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Abstract. We develop potential theory of Schrdinger operators 
based on fractional Laplacian on Euclidean spaces of arbitrary dimen- 
sion. We focus on questions related to gaugeability and existence of 
q-harmonic functions. Results are obtained by analyzing properties of 
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We provide some relevant techniques and apply them to give explicit 
examples of gauge functions for a general class of domains. 
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1. INTRODUCTION 

The paper deals with Schrodinger type operators corresponding to sym- 
metric a-stable Lbvy processes X, on Rd equipped with a multiplicative func- 
tional e,(t) = exp (lb q (X.) ds), where q is a given function (in a Kato class). We 
study the existence and properties of q-harmonic functions. In particular, we 
address ourselves to problems related to gaugeability. - - 

Many potential-theoretic properties of X, for aE(0, 2) are dramatically 
different from those of Brownian motion yet they may be regarded as typical 
for a general class of LCvy processes on Rd. This motivates a thorough study of 
the Feynman-Kac semigroups related to the symmetric stable Lbvy processes, 
especially that the explicit calculations are very often feasible in this particular 
case, which stimulates and enriches the general theory. 

Results of this paper complement the earlier ones contained in [6] .  Results 
of [6]  were basically restricted to bounded Lipschitz domains and were based 
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on the Conditional Gauge Theorem (CGT). This rather sophisticated result 
with a difficult and technical proof allows to derive the potential theory for the 
considered Schrodinger operators on Lipschitz domains directly from the exist- 
ing one for fractional Laplacian. More general domains were dealt with those 
in [6] by approximating them by Lipschitz domains. Note that the case 
a 2 d = 1, when X, is recurrent, was not considered in [B]. 

In the present paper we cover also the recurrent case. Furthermore, we 
aim to give some general but explicit examples of the gauge function and in 
order to accomplish- it we develop techniques based on a study of Green 
poknf$ls. In comparison with [6] we now rely on a different methodology 
consisting in focusing on local properties of q-harmonic functions, which are 
then extended by some general procedures. Thus, we only need to use the local 
version of C ~ T  for the small ball, which is a simple consequence of Khasmin- 
ski's lemma and 3G Theorem for the ball. We also depart in various situations 
from the gaugeability assumption and study potential theory on unbounded 
open sets without Lipschitz character. 

We now briefly describe the contents of the paper. Section 2 is prelimina- 
ry; we collect here basic facts concerning potential theory of symmetric a-stable 
Ltvy processes with special emphasis on the recurrent case. In Section 3 
we provide relevant estimates for the Green function for the ball, most notably 
the so-called 3G Theorem. Although results pertaining to the transient case 
(E< d) are known, they are included in unified proofs, original at least in the 
recurrent case. As a consequence of 3G Theorem we formulate a "small" CGT 
for balls. 

In Section 4 we discuss problems related to gaugeability. By means of the 
"small" CGT we prove a Harnack inequality for nonnegative q-harmonic func- 
tions. Then we give an extension of the Gauge Theorem. We also summarize 
the connections between the existence of q-harmonic functions and gaugeabili- 
ty. Our results are related to but more general than the ones presented in 

- Section 4 in [lo]. 
In Section 5 we include auxiliary results on the Green potgntials and weak 

fractional Laplacian needed in the subsequent sections. - - .  
Section 6 contains characterizations of q-harmonic functions u as solu- 

tions of the equation Y a  u = 0 under appropriate gaugeability or nonnegativity 
conditions, which supplements and augments earlier results in [6]. We also 
give examples of the gauge function based on Green potentials. 

In Section 7 we apply results of Section 4 to investigate the gauge function 
of half-lines (- oo , y) E R1. Although results obtained in this section are moti- 
vated by those in [10], Section 9, the approach of [lo] is not applicabIe here, 
and we use alternative methods of proof. The difference between the Brownian 
motion case and the case of the general symmetric a-stable Lkvy process with 
ct E (0, 2) resulting from the discontinuity of the paths of the latter is very plain 
to see in this section. 
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In Section 8 we describe the action of Kelvin transform on q-harmonic 
functions, which allows us to construct easily the examples of the gauge func- 
tion for "large" domains based upon gauge functions for bounded domains. 

For convenience of the reader we collect here information and references 
necessary to understand the paper. , . 

2.1.-Notation and t&minology. Most of the notation and terminology is 
adopted her; from [3] and [6].  However, we often consider simultaneously 

4 both cases: the transient (a < d) and the recurrent one (a 2 d = 1). In the 
recurrent case many previously considered objects either have different prop- 
erties or take on a different meaning. We remark that all functions considered 
in this paper are defined on the whole of Rd due to non-locality of the theory 
of a-harmonic functions for u < 2. We always require Borel measurability 
on Rd. Thus, for an open set D E Rd, by Lm (D)  we denote the class of all Borel 

I 

measurable functions on Rd that are bounded on D. A similar convention 
applies to the definition of E (D) for 1 < p < m. AS usual, f E L:,, (D)  means that 
f 1, E L1 ( R ~ )  for every compact K c D. Analogously, C (D) (Ck (D), respectively) 
denotes the class of Borel functions on Rd that are continuous (have bounded 
continuous derivatives up to order k, respectively) on D, and C,(D) is a sub- 
class of C(D) consisting of functions that are continuous everywhere and 
vanish on Dc. CC,(D) (C," (D), respectively) is the class of continuous functions 
with compact support contained in D (and infinitely differentiable, respective- 
ly). We write A E (Rd)  if A is a Bore1 subset of Rd and f E ( R 3  (f E + (Rd), 
respectively) if the function f is Borel measurable (and nonnegative, respec- 
tively) on Rd. 

The notation C(a, b ,  . . ., z) means that C is a constant depending only on 
a, b,  . . ., z. We adopt the convention that constants may change their value but 
their dependence does not change from one use to another. Constants are 
always positive and finite. As usual we write diam (A) = sup {Iv - wl:. v, w E A), 
dist(x, A) = sup{Ix-vl: YEA), and dist(A, B) = sup{lv-wl: UEA,  WEB), 
where x E Rd and A, B z Rd. 

2.2. Symmetric a-stable processes and a-harmonic functions. Throughout 
the paper we assume, unless stated otherwise, that a ~(0, 2). Occasionally, as in 
Section 3, we consider the case of a =  2. We denote by (X,, Px) the standard 
rotation invariant ("symmetric") a-stable LCvy process in Rd, d E (1,2, . . .) (i.e. 
homogeneous, with independent increments), with the index of stability a, and 
the characteristic function of the form EDexp (iuX,) = exp ( - tlul") u u Ed, t 2 0. 
The index of stability a = 2 corresponds to the process of Brownian motion. As 
usual, Ex denotes the expectation with respect to the distribution Px of the 
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process starting from x ER'. We always assume that sample paths of X, are 
right-continuous and have left-hand limits a.s. The process (X, )  is Markov with 
transition probabilities given by P, (x ,  A) = PX (X, E A) = p, (A-x), where p, is 
the one-dimensional distribution of X, with respect to Po. We have 
P,(x, A) = 1,p ( t ;  x ,  y )  dy, where p ( t ;  x ,  y)  = p, (y  -x) are the transition densi- 
ties of X i .  The function p,(x) = p,(-x)  is continuous in (t, x) for t > 0, and has 
the following useful sealing property: p,(x) = t - d l a p l ( x / ~ l / " ) .  The process 
(Xi, PX) is strong Markov with respect to the so-called "standard filtration'' 
IF,; t 2 O h  and quasi-left-continuous on [0, 003. The shift operator is de- 
noted4&y 0,. The operator 8, is also extended to Markov times .r and is de- 
noted then by 8,. For a < 2 the process X, has the infinitesimal generator Aa12 
given as 

where d ( d ,  y)  = T((d-y)/2)/(2y.rrdt2 lr(y/2)1). For a < d the process X, is tran- 
sient and the potential kernel of X, is given by 

see [I] and [15]. Whenever a 2 d the process X,  is recurrent (pointwise recur- 
rent if a > d = 1 )  and it is appropriate to consider the so-called compensated 
kernels [Z]. Namely, for a 2 d we put 

wherex* = Ofora > d = l , x o  = 1 for a = d = 1 a n d x ,  = (0, 1)fora = d = 2. 
It turns out that for a = d = 1 or 2 

1 1  
K, (x)  = - In -; 

1x1 . -  

- - 
and for a > d = 1 

d(1, 4  XI=-^ K, (x)  = - = x€Rd. 
IxI1 -a 2r (a) cos (7ca/2) ' 

For A E (Rd), we put TA = inf { t  2 0; X ,  E A), the first entrance time of A', 
T, = inf( t  2 0; X, $ A},  the first entrunce time of A", and ?A = inf i t  > 0; X, $ A } ,  
the first hitting time of A'. A point X E R ~  is called regular for a (Borel) set A if 
Px {zb = 0) = 1; A itself is called regular if all points x E Ac are regular for A. 
We say that zr~B(Rd) is a-harmonic in an open set D c Rd if 
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for every open bounded set U with the closure 0 contained in D. It is called 
regular a-harmonic in D if (2.1) holds for U = D. If D is unbounded, then by 
a usual convention Exu(X,,) = EX[za < CQ; u(X,,)]. Under (2.1) it is always 
assumed that the expectation in (2.1) is absolutely convergent; in particular, 
finite. 

