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Abstract. Let F and G bc distribution functions on R. Then therc 
exist a random variable X and a rr-field a satisfying P(X < a) = F(a), 
P(E(XIQ9 err)= G(a) i f f J ( n , , , ( ~ t ~ l - G ( ~ ~ ~ d ~  G 0~ J(-m,,(F(r)-G(t))rlt)~ 
for any Q E  R. The consideration is kept on a rather elementary level. 
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AIl distributions on R used in the paper have finite first moments. We shall 
give an elementary proof of the following 

THEOREM 1 .  For any distribution functions F and G on R the following 
conditions are equivalent: 

(i) there exist a random variable X and a g-Jield of events satisfying 

P ( X < a ) = F ( a ) ,  P ( E ( X I q < a ) = G f a )  for U E R ;  

(ii) 

( F ( x ) - ~ ( x ) ) d x d O <  1 (F (x ) -G(x ) )dx  for a 1 i a ~ R .  
(0, m ( -  m,o) 

.We start with some comments. Let distribution functions F and- G_ corre- 
spond to random variables Y and Z defined on a classical probability space 
Q = {ml, . . ., aN), P(wi)  = 1/N. Then condition (ii) is equivalent to the clas- 
sical majorization condition for sequences (Y(oi)) < (Z (mi)). In this case Theo- 
rem 1 can be obtained by a classical and old construction of a suitable bi- 
stochastic matrix. In [3], a number of other relations between majorization 
and matrix theory are described. Some non-expected applications are also 
given. 
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On the other hand, condition (ii) is equivalent to the famous Karamata 
condition: 

j 4 (x) dF (x) 6 j 4 (x) dG (x) for any convex positive function 4,  
given at first at [2]. Thus, for distributions concentrated on a bounded inter- 
vals, Theorem 1 is a very special case of (for example) Theorem T2 in [4]. But 
the general theory is abstract and based on the Choquet theorem. So, we show 
perhaps as much as possible on a completely elementary level. Distributions of 
some systems of random variables are speciaIly interesting. Thus the Karamata 
condition is- still attractive for probabilists and new methods appear; see [I] 
and [5 ]?  -- 

Now we establish some notation. 
For convenience, random variables appearing in dserent formulas in the 

paper can be defined on different probability spaces. We use the standard 
notation: px(A) = P ( X E A ) ,  FX(a) = P ( X  < a), Fp(a) = p(-m, a), A~Borel $ 
U E R ,  for a random variable X and a probability distribution p on W. 

We denote by X1 (xl, x2) = x1 and X2 (xl, x2) = x2 the coordinate func- 
tions on W2 and, for a distribution d on R2, by dxl and d , ~  the margin dis- 
tributions, by d(X2 I X1) and d (X2 I X1 = t) the conditional distributions, and 
by Ed (X2 I X1) and Ed (X2 I X1 = t) the conditional expectations. A special role 
will be played by the class 

(1) Y = (F; F is a simple distribution function on R);  

thus F E Y  if it describes probability concentrated on a finite set. 

LEMMA 2. If conditions (i) and (ii) are equivalent for any F, G E Y,  then (i) 
and (ii) are equivalent for any distribution functions F and G on R. 

Proof. Let F and G be any distribution functions satisfying (i). Denote by 
d the joint distribution of the random variables E (X I2I), X on R2. Let (d,) be 
a sequence of distributions on R2 concentrated on finite sets such that d,, + d 

-weakly as n -+ m, and 

.- . . Ed" (X2 I X1 = t) = t if only d,,,l (t) > 0. - - 

Then, for random variables X1 and X2 on the probability space (R2, Bore1 
R2, dd, the distribution functions F = FXz and Gn = Fxl = FE(X21X1, satisfy (i), 
and thus (ii). Moreover, Fn -* F and G" -* G weakly, and condition (ii) is satis- 
fied for the original distribution functions P and G. 

Now, let the condition (ii) be satisfied. Then j tdF(t) = JtdG(t) and we 
denote this value by rn. For any sequences (F") and (Gn) in Y,  satisfying 

Fn 1( -m,,) decrease to F1( -,,,,, 
Fn l m  increase to Fl(,,,,, 
Gn 1( -,,,, increase to GI( -,,, ,, 
G l m m  decrease to GI(,,-,,, 
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we have (ii) for F" and Gn instead of F and G, respectively. Thus there exist 
some distributions d, on R2, appearing as the joint distributions of pairs 
E ((X, I an), I,), satisfag 

Obviously, the sequence (d,) is a tide one and there exists a weak concentration 
point d. For the probability space (W2, Bore1 RZ, d) ,  the coordinates X1 and X2 
satisfy 

- Fx2 = F,- _ FEa(X21ul = G for 'ill = a(X1). 

