

for $\lambda = (\lambda_1 P(A_1) + \lambda_2 P(A_2))(P(A_1) + P(A_2))^{-1}$.

LEMMA 5. According to (1) and (2), $\mathscr{C}(F)$ is contained in $\mathscr{S}(F)$ for $F \in \mathscr{S}$.

Proof. Let F_X , $F_{E(X|\mathfrak{A})} \in \mathscr{S}$ and, for simplicity, $\mathfrak{A} = \sigma(E(X|\mathfrak{A}))$. Let us put $\mathscr{B} = \sigma(\sigma(X) \cup \mathfrak{A})$. To use Lemma 4, we take (finite) σ -fields $\mathfrak{A} = \mathfrak{A}_0 \subset \ldots \subset \mathfrak{A}_n = \mathscr{B}$ in such a way that for fixed *i*, $1 \leq i \leq n$, there exists a partition A_1, \ldots, A_m of Ω satisfying

$$\mathfrak{A}_i = \sigma(A_1, \ldots, A_m), \quad \mathfrak{A}_{i-1} = \sigma(A_1 \cup A_2, A_3, \ldots, A_m).$$

Then $F_{E(X|\mathfrak{A}_{i-1})} \in \mathscr{S}(F_{E(X|\mathfrak{A}_{i})})$ by Lemma 4. Thus, $F_{E(X|\mathfrak{A})}$ belongs to $\mathscr{S}(F_X)$ by Remark 3.

LEMMA 6. According to (1) and (2), the relations $G \in \mathscr{C}(F)$ and $H \in \mathscr{C}(G)$ imply $H \in \mathscr{C}(F)$.

Proof. By assumption, $F = F_X$, $G = F_{E(X|Y)}$, $G = F_{\tilde{X}}$, $H = F_{E(\tilde{X}|\tilde{Y})}$, and one can assume that random variables X, Y, \tilde{X} , \tilde{Y} are defined on the same probability space and that E(X|Y) = Y and $E(\tilde{X}|\tilde{Y}) = \tilde{Y}$. On \mathbb{R}^3 , there exists

a distribution $d^{(3)}$ satisfying

$$d_{X^{1}}^{(3)} = p_{\tilde{X}}, \quad d^{(3)}(X^{2} | X^{1} = x^{1}) = P(\tilde{X} | \tilde{Y} = x^{1}),$$
$$d^{(3)}(X^{3} | X^{1} = x^{1}, X^{2} = x^{2}) = P(X | Z = x^{2}).$$

Then $d_{X^3}^{(3)} = X$, $E_{d^{(3)}}(X^3 | X^1) = X^1$, $d_{X^1}^{(3)} = p_{\tilde{Y}}$ and the proof is complete.

LEMMA 7. Assume that a random variable X is defined on a probability space without atoms and that X = a on A and X = d on D for some numbers $a < b \le c < d$ and events A and D. Then, for some partition B, C of the event $A \cup D$ with P(C) = P(A) and P(B) = P(D), we have E(X | B) = b or E(X | C) = c.

The proof goes by an elementary calculation.

LEMMA 8. According to notation (1) and (2), $\mathscr{S}(F)$ is contained in $\mathscr{C}(F)$ for $F \in \mathscr{S}$.

Proof. Let $G \in \mathscr{S}(F)$ for some distribution functions $F, G \in \mathscr{S}$. Let us put $a = \sup \{x; F(t) = G(t) \text{ for } t < x\}, \quad d = \inf \{x; F(t) = G(t) \text{ for } t > x\},$ $b = \sup \{x; F, G \text{ are constant on } (a, b)\},$ $c = \inf \{x; F, G \text{ are constant on } (c, d)\}.$

Let X be a random variable defined on a probability space without atoms, satisfying $F_X = F$. Obviously, there exist events $A \subset (X = a)$ and $D \subset (X = d)$ satisfying

$$P(A) = F(t) - G(t) \quad \text{for } t \in (a, b),$$

$$P(D) = G(t) - F(t) \quad \text{for } t \in (c, d).$$

Let a σ -field \mathfrak{A} be generated by events $(X = x) \cap (A \cup D)^c$ for $x \in \mathbb{R}$, and events *B* and *C* be defined as in Lemma 7. Then the distribution function $F_1 = F_{E(X|\mathfrak{A})}$ satisfies

$$F_1 \in \mathscr{C}(F), \quad G \in \mathscr{S}(F_1),$$

$$G(t) = F_1(t) \quad \text{for } t \in (-\infty, a_1) \cup (d_1, \infty),$$

$$F(t) = F_1(t) \quad \text{for } t \in (a_1, d_1), a_1 \ge a, d_1 \le d,$$

and $a_1 = b$ or $d_1 = c$.

In consequence, one can obtain a sequence of distribution functions F_0, \ldots, F_n satisfying $F_0 = F$, $F_n = F$, $F_i \in \mathscr{C}F_{i-1}$, $i = 1, \ldots, n$. By Lemma 6, the proof is completed.

Our Theorem 1 is a consequence of Theorem 1 and Lemmas 5 and 8.

REFERENCES

- [1] J. Jakubowski and S. Kwapień, On multiplicative systems of functions, Bull. Acad. Polon. Sci. 27 (1979), pp. 689-694.
- [2] J. Karamata, Sur une inégalité relative aux fonctions convexes, Publ. Math. Univ. Belgrade 1 (1932), pp. 145-148.
- [3] W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York 1979.
- [4] P. A. Meyer, Probability and Potentials, Blaisdell Publishing Company, 1966.
- [5] H. V. Weizsacker and G. Winkler, Non-compact extremal integral representations: some probabilistic aspects, in: Functional Analysis: Surveys and Recent Results 2, K.-D. Bierstedt and B. Fuchssteiner (Eds.), North-Holland Publishing Company, 1980.

Faculty of Mathematics University of Łódź Banacha 22 PL-90-238 Łódź, Poland *E-mail*: adampasz@math.uni.lodz.pl

Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 PL-00-950 Warszawa, P.O. Box 137, Poland

Received on 8.5.2000