By the strong Markov property of X,, a regular a-harmonic function u is 
necessarily a-harmonic. The converse is not generally true 131. 

When r > 0, B = B(0 ,  r) c Rd and 1x1 < r, the Px-distribution of X,, has 
the density function P,  (x, .. a )  (the Poisson kernel), explicitly given by the formula 

with Ct = r (d /2)n-d12-1  sin(na/2), and equal to 0 otherwise [2]. 

2.3. Killed symmetric a-stable Gvy motion. Let D be a bounded domain. 
We often assume that D is regular. By ( P a  we denote the semigroup generated 
by the process (Xt) killed on exiting D. The semigroup (Pf') is determined by 
transition densities pf(x, y) which are symmetric, that is pp(x, y )  = pf Cy, x), 
and continuous in (t, x, y) for t > 0 and x, Y E  D. Thus, for any f E 49, (Rd) we 
have 

We call E ( D )  (1 < p < a) or, for regular D ,  Co(D), an appropriate space 
for the semigroup (PP),,o. The semigroup acts on each of the appropriate 
spaces as a strongly continuous semigroup of contractions. 

The Green operator for D is denoted by GD. We set 

and call GD(x, y) the Green function for D. We have 
.- - ZD - - 

GDf(x)=Ex[Jf(XJdt] = ~ G D C ~ ,  y ) f  Cy)d~ 
0 D 

for, e.g., nonnegative Bore1 functions f on Ed. When D is fixed, we often write 
G(x, y) instead of GD(x, y). If D is regular, then GD(x, y) has the following 
properties: GD (x, y) = G,Cy, x); GD(x, y) is positive for x, y ED and continu- 
ous at x, y ~ R d  for x # y; GD(x, y) = 0 if x or y  belongs to DC. For x, y€Ed we 
have (unless x = y E D3 

where K, (x, y) = K, (x - y). 
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Let B = B(0, 1) = (x E Rd: 1x1 < I}, a ~ ( 0 ,  21. It is well known that B is 
a regular domain and its Green function is given by the formula 

where 
w (x, Y )  = (1 - IxlZ) (1 - IvlZ)/lx -yI2, 

and 99: = ~(d/2) / (2>~1~ [r(u/2)I2); see [2] and [IO]. If u > d = 1, then G ( x ,  y) 
is bouX$ed and continuous on B x B and, for x = y, the right-hand side of (2.3) 
is equal, in the limiting sense, to (1 - x2Y- '/[2"- ITZ (a/2) (a - I)]. A domain 
D c Wd is called Green-bounded if sup,,,++ GD l (x) < a. We have 

by a direct modification of the proof of Theorem 1.17 from [lo]. Thus, sets of 
finite Lebesgue measure (in particular, bounded sets) are Green-bounded. 

2.4. Kato class $". We say that a Bore1 function q belongs to the Kato 
class if q satisfies either of the two equivalent conditions (see [17]): 

lim sup J P, Iql (x) ds = 0. 
, t+O X E R ~ O  

For open D c Rd we write q E $Po, (D) if for every compact K c D we have 
I, q E f a  and we put Roc = jic (Rd). For d = 1 < a <  2 it follows that q E $" if 
and only if 

- For general a and d~ N, (2.7) is necessary (but not sufficient) for-q to belong 
to y. In particular, Roc G L:,, for all a ~ ( 0 ,  2) and d 1. I f f  E L* (Rd) and 
~ E Y ,  then f, f q ~ F .  

Let D be a Green-bounded domain in Rd and q~ y. For any b > 0 there 
exists a > 0 depending only on a, q and b such that 

GDIq1 G aGDI+b. 

Consequently, for a fixed ~ E F ,  but a variable domain Dl we have 
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Also, G,  q E Lm (lld)n C (D), and we have limx+z G D  q  ( x )  = 0 if z is regular for D. 
In particular, G D q €  CO(D) if D is regular. 

2.5. FeynmtpmKac semigroups. For q ~ $ g  we define the additive func- 
tional 

i 

A(t)=Jq(xS)ds,  t 2 0 .  
0 

The corresponding multiplicative functional e,(t) is defined as 

- -eg (t) = exp (A (t)), t 2 0. 
. , 

For all s, t 2 O'we have e, (s+ t )  = eq(s) (s,{t)o8,). If now T is a Markov time such 
that for every t 2- 0 we have z < t+zo0, on {t < T), then for q 2 0 we obtain the 
following important fact, referred to in the sequel as Khasminski's lemma: 

(2.9) If sup Ex A (r) = E < 1, then sup Ex e, (z) < (1 - E ) -  l .  
xeRd xeRd 

Note that (2.9) applies to constant times r = to and to exit times r = z,. By (2.8) 
and (2.4) applied to B instead of D, we infer that for a given 6 > 0 there exists 
6 = 6 (a, q, E) such that if m(B) < 8, then 

As a standard application of (2.9) and (2.6) we get 

(2.10) lim sup EX el,, (s) = 1 and sup Exelql (t) < exp (Co + C1 t) 
s -+ 0 X E R ~  x€Rd 

for some Co,  C1 > 0 and all t > 0. In particular, it follows that 

for every Markov time z. (Note that the same conclusion holds more generally 
for q E f y o ,  because trajectories of X, are as. bounded on finite time intervals.) 

By (T , )  = (T;) we denote the Feynman-Kac semigroup killed oriexiting D. 
Thus, for nonnegative Bore1 f we have . . 

(a is a strongly continuous semigroup of bounded operators on each of the 
spaces appropriate for the semigroup (Pf). Furthermore, for every 1 < p < CQ, 

we have llTrllp < llTllrn < exp(Co+C1 t). For every t > 0, T, is a bounded ope- 
rator from E into L" determined by a symmetric kernel function u,, which is in 
Co(D x D) for regular D. For each ~ E L P  (1 < p < co), we thus have 
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Moreover, if D is regular, maps fi (D) into Co (D) for t > 0. The potential 
operator V for (1;) is introduced as follows: 

where f is nonnegative and Bore1 measurable on D. We call V the q-Green 
operator. If 1; llTJlrn dt < cc with the operator norm taken in Lm (D), then Vis 
bounded on I?, 1 < p < m. In particular, V l  €Lm (D) and the operator V has 
a symmetric kernel V ( x ,  y) called the q-Green function which is given by the 

. . 
fognula - 

5 m 

V ( x ,  Y )  = 1 ut(x7 A d t .  - 

0 

Thus, we have Vf(x) = jD V(x, y) f lyjdy. 

2.6. Stopped Peymnan-Kac fuwtional. The Gauge Theorem. Let D be 
a domain in Rd and let q E F. We will usually assume that D is bounded or of 
finite Lebesgue measure. Then by 2 3  we obtain za < rn a.s. Since we also have 
fo Iq (XJl ds < m a.s. for each t > 0, the random variable e,(.r.) is well-dehed 
a.s. The function 

u (x) = Ex bq ( z ~ )  

is called the gauge (function) for ID, q). When it is bounded in D, hence in Rd, 
we say that (D, q) is gaugeable. For a fmed q E 9" but a variable domain D we 
use the alternative notation u, for the gauge for (D, q). If GD q is bounded from 
below, then by Jensen's inequality we obtain 

In particular, (2.11) holds when D is Green-bounded and q ~ y .  
If (2.11) holds and ( D ,  q) is gaugeable, then (E, q) is gaugeable for any 

domain E c D. In fact, I[uE[lm < l l ~ ~ l l ~  I IUD '11,. 
For domains D c Rd of finite Lebesgue measure it follows-that if utx) < co 

. for some XED, then u is bounded in Rd (see [lo]). This important fact will be 
referred to as the Gauge Theorem. 