To prove'Theorern 1, it is enough to show some properties of the class 9, 
often elementary, concerned with conditions (i) and (ii). For F E Y ,  iet us put 

(2) V (F) = (G E Y; (i) is satisfied), Y (F) = (G E 9; (ii) is satisfied). 

Remark 3. If G E Y ( F )  and H E Y ( G ) ,  then H E Y ( F ) .  

LEMMA 4. For a random oariabk X = x, ,is, Ai lAi with (A1, . . ., A,,) being 
i a partition of SZ on disjoint euents, and for 2l = 0 (Al v A 2 ,  A3, , . ., A,) we have 

! 

I 
FE,,~,, E 9' (Fx). 

I Proof, An elementary calculation is sufficient. One can assume that 
A, c A,, and check that 

for x < A,, 
P(A1) f o r A l < x < A ,  

F~ - F ~ ( ~ l % )  ('1 = for r Z G x < A 2 ,  
for x  2- R2 

LEMMA 5. According to (1) and (2), % (F) is contained in Y (F) for P E Y. 

-P r o of. Let Fx, FE(xIak~ Y and, for simplicity, 2l = c (E (X I a)). Let us 
put i% = a(c(X)u'ill). To use Lemma 4, we take (finite) a-fields 
9.l = So c . . . c 2.1n = B in such a way that for fixed i, 1 < i < n, €here exists 
a partition Al,  . . ., A, of 52 satisfying . - 

%Z.i=b(Alr ..., A,), ~ . ~ ~ - ~ = o ( A ~ u A ~ ~ A ~ , . . . ~ A ~ .  

Then FEcxla,- E Y (FE(XIatl) by Lemma 4. Thus, F E ( X ~ ~  belongs to 9 (Fx) by 
Remark 3. 

LEMMA 6. According to (1) a d  (2), the relations GE%'(F) and H E ~ ( G )  
imply H E  %? (F).  

Proof. By assumption, F = Fx, G = FE(XI_Y), -G = Pw, H = FE(zI~),  and 
one can assume that random variables X, E: X, Yare defined on the same 
probability space and that E (X 1 Y) = Y and ~ ( 2  I P) = On R3, there exists 
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a distribution d(3) satisfying 

Then dB = X, ( X 3  I X 1 )  = X I l  dy? = pf and the proof is complete. 

LEMMA 7. Assume that a random variable X is defined on a probability 
space without atoms and that X = a on A and X = d on D for some numbers 
a < b < c  <-d and events A and D. Then, for some partition B, C -of the event 
AuD withP(C) = P(A)  and P(B)  = P(D),  we have E ( X I B )  = b or EIXIC) = c. 

The proof goes by an elementary calculation. 

LEMMA 8. According to notation (1)  and (2), Y (F) is contained in W ( F )  for 
F E Y .  

P r o  of. Let G E Y (F) for some distribution functions F, G E 9. Let us put 

a=sup{x; F(t)=G(t)for  t < x ) ,  d=inf{x;F(t)=G(t)for  t > x ) ,  

b = sup (x; F ,  G are constant on (a,  b ) ) ,  

c = inf (x; F, G are constant on (cl d)} . 

Let X be a random variable defined on a probability space without atoms, 
satisfying F, = F. Obviously, there exist events A c (X = a)  and D c (X = d) 
satisfying 

P ( A ) = F ( t ) - G ( t )  for t ~ ( a , b ) ,  

P (D) = G (t) - F (t) for t E (c , d). 

Let a a-field 2l be generated by events (X = x) n ( A u D ) "  for XE R, and events 
B and C be defined as in Lemma 7. Then the distribution function F ,  = FE(xIw 
satisfies 

F l € % ( f ' l ,  G E ~ ( F I ) ,  
- - 

G ( t ) = F , ( t )  for t ~ ( - m , a ~ ) u ( d ~ , c ~ ) ,  

F ( t ) = F l ( t )  for t € ( a 1 , d I ) ,  a l > a ,  d l < d l  

and a ,  = b or dl = c .  
In consequence, one can obtain a sequence of distribution functions 

Fo, . . ., F,, satisfying F, = F ,  F,, = F ,  Fi €+ZFi- ,, i = 1, . . ., n. By Lemma 6, 
the proof is completed. 

Our Theorem 1 is a consequence of Theorem 1 and Lemmas 5 and 8. 
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