2.7. Conditional a-stable G v y  motion. As in [6], the conditional a-stable 
Lkvy motion remains here to be an indispensable important technical tool. For 
definition and properties of this process in Rd for a < d we refer to 161. We only 
recall here that for a bounded domain D and Y E  D by the a-stable y-ltvy 
motion we understand the process conditioned by the Green function GD(., yj 
of D, while for t ~ a D  the a-stable t-LLvy motion is, in turn, the process con- 
ditioned by the Martin kernel K ( . ,  5) of D. 

We examine properties of these processes briefly when a 2 d = 1. For this 
purpose we now assume that D is an open bounded interval in R1. 
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We observe that if u = 1 = d, then single points are polar [I] and this case 
can be dealt with as in [6]. In particular, the behavior of the y-Levy motion 
and (-LCvy motion at their lifetimes is similar as for a < d.  

When a > 1 = d, the situation is different: single points are not polar in 
this case and we have to modify our arguments. 

First of all, observe that when rn > 1 = d, the Green function GD(x, y) of 
the interval D is bounded on D x D. Thus, the whole of D remains to be the 
state space of the conditional process in this case. As another consequence, 
GD(., y) is regular or-harmonic in D\{y), so ExGD(X,,,~~, y) = G,(x, i) for 
x # y. Thus,--for x + y wi: have 

5 
-. 

p; (zD\{~) < TD) = GD Y)- ' t ~ ~ \ { y )  < t ~ ;  G~ (Xrol ls l ,  Y)] 

We have obtained 

On the other hand, in the same way as in the proof of Lemma 4.3 in [6] we 
obtain for U s  D and x,  ED: 

Observe that the above formula remains valid also when x = y, where GDh, y) 
is defined in the limiting sense by (2.3). We can also show that 
PC (Tu < zD; XTrr = y )  = 0 for y E U, x E D, x # y. The result may give the 
reader some insight into the evolution of the y-process trajectories near y. 

Next, using Corollary 1 from 121 we can show for u > 1 = d that the 
5-conditioned a-stable process exits D only through the point 5, exactly as in 
the case a < d. We define the lifetime of the u-stable y-LCvy motion to be with 
6 = T , , ~ ~  for a ,< d and 6 = zD when o: > d = 1. For the 5-LBvy motion we 
always have = z,. . - 

Hence, for all u~(O,2)  and d 2 1 we have ~{l imtTTiX,  = y )  = 1 for x # y, 
x, y E D. Analogously, for every 5 E dD and x ED we have Pg {liq trD X, = <> = 1. 

The following result is very important in the sequel (see [12] and [3], 
Lemma 6 and Lemma 17 for justification). Let D be a bounded domain with 
the exterior cone property. Then the distribution of the pair (Xr,-, X,,) with 
respect to Px (x E D) is concentrated on D x Dc with the density function gx(v, y) 
given by the following explicit formula: 
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Integrating (2.13) over D we obtain the density function 

of the E-harmonic measure w",dy) = PX {X,, E dy) of the set D. 
By (2.13) and routine arguments we obtain for @ 2 0, measurable with 

respect to P,,-, and any Bore1 f 2 0, the following important formula: 

5 
3. GREEN FUNCTION FOR THE BALL - 

The purpose of the present section is to provide some relevant estimates 
for the Green function for the ball given by (2.3) above. We put 

The integrand is decreasing in r and 

(3.1) Z:(kt) 6 ki;( t ) ,  t 3 0, k 3 1. 

LEMMA 3.1. There is a constant C1 = Cl (d, a) such that for all t > 0 

C, < I;(t)/[fi2 A 11 < C1 i f a < d ,  
C ; 1 ~ I ; ( t ) / [ t a ' 2 ~ t ( a - 1 ) / 2 ] < C 1  i f ~ > d = l  

and for E = d = 1 or 2 

- The proof of Lemma 3.1 is elementary and will be'omitted. A calculation 
allows us for the choice of C1 = (2d/[a(d-a)]) ~ ( 2 ~ t ~ - l a )  if a < d, 
C1 = 4 / ( a - l ) i f a > d =  l a n d C l  = 8 o r 3 i f a = d =  1 ora=d-=2,respectively. 

-- We put 6 (x) = dist (x, Bc) = (1 - 1x1) v 0, x E Rd. We clearly have 

We also write 

COROLLARY 3.2. For all x, ~ E B  ( x  # y) we haue 
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The above estimates for or < d and a = d = 2 are well known (see [13], [9], 
and Lemma 6.19 of [10]) and we state them only for completeness. 

The following result is an extension, for B, of the so-called 3G Theorem 
(see, e-g., [ll], [5] ,  [6], [7]). Although (3.4) with ol = d = 2 and (3.3) below are 
special cases of more general results formulated in those papers, we obtain the 
full proof of (3.4) and (3.3) as a by-product of estimates needed for (3.5) a id  (3.4) 
with cr = d - 1. Since the-case of the ball is of primary interest (see the proof of 
 heo or em 4.1 "below), it deserves an independent elementary proof analogous to 
the proof of .Proposition 5.15 in [lo] and we give the arguments- in detail. 

P R O P Q S I ~ ~ N  3.3. There is C2 = C2 (d, dl) such that for all x, y, z E B we 
have . 

G(x, Y )  G(y7 4 < CZ log- +log- 
G(x, z) ( Ix-YI IY-zl ) 

unless x = y = z - in  (3.3) or (3;4). 

P r  o of. Let ol E (0, 21, d E N, and x, y, ZEB. We may and do assume that 
x # y, y #z, z # x. By (2.3) we have 

where 

We reduce the number of variables by the following application of the Kelvin 
transform. For v E Rd\{y) we write v" = y- (1 - IY~~).IV -ylP2 (v- y).. Note that 
for v, vl, v2 E Rd\{y) we have 

6 - PAMS 20.2 
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see, e.g., Appendix in [15]. It follows that w ( x ,  y) = Ix*l" 1, w (y, z) = lz*f" 1 
and Ix*l > 1, lz*I > 1. By (3.71, (3.8), and (3.6) we obtain 

Assume that I*!I 2 1z.I and lx*l 2 $. Then Ix*12- 1 9 lx'lz-1x*I2/2 = 

Ix* 12/21?nd ' 

This implies, by (3.1), that I! (w (x, z)) 2 1; (w Cy, z))/8; hence W G 8B: 1: (w (x, y)) 
- 

and 

By symmetry, (3.9) holds provided Iz.1 2 1r.l and Iz*l b $. 
We now assume that lx*1 4 f i  and Iz*I 4 f i . Then 

We obtain, by Lemma 3.1, 

thus 

provided lx*l S f i  and 12'1 C $. 
- In particular, by (3.9), Lemma 3.1 and (3.11), the inequality (3.3) holds with 
C2 = 8*C:. 

For a = d = 1 or 2 we note that if lx*l > $ or iz*I > f i  then 
w (x, y) 2 1 or w Cy, z) 2 1 and, by (3.9) and Lemma 3.1, vlre have 

( 
2 

v log- 
IY-21 +logJ(l- I ~ I ~ )  (1 - IYI~))] 
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2 
v log- 

Ix-Yl IY-zl ' I 
=- 

2 
4C1 7t [log- v log- 

Ix-ul lu-zl 1. 
By this and (3.11) we obtain 

- 4 
' 6 -  log- 4- log - 

71 4C: r ' Ix-YI IY -4 4 1. -. 

The proof of (3.4) is complete. 
We now consider the case a > d = 1. Since x, y, z are now real numbers, 

a simpler notation is possible, but we keep up the one used above. 
Let I x * l < 2  and lz*I<2. By (3.1) and Lemma 3.1 we get 

= 4a: C ; ( I X * - Z * I ~ ~  ( [ ( l~ *1~-  1)(1~*1~- l ) l l iZ  I X * - Z * ~ ~ - ~ ) )  

< 129: C: (Ix* -2'1" v Ix* -z*la-l) < 48~8: C: Ix* - Z I  * a-1  . 
By (3.8) and (3.6) we obtain 

hence 

We now assume that Ix*l 2 lz*l 2 $- Recall that in this case 
w (x, z) 2 (Iz*l2 - 1)/8 2 118. By Lemma 3.1 we have 

I ~ W ( X ,  z)) 2 C;l [ ~ ( x ,  z)"/'Aw(x, z ) (" -~) /~]  2 Cr18-lt2 w (x, zya - l)iz. 

Using this, Lemma 3.1 and (3.12) we obtain 
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If lz*I 2 Ix*] 2 a, then we obtain the same conclusion. 
We now assume that jx*l 3 2 and lz*I < a. Note that Ix*-z*l $ 2 Ix*l 

and lx* -2.1 2 1x.l- 12.1 g Ix*l(l- l/fi); hence 

These estimates and Lemma 3.1 yield 

I! (w (x, 2)) 3 I! (w (x, Z)/[Z/(& - lI2l) . c; ' (w (x, z)/[2/($ - 1)=]pI2 . C;' [($- 1)Y16]ap(Iz*12-l)d". 

By (3.12) and (3.6) we have 

We finally obtain 
. . 

x - Y l  l y - z l  "-1 (lx*12- 1)'"-1""(12*12- 1)"'2 
3G<&[I  I x-zl ] C: 

(($- 1)/4)" (lz*12 - l)eiz 

< (4,,,b+4)"(4+2,&-'99~ C: [(I -1~1~)(1-Iy1~)]('-~)~~. 

By analogy, if Iz*~ > 2 and Ix*l < $, then 
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Combined with (3.13) and (3.14) the estimates yield (3.5) with 

The proof is complete. 

LEMMA 3.4. Let q ~ r  and E > 0. There is ro = ro(q, s ,  a) > 0 such that 

for every baU B c Rd of radius r < ro. 

~r 0-of. t e t  G be the Green function for the unit ball B(0,  1) c 
(see (2.3)). Let xo E Rd, r E (0, rO] and B = B ( xo ,  r). By scaling we have 

Let v, x, y EB. To prove the lemma we consider three cases. 
If a < d, then by (3.16) and (3.3) we have 

Ix-VI 
= c, [ ,  Id-' a c2 [ [x -y l+ ly -v l  d - a  

x-YI IY-vl Ix-ul IY - 4  
< 2d -aC2  [ I ~ - y l = - ~ + l y - v l " - ~ ] .  

I 
Note that the constant 2d -aC2  in (3.17) does not depend on r, v, x, y. By  (2.5) 
there is ro = r,(q, E ,  a) > 0 such that (3.15) holds if 0 < r < ro. 

If u = d = 1 or 2, then, by (3.16) and (3.4) we have 

for every r < 1/4, and the result follows as above. 
If u > d = 1, then by (3.16) and (3.5) we simply have . . 

Our result follows by (2.7). rn 

In what follows Ez denotes the expectation for the a-stable v-Lkvy process 
conditioned by GB(., v), where B is a given ball in Rd and x ,  D E B  (cf. 2.7 in 
Preliminaries). We also recall that 5 = rB if a > d = 1 and [ = T,,~,) if o! < d. 

The following technical result on the conditional gauge function E': e,(1;), 
x ,  v E B, which may be regarded as an analogue of (2.10), is a tool for studying 
local properties of q-harmonic functions (see, e.g., Theorem 4.1 below). 
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LEMMA 3.5. Assume that q ~ y  and E > 0. Let ro = ro(q, E, u) > 0 be the 
constant of Lemma 3.4. Then for every ball 3 c Rd of radius r < ro we have 

(3.18) exp(-E) < E:eq(5) < (I-E)-', X, U E B .  

P r o  of. We put G = G,. We have 

The result follows by Lemma 3.4 and (2.9). -. 

Remark  3.6. If B c  Rd is aJixed ball and Q €#LC, then for q = 6Q with 
6 > 0 the expression 

can be made arbitrarily small provided S is chosen small enough. If, say, the 
supremum is bounded by 1/2, then, by (2.9), it follows as above that the con- 
ditional gauge function E: e, (c) is bounded by 2 for x, v E B .  

Remark  3.7. We consider the general finite interval D = (a, b) c R1 and 
q€fa(D). It can be proved that if (D, q) is gaugeable, then the conditional 
gauge function u(x, v) = Ete,(r), x, V E  D, is bounded away from zero and 
infinity. Furthermore, u has a jointly continuous symmetric extension ii to 
D x D such that ii(x, x) = 1 for x E D. This Conditional Gauge Theorem (CGT) 
complements Theorem 4.10 in [6]. Its proof carries over from [6] with minor 
changes due to the different nature of the conditional processes for a 2 d = 1 
and is left for the interested reader. We note that we make no use of this result 
in our development. In fact, we focus in this paper on local results such as 

- "small" CGT given in Lemma 3.5, which turn out to be sufficient to develop 
substantial potential theory. 

. - 

4. GAUGEABILITY AND q-HARMONIC FUNCTIONS 

Throughout this section we assume, unless stated otherwise, that q E #fo,. 

As usual, a ~(0, 2), d E N, X, is the rotation invariant a-stable Lkvy process in 
Rd and D c Rd is open. 

Let u E ~3 (Rd).  We say that u is q-harmonic in an open set D c Rd if 

for every bounded open set U with the closure D contained in D. It is called 
regular q-harmonic in D if the above equality holds for U = D and singular 
q-harmonic in D if it is q-harmonic in D and u(x) = 0 for XED'. 
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We always understand that the expectation in the above condition is 
absolutely convergent. For q = 0 we obtain the previous definition of or-har- 
monicity. By the strong Markov property of X, a regular q-harmonic function 
u is necessarily q-harmonic. 

For f E L# (DC) and x ER' we put 

whenever the expectation is well defined, e.g., if f 2 0 or ulfl (x) < T. 
THEOREM 4.1. Let f E&+ ( D 3  and K c D be compact. Thefollowing Har- 

nack inequa%ty holds: 

with C = C ( K ,  D ,  q, a). If u,(x) = 0 for some XED, then u f  = 0 on D and 
u = 0 a.e. on DC. 

Let g E (D3, If ulel ( x )  < co for some x E D, then ulal (x) < cn for every x E D  
and u, is continuous and regular q-harmonic in D. 

Proof. Let f ~&?+(03,  u = u f .  Note that u = f on W and for xeWd we 
have u (x) = Ex [z, < a; eq(z,) f (X,,)]. Let V E D be open. By the strong 
Markov property we obtain 

EX 1% < ; e, (rv) U (X,,)I 
= Ex [r v < EI ; eq (rv) EXrv C'D < ; eq (TD) f (X~,)I] 
= EX [z v < ; eq ( 5 ~ )  EX [(I ( z D  < m 3 eq (ZD) f IXrD)) 0 orv I E~]] 
= Ex ['v < a ; ' D  Orv < a ; eq ('v) Ceq ( ' D )  'ZV1 f (XrD)] 
= E X [ z D < ~ ; e q ( z D ) f ( ~ r D ) ] = ~ ( ~ ) ,  XEP. 

Let K c c D and S, = dist (K, 03. Put F = {x E D: dist (x, K) 6 631/2). Clearly, 
F is a compact subset of D. In particular, q l , ~ % " .  Let eo = ro A (6,/2), where 
ro =.ro(qlF, a) is the constant from Lemma 3.4, where, say, E = 1/2. Let 
X E K ,  0 < r < e,, and B = B(x, r). Note that B G F. By (2.15), we have 

where = if ct > d = 1 and 5 = r,~,) for a < d and v = XT,- (see 2.7 in 
Preliminaries). 

Lemma 3.5 and (4.2) yield 

(4.3) 4 EY u (Xr8) < u Cy) < 2EY u (X,,), y E 3. 

If ly-xl < r/2, then by (2.2) we have 

< sup 
Pr(0, z-x) 1 P,Cy-x, z-x)u(z)dz < 3d+1EY~(Xr,). 

lz-xl>rPr(y-x, z - x ) ~ ~  
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Similarly, 

E x ~ ( X , B ) ~ 3 - d - 1 E y ~ ( X Z B ) ,  y ~ B ( x , r / 2 ) .  

By (4.3) and the above we obtain 

In particular, we may take r = eo in (4.3). We now consider Z E K  such that 
]z - X I  Zeo/2. Let Bl- = B (z, eo/4). Note that B1 c F and B1nB (x, ~,/4) = 0. 
By (4.3) and  by (4.4) with r = we obtain 

uIz)23EZu(X,,,)2$ j P , , , , ( O , Y - ~ ~ ~ ( Y ) ~ Y  
B ( x . Q o / ~ )  

With = 3-2d-3-a d - 1  -a 2 - Cf (md/d) (eo/diam Qd"". Similarly, u (x) 3 cu (z). By 
this and (4.4) with r = eo, the inequality (4.1) holds true. 

We now assume that x E D  and u (x) = 0. By the ,first part of the proof, for 
every B = B (x, r) with r > 0 small enough we have 

see (4.3). It follows that u = f = 0 a.e. on Dc. The pointwise equality ea = 0 on 
D is a consequence of (4,l). 

To prove the last assertion of the lemma let g E 9 (Dc) and ulel (x) < co for 
some x E D. By considering ug , and ug - , where g + = g v 0 and g - = - (g A 0), 
we may and do assume that g 2 0 in what follows. Let u = u,. By the Harnack 
inequality, u is locally bounded, hence finite- in D, therefore it is regular 
q-harmonic in D by definition. To verify continuity of u on D, let S = B ( r ,  r) be 
such that S c D .  We have 

The proof of (4.5) is standard (see, e.g., Theorem 4.7 in [lo] or Theorem 5.3 in 
[6]); we provide it only for reader's convenience. We let 

IS 

@ (t) = 11t i rs )  4 (X*) u (XIs) ~ X P  J q (Xs) ds, 
t 

T s  

y (t) = i rsj lq (XJl u (Xis) ~ X P  J q (Xs) a s ,  t > 0. 
f 
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We have 

E S  

= EX [ 1 q (XtI u CXt) dt ]  = Gs ( 4 4  (XI-  
.- 

0 

To justify- t h ~ ~ b o ; e  application of Fubini's theorem we observe that q u c  E 8" 
because u is bounded on S. Therefore, by similar calculations as-above, 

On the other hand, we observe that jr Iq(X,)I ds < m, and so the function 

is absolutely continuous (as.), The derivative of the functions a.s. equals 
- q  (X,) exp j:" q (X,) ds a.e. Therefore 

each term being h i te .  This proves (4.5). Recall that q u l , ~ y  yields 
Gs (qu) E Co (S), and that Ex u (X,,) is smooth in x E S because it is a-harmonic. 
By (4.5), u  is continuous in S. The proof is 'complete. rn 

We note that if u is q-harmonic in open D # 0, then 

see, e.g., (4.3) in the proof above. 
The next result is a very useful complement of the Gauge Theorem. 

THEOREM 4.2. Let rn ( D )  < a ,  q E and f E B+ (Dc). If there is x E D such 
that 0 < us($ < coy then ( D ,  q) is gaugeable. 

Proof.  We h x , E D .  Assume that O <  uf(xo) < ao. Let u l (x )  = EXeq(~D), 
x E Rd. Our aim is to verify that ul (xo)  < co. 

By replacing f with f A 1 we may and do restrict our considerations to the 
case f E LT (D9, 11 f l lm < 1. Then, clearly, uf < u,. However, f may equal zero 
on a large part of Dc and a reverse inequality u, (xo) d cuf (x,), which we prove 
below, is by no means obvious. 



3 12 K. Bogdan and T. Byczkowski  

There exist open bounded sets A ,  3, C such that xo E A, 2 c B ,  B c C ,  
C c D, and the Lebesgue measure of A = D\A is so small that 

see (2.9) and comments below it. We may also assume that B has the exterior 
cone property, e.g. B = (XED: distlx, DE) > 8) for a suitable 6 > 0. 

We define an auxiliary sequence of stopping times. Let So = 0 and for 
n = 0, 1, ... 

- S ~ A  1 = TB-O OS,, + Szn, 
* 
S2n+2 = td O e ~ z n +  1 + s2fi+ 1 = Zd O ~ E B D B S ~ , + S ~ ~  + T~ O O ~ 2 n - t  S2n' 

We note that, e.g., S,, d TD and S,, < t, if and only if X S 2 " ~ A ,  n = 0, 1, . . . 
We put 

By the strong Maxkov property, (4.8) and the assumption 11 Illrn < 1 we 
obtain 

+ Ex' [Szn < TD; eq (S2n) E X S 2 n  CXrg E C;  eq (7B) u ( x r ~ l ] ]  . 
We write 

vtx) = E X C X r A ~ D c ; f  (-KA)l, X E ~ ,  

and we claim that v > 0 on A. Indeed, if f > 0 on a set of positive Lebesgue 
measure in Dc and x E A, then the mean value property of v on a ball B c A 
centered at x, and the explicit form of the Poisson kernel for B yield v(x)  > 0. 
Iff = 0 a.e. on Dc9 we proceed as follows. Let w (y) = EY f (X,,), y E Rd. Observe 
that w = f on Dc and since w is finite Cf < I), it is a-harmonic in D. Also w > 0 



Potential theory oj Schriidinger operator 313 

on D because u, > 0 on D. If w attained a global maximum on D, say at yo, we 
would obtain 

which is a contradiction. It follows that 
- .  .- 

ri (x) - Er [X, E DC; w (X,)] = Ex w (X,) -Ex [Xrd E A; w (Xrd)] 
-. 

provided X E  A is such that w(x) is sufficiently close to sup,, w (y). Since 
e, (zD) > 0 a.s., it follows that u > 0 on A. In particular, by Theorem 4.1, there is 
a constant K > 0 such that u(x) > K for x E C\B. 

Let g E a+ (3') be bounded, y E B, and Z = EY [e, (zB) g (X,)]. We have 

where d (d, -a) Iz[-~-" dz is the Ltvy measure of X,, GB is the Green function 
for 3 and E; denotes the expectation with respect to the process conditioned by 
GB(., 0) ;  see (2.13), (2.14). As in 2.7 in Preliminaries, 5 = Z B \ I ~ )  if a < d and 
[=z ,  if a > d = l .  

Assume that g = 0 on C\B. Then there is a constant c, > 0 such that 
Iv - zl 3 c, (1 + lz[) a.e. on BE x B with respect to g (z) dz dv; hence 

G c2llgllooJ&(d, -ol)E;[eq(c)l GB(Y, u)-du, 
B 

where c2 = ~ ; ~ - " j ' ~ , ( l +  IZI)-~-"~Z < ao. With c3 = (diam(C)Y+"/m(C\B) we 
then have 

By this, (4.10), (4.8) and the definition of K we obtain 
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Note that we have not yet used the fact that uf (xo) < co to obtain the estimate 
and the same arguments apply to u, (xo). Namely, there is q > 0 such that 

where we used (4.8), the definitidn of K, (4.9) and the finiteness of uf (xo). The 
proof is complete. E 

The multidimensional Brownian analogue of Theorem 4.2 also holds true 
for cbnnected D but is not heeded here. The proof is'similar, only the set 
A above should be chosen connected, which is possible in dimension d 2 2. For 
the one-dimensional Brownian result with a simpler proof,'see [lo], Theo- 
rem 9.9. 

We recall that for (bounded open) gaugeable set B c Rd, the gauge function 
u(x) = Ex e,(z,) is q-harmonic in B. The following simple "converse" result 
clarifies the role of gaugeability for the existence of q-harmonic functions. 

LEMMA 4.3. Let q E fib, (D) and assume that u E 9? (Rd) is q-harmonic in D. 
Then, unless u = 0 on D and u = 0 a.e. on Dc, it follows that (B, q) is gaugeable 

for every open bounded set B such that B cD. 
P r o  of. Let X E  B. Our assumptions and the definition of q-harmonicity 

yield 

If u(x) # 0 or u # 0 on a subset of Dc of positive Lebesgue measure, then the 
second expectation above is positive. By Theorem 4.2, (B, q) is . gaugeable . in 
either case. s 

For completeness we remark that if u = 0 on D, then, k d e r  the assump- 
tions of Lemma 4.3, it follows that u = 0 a.e. on Dc. However, our exposition 
does not depend on this uniqueness property and it will be more convenient to 
prove it later on; see Remark 8.5 below. 

LEMMA 4.4. Let q E YLc (Dl u D,), where Dl, Dz are open sets in Rd. If 
UEB+ (Rd) is q-harmonic on Dl and on Dz, then u is q-harmonic on Dl u D2. 

Proof .  Let D = Dl u D 2 .  We first assume that u(x )  = 0 for some x €Dl. 
By Theorem 4.1, u = 0 on Dl and u = 0 a.e. on D', . In particular, u = 0 a.e. on 
D2. Using Theorem 4.1 once more we see that u = 0 on D,, so that, finally, 
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u  = 0 on Dl uD, and u  = 0 a.e. on Rd. We obtain the same conclusion if 
u(x) = 0 for some x  ED^. Such a function u is clearly q-harmonic in Dl u D,. 

In what follows we may and do assume that u  (x)  > 0 for all x E Dl u D ,  . 
Recall that by the definition of q-harmonic functions u  (x) < co, x E Dl uD2. To 
prove Lemma 4.4 we need to venfy that for every open bounded U  such that 
D c D and every x E U we have 

Let U,, U ,  be open bounded sets such that Dl  c D l ,  D, c D, and 
U = U u Uy. By q-harriionicity we have 

b 

(4.12) 24 (x) = Ex re, (k,? U (XTnl)l , X E UI ( X  E Rd) 

and 

Let X E  U be fixed. We define 

To = 0, 

T i n - i  = T2n- -2+~~1O0~2 . -2 ,  
T z n = T 2 n - 1 + ~ u z ~ B T z n - 1 ,  n = l , 2  ,... 

We first show that 

Clearly, (4.14) holds for rn = 0 and 1. Suppose that for some  EN it follows 
that u (x)  = Ex [e, (T2,- ,) u(XT )] .  On the set {T2,- ,  < 7,) we have 
XT,m-,  E U , .  By (4.13) and the strong Markov property we have 

U ( X )  = E X C T 2 n - 1  = ZU; eq(Gn-1)~(X~2n-1)1  

+ E X  [TznP1 < zu ;  eq (&,- EXT2n-I Ce, (ZUJ u  ( X T ~ ~ ) ] ]  

= F CT2n-1 = 2,; eq(T2n)u(X~,>l +EXCT2,-1 < zu; eq(Tin)u(X,,n)l 

= EX Ceq (&A u  ( X T * , ) ~  - 
Similarly, if for some n E N  

then 

By induction, (4.14) holds true. By quasi-left-continuity, it follows P-a.s, that 
T, + z, and XTm + X,,  as rn + co. By continuity of u on O we obtain Px-as. 

(4.15) eq (Tnt) u ( X ~ , , , )  -) eq (ZU) (XzU) as m - 
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By (4.14) and Fatou's lemma, 

Since u > 0 on D\U and P" (X,,ED\U} > 0, the right-hand side of (4.16) is 
positive. Since u (x) < GO, by Theorem 4.2, (U, q) is gaugeable. TO complete the 
proof we note that, for W E N ,  P-a.s, we have 

hence e, (T,) 4 cEx [e,  (ru) I 4FT;j, where c = [id,,* Ey e, (r,)] - l i s  finite be- 
cagsedU is Green-bounded. We put 9 = {T, < ru, m = 1; 2 ,  . . .) and 
O = {c = tu for some  EN). Since u is bounded on U, by uniform inte- 
grability and (4.15) we obtain 

By the monotone convergence theorem we have 

(4.18) lim F [Tm = zu; e, (T,) u (XT,)] = F [U;  e, (tv) u (X,,)]. 
m - m  

By (4.141, (4.17) and (4.18), the equality (4.11) holds true. 

LEMMA 4.5. Let D l ,  D2 be open sets in Rd. Let q ~ j y ~ , ( D ~  u D2) and let 
u be q-harmonic on Dl and on D2. If bounded open subsets of Dl u D 2  are 
gaugeable, then u is q-harmonic on Dl u D, . 

Proof.  Let D = Dl u D ,  # 0. Since u is continuous on D, it is locally 
bounded in D. Let U, V be open bounded and such that 0 c K vc D. We also 
assume that U has the outer cone property. Let 

cl = sup lu (x)l < ao , c2 = j lu (x)t/(l  XI)^+" dx < co 
XEV R d 

(see (4.7)) and note that there is c, < oo such that 

ly-vl 2 c3( l+ ly l )  for Y E  Vc, V E U .  - 

For v  E U  we denote by g the lifetime of the v-LCvy motion on U (see Prelimina- 
ries). The following estimates are similar to those in the proof of Theorem 4.2. 
We have for x E U  

EX Ce, (7,) lu (XT,)II 
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where c, = (c, +c,c;d-adiam(V)d+a/m(V\U)). Let 

Note that v 9 0 on Rd ana v is q-harmonic on U, and U2. By Lemma 4.4, v is 
q-harmonic oh U = Ul u U2, therefore so is u. This completes the proof. H 

k t  EE(O, 2), d~ N, and D E Rd be open. As usual, by GD we denote the 
Green operator for D and our symmetric a-stable process X,: 

ZD 

G,f (4 = EX J f (XOdt, 
0 

whenever it makes sense, e,g., if f ~ 9 +  (Rd) or the expectation is absolutely 
convergent (say f E B (Rb) is bounded and GD 1 (x) = Ex TD < co). 

The following simple result states an important global integrability prop- 
erty of the Green potentials GDJ: Recall that a < 2. 

LEMMA 5.1. Assume that f EL%+ (Rd) and GD f (x) < for some x ED. Then 

Proof. Assume that xo ED is such that GD f (xo) < oo. Let B = B (x,, r), 
where 0 < r < dist (x,, Dc). We have 

Z D  Z D  

m > G ,  f (x,) = ExO 1 f ( X , ) d t  2 ExO j f fX,)dt  
0 T B  

ZD 

= ExOEX* 5 f ( X J d t  = J GD f (y)~;;O(dy). 
0 BC 

By (2.2) we easily conclude that GD f (y) < oo a.e., GD f is IocaIIy integrable on 
Rd and, finally, that (5.1) holds. 

Remark 5.2. Clearly, GD 2 GB if B is an open ball, B c D. Under the 
assumptions of Lemma 5.1, by the fact that for every E > 0 

inf{GB(x, y): dist(x, B") > E ,  dist Cy, BC) > E )  > 0 

(see (2.3)), we obtain f E L:,, (D). 
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Recall that for any function u satisfying (4.7) we can define 2j2 u as the 
distribution given by (4""12u, 4)  = (u, I$), 4 E C," (Rd); see [dl for a detailed 
exposition. 

The following result is an extension of Proposition 3.13 in [6]. 

LEMMA 5.3. Assume that f E &' (Rd) and GD 1 f 1 (x) < .o for some x E D .  
Then 

15-21 piZ GD f = -f (distr.) on D. 

P r o  of. Note .that the right-hand side of (5.2) is a well-defined distribution 
on ZIxy Remark 5.2. By Lemma 5.1 the same holds true for the left-hand side 
Of (5.2). - 

It is enough to prove (5.2) for f E a+ (Rd). We assume that f E 9#+ (Rd) and 
3 G D is open and bounded. We have, for x E Rd, 

Since GD f (x) < m a.e., we see in particular that EX GD f (X,,) is regular 
a-harmonic in 3 (see Theorem 4.1). Since annihilates a-harmonic functions, 
to prove (5.2) we may and do assume that D is bounded and f EC (D)  (see 
Remark 5.2). The validity of (5.2) in this case was proved in Proposition 3.13 of 
161 for d > a. In what follows we essentially repeat arguments given thefe but 
we treat all d E N, a ~ ( 0 , 2 ) .  As usual, K, denotes the Riesz kernel (or compen- 
sated kernel if u 2 d = 1) in Rd. We have 

(5.3) G D ( ~ ,  Y) = Ka(x, y)-EXKa(XrDy Y ) ,  x, Y E D ;  

see [23. As usual, GD(x, y) = JTp,(t, x, y )  is the Green function of D defined 
by means of the transition densities for the process killed at TD. (Note that, if 
a-> d = 1, (5.3) may fail to hold for some unbounded sets D). Assume that f is 
bounded. For XED we obtain 

The application of (5.3) and Fubini's theorem are justified since the integrals 
are absolutely convergent. 

The last term above is (finite) regular a-harmonic in D and, to prove (5.2), 
we only r e d  that for 4 ECF (Rd), Ka Aa12 # = -4  (pointwise). This is well 
known and can be obtained by means of the Fourier transform; see also [15], 
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Lemma 1.11. With this result we obtain, for 4 EC," (D) ,  

(P2 GD f, 4) = (P2 Ka I D  f, #) 

where we use symmetry--Xu@, y) = K,(y, x). For general f EL! (D), the result 
follows'by gn approximation argument. EI 

We consider s,(x) = GDI (x) = E x z ,  for x € R d .  By the dkfinition of r,, 
sD(x)  = O  on DC. For B = B ( x o , r ) c R d ,  Ix-x,,I < r  and ly-xol > r ,  by (2.2) 
and (2.14) we obtain 

By letting lyl+ m we obtain 

We have C Y d  (d ,  - a)  = T' (~ i /2 ) / [2~J .  ((d + 4/2) (1 + a/2)]. For arbitrary open 
D and B = B (xo, r) c D, the strong Markov property yields 

It follows in particular that s~ E C" (D) provided that sD(x)  < oo for-some x E D. 
To investigate the behavior of s,  at dD we recall that zl, = inf {t > 0: 

XI 4 D) 2 zD and we define sjD (x) = Ex zjD $ sD ( x )  ( x  E Rd). Recall that Px-a.s. 
we have z~ = zb  (and so s~(x) = sb(x)) except for those x E aD which are ir- 
regular for D, the set of such points x being a polar set for X,. The following 
semicontinuity property of dD is remarkable because we essentially put no 
boundedness restrictions on D; its analogue for the Brownian motion is false in 
this generality. 

LEMMA 5.4. Let 0 < a  < 2. If s& (x)  < co for some x ED, then sl, is upper 
semicontinuous in Rd. 
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Proof. Recall that polar sets are of Lebesgue measure zero. Thus, by 
Lemma 5.1, 

We now verify the upper semicontinuity of s$. Let X E ~ .  We have P-a.s. 

For t > 0 let. p, (x, -9 be the density function of X ,  under Px. 'BY scaling, 
p,(i, y) p, (y -x) = t-dta p ,  ( t -  ( y  -XI). Furthermore, there- is a constant 
c = c ( d ,  a) such that 

In consequence, for every bounded set B c Rd and t > 0 there is a constant 
c1 = c1 (B,  a, t) such that 

By (5.5), (5.7), the Markov property, (5.6) and the bounded convergence theo- 
rem we obtain for t > 0 

We only need to prove that the function xwfR,p, (x, y)s', (y) is continuous on 
Rd for each t > 0. But p,(x, y) is continuous in x and we can use the bounded 
convergence theorem, (5.5) and (5.7) to complete the proof. 
- By Lemma 5.4 and the fact that s~ < sb we obtain the following result: 

COROLLARY 5.5. If s~ (x) < ao for some x E D, then s is locally bounded in 
k and limy+xs(y) = 0 for every x ~ a D  which is regular for D. - 

6. SCHR~DINGER OPERATOR 

We first make the following simple comparison. Recall that Pt2f = 0 
(distr.) on D if and only if (after a modification on a subset of D of Lebesgue 
measure zero) f is a-harmonic in (open) D E Rd, see [6] .  Furthermore, let 
q ~f f , ,  (D). Assume that u is q-harmonic in D. Then, by (4.5) in the proof of 
Theorem 4.1 and Lemma 5.3, 

4""t2 u+qu = 0 (distr.) on S 
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on every ball S such that S c D; thus 

(6.1) >I2 u+qu = 0 (distr.) on D .  

Whether or not the converse implication is true depends on q and D; we treat 
the problem in this section. 

PROPOSITION 6.1. Let D E= Rd be open and q E$P,,(D). Assume that 

(6.2) 212 u + qu = 0 (distr.) on D. 
- -  - 

Then for evGy bounded U with the exterior cone property such that 0 c D we 
have 

(6.3) u (x) = EX u (X,,) + Gv (qu) (x) a.e., 

and the right-hand side of (6.3) is continuous on U .  

Proof.  We essentially repeat the arguments of [6] (but see Remark 6.2 
below). 

The implicit assumptions for (6.2) are that u satisfies (4.7) and qu  EL^^, (D). 
In particular, we have u, qu E C (U). We note that (6.2) is unaffected if u is 
changed on a set of Lebesgue measure zero. The observation, however, does 
not contradict (6.3): because the PZ-distribution of X,,, i.e, the a-harmonic 
measure og(-), is absolutely continuous with respect to the Lebesgue measure 
on Uc ([3], Lemma 6), Exu(Xr,) is undected by such a change of u. 

Let V be open, bounded and such that VcD. We can define 

(6.4) hv (x) = u (x) - Gy (qu) (x )  for a.e. x E R ~ ,  

where the Green potential is absolutely convergent a.e. since qu E Z (V). By 
Lemma 5.3 we have 

PI2 hv = - qu + qu = 0 (distr.) on V, 

therefore, after a modification on a set of Lebesgue measure zero in K hv 
becomes a-harmoyc in V ([ti], Theorem 3.12). So a modified version of hV will 
be denoted by hV. 

Let U be open, D c V and assume that U has the exterior cone property. 
For every x€Rd for which GV(tqu[)(x) < m, thus a.e., we have 

Similarly as before, we define a.e. 

and we have a.e. 

hU ( 4  - h"V ( 4  = Gv (q4 (x) - GU (44 (4 = EX CGv (441 (Xr,), 
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where, for x E U, we used the above-mentioned result on w",.). By the same 
result, (6.4) and a-harmonicity of h7V we obtain a.e. 

hu (x) - h" (x) = Ex [u (X.,) - h" (X,,)] = Ex u (x,,) - (x).  

We thus have hu(x) = Exu(X,,) for a.e. X E U ,  or - 
hU (x) = EXer (X,,), x E Rd,  

where - denotes the equivalent version of hU which is a-harmonic in U .  There- 
fore hEis regular &harmonic on U. Hence, we have 

* 
16.5) u (x) = EX u (X,,) + Gv (qu) (x) a.e. 

In particular, let U be a ball B = B(xo, r)  such that B c V and 0 < r < ro,  
where ro = ro(qlv ,  a)  is the constant from Lemma 3.4 with E = 1/2 there. We 
define for x ER' 

The above functions are regular a-harmonic or regular q-harmonic on B, re- 
spectively, and, by Lemma 3.5 with E = 1/2, we have 

$H(x)dF(x)<2H(x) ,  x€Rd,  

which justifies the absolute convergence of the expectation defining f. By [6], 
Theorern 5.3, for every x€Rd we have 

where the Green potential is absolutely convergent. By (6.5) we obtain 

Since the Green potential is absolutely convergent a.e., by Lemma 5.1 and the 
Fubini-Tonelli theorem we have . . 

where sB(x) = E x z ~  = [,GB(x, y)dy, XEP. Let R(x) = f(x)-u(x), x € R d .  
Using (6.6), symmetry of GB and (3.15) we obtain 

= JJJl4(x)lGB(xY ~)lqCy)RCy)lGB(x, v)dvdydx 
B B B  
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G i j I 4 b ) R b J ) I ~ s ~ ~ ) d ~ .  
B 

By (6.7) it follows that 

thus u =fa.% by (6.6). In particular, by Theorem 4.1, u is essentially continuous 
in B, hence in D, Furthermore, u is locally essentially bounded on D, and 
consequently qu E f ro ,  ID), which yields the continuity of the right-hand side 
of (6.3). The proof is complete. pr 

Remark  6.2. The proof of Proposition 6.1 is based on arguments re- 
produced in [dl, Theorem 5.5, after [lo], Theorem 5.21, but here we use the 
integrability condition (6.7) to obtain (6.8), rather than the condition 

which was used tacitly in [dl and [lo]. As the integrability of qf on B is in 
some doubt at the considered stage of proof, the present modification of the 
proof is necessary. A similar modification may be applied in the case of Theo- 
rem 5.21 in [lo]. 

Remark  6.3. Under the assumptions and with the notation of Proposi- 
tion 6.1 above, there is a function B continuous on D, such that u" = u on Dc and 
u" = u a.e. on D. The function clearly satisfies p2 u"+qfi = 0 in the sense of 
distributions on D. By the proof of Proposition 6.1, for every X E D  there is 
some positive r < dist(x, Dc) such that for B = B(x, r )  we have 

u" (Y )  = EY Ce, (TB)  U" (X,,II, Y f Rd, 

i.e. ii is (regular) q-harmonic on B. 

--By Remark 6.3, Lemmas 4.4 and 4.5 and the usual compactness.argument 
we obtain the following result: 

THEOREM 6.4. Let D c Rd be open and let q €$la,, (D). Assume that u E 98 (Rd) 
sati$es 

d"Dj2 u + qu = 0 (distr.) on D .  

if u is nonnegative or open bounded subsets of D are gaugeable, then, after 
a modiJication on a subset of D of Lebesgue measure zero, u is q-harmonic in D. 

Remark  6.5. A part of the above result was proved before by means of 
the Conditional Gauge Theorem in [6j, Theorem 5.5. Note that for q < 0 the 
gaugeability assumption is always satisfied and, in particular, Theorem 6.4 
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extends the analogue of the Weyl lemma for given in [6] ,  Theorem 3.12. 
Note, however, that the present extension employs substantially the above- 
-mentioned result {for q = 0). 

We are in a position to give an explicit example of gauge functions based 
on s, (x) = E"T, for a broad class of domains. Similar examples based on more 
general Green potentials are left for the reader. 

PROPOSITION 6.6. Assume that Sa(x) < 02 fur some x E D. Let, a > 0 and 
deJine 

- .  .. 
/ 

(6.10) , u(x)=l+as,(x), g(x)=[sD(x)+l/a]-I, X E ~ .  

Then we have 

(6.11) Ex eq (zD) < u (x) , x E W d  . 

If also D is Green-bounded, then 

and, in particular, 

1 = inf Ex e, (z,) < sup Ex eq (T,) < cc . 
xeRd x€Rd 

Proof. Note that q is bounded, in particular q ~ y .  By Lemma 5.3 

4"j2 u = -a = - a (1 + asD)/(l + asD) = - ug (distr.) on D . 
Since u >, 0, by Theorem 6.4, u is q-harmonic in D, i.e. for every open bounded 
set B c B c D we have u (x) = Ex [e,(zB) u (X,,)], x E B. We consider an in- 
creasing sequence {B,)."=, of such sets with Uz 3, = D. By Fatods lemma 

(6.14) u (x) = lim Ex [e, (T,.) u (XrB,l] 
n-rm 

2 F vim inf e, (7,") u (X,,.)] , x E Rd . 
n-m 

Let n + oo. Clearly, e, (zBn) + e, (z,) since T, < co (as.). Also, by -quasi left- 
-continuity, X,,. + X,, a.s. By continuity of s~ at regular points of Dc (Corol- 
lary 5.5) we obtain u(X,,,) + tl (X,,) a.s. Thus co x,> u (x) 2 Ex e, (z,), x €Rd, 
which is (6.11). 

Assume that D is Green-bounded. By (6.11), the relation (6.13) holds for 
such D. To prove (6.12), note that 

In particular, (e, ( T ~ , ) ) , , ~  is uniformly Px-integrable (every x E Rd). By bound- 
edness of u, the same hoIds true for (e, (zB,,) u (XrBn)),,,. Invoking (6.14) we 
obtain (6.12). w 
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Example 6.7. By the above we see that, given r > 0, 3 (0, r) c Rd is 
gaugeable for q (x) = [C$(rz - l~ l~y /~ / .d  (d, -a) + E] - ' , x s B (0, r), with ky 
E > 0. In particular, (B(0,  r), cr-") is gaugeable for every c < d ( d ,  - a ) / ~ t .  

Ex ample 6.8. We consider the following basic but less explicit example. 
Let D c Rd be bounded and regular, and define q = Lo, u = +o, where l /AO > 0 
is the greatest eigenvalue d GD (in, say, L? (Rd)), and q50 .Co(D) is the corre- 
sponding eigenvector, which is known to be positive by a choice (see, e.g., [14]). 
We thus have 

5 #;cx)=G.c.lo#o)(x), xeR". 

By Theorem 6.4, 4, is q-harmonic in D. Clearly, it is not regular q-harmonic 
in D. Note that ( D ,  q) is not gaugeable (see, e-g., the statement of the Gauge 
Theorem in [a), however, by Theorem 4.2 it can be easily verified that (3, q) is 
gaugeable for every open set B c D such that D\B is not polar. 

7. FUNDAMENTAL EXPECTATION 

In this section we investigate the behavior of the gauge function of the 
sets D = (- a, y) E R1. A parallel theory can be developed for sets (x, m) (cf. 
[lo] for a = 2). We always assume that q€fT0,. L.et y€R1. Denote q-,,,) 
by T,. We have T, < co P"-ass. Therefore, jr (x$ ds is well-defined Px-as. 

We define the fundamental expectation as 

If x 2 y, then obviously u(x, y) = 1. 
Suitable examples of functions u(x, y) are provided at the end of the last 

section. 
- We begin our investigations with stating the following important con- 

sequence of Theorem 4.1: 

. THE OR^ 7.1. Assume that qc#;=. If x, ycR1, then u(x, y) > 0. If x < y 
and u(x, y) < a,, then u (w, y) < oo for every w < y, and u(., y) is a-continuous 
regular q-hmonic function on (-a,, y). Moreover, for every w, v such that 
w < v < y the following holds: 

Applying Theorem 7.1, we obtain 

L E ~  7.2. For x < y < z the following holds: 

(7.2) ( 1 ~  inf u ( w , z ) ) u ( x , y ) < u ( x , z ) < ( l v  sup u(w,z))u(x,y). 
~ ~ b . 2 )  WEIYIZJ 
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Proof.  By Theorem 7.1 we have 

(x. 11 = EX ce. W U (Xlv, z)] 

=EXCzy < zZ; e,Iz,)~(X,,,. z ) l f  EXCzy = T ~ ;  e,(z,)] 

2 inf u (w , 2) EX [zy < T,; e, (T,)] + Ex [z, = z,; e, (z,)] 
W E l 7 7 ~ )  

3 ( In inf ~ ( w ,  z ) )u(x ,  y). 
W E C Y , ~ )  . . 

The-p rz~f  of the right-hand side inequality is similar and is omitted. s 

LEMMA 7.3. Let y < z and let y , z 4 xo. Then 

(7-3) liminf inf u(w ,  z)> 1. 
W ~ Y , Z )  

P r o o f. Using the assumption q E $fo, and a conditional version of Khas- 
minski's lemma, for a given e > 0 we find x < x, such that for all z, 
x < z < x, +(xo - x), the following holds (see Lemma 3.5): 

(7.4) < . iflf Ere,([)  G sup Ere,(<) < (1 --~)-l, 
% w ~ ( x , z l  U,WE(X,Z) 

where Er denotes the expectation with respect to the process conditioned by 
G,,,, (., v )  and, as usual, 5 = z(x,z),tv) if M < 1 and [ = T( ,,,, otherwise. 

This, q-harmonicity of u ( . ,  z) and the formula (2.15) yield 

Let now x c y d w < z. The following direct calculation, using Corollary 1 
from [2], gives 

( )  7 BV PW f z(~,,) = z,) = PW {X ,,r,,) 2 z} = (z- x) l -"  --- r ( ~ t / 2 ) ~  ((v - X) (Z - v ) ) ~  - a/2 
. . -  

As y, z + xo, the last expression converges to 

This completes the proof. H 
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COROLLARY 7.4. If x, y,  z are such that x < y < z and u(x, z )  c co, then 
u(x ,  Y) < a. 

Proof, By the above lemma together with Theorem 7.1 we obtain 
inf,,Iy,,)u(w, z) > 0, which, in turn, by virtue of Lemma 7.2, gives the con- 
clusion of the corollary. rn 

Now, we prove that the set {y E R'; u (x, y) < co if x < y )  is either empty 
or equal to (- oo, a) (possibly with a = cn). 

THEOREM 7.5. Let q E f t ,  and let u (x, y) c cc for aJixed y E R' and x < y. 
Then u (x ,  21-5 & whenever r > y and z is close enough to y. 

Proof .  Assume that for some x c y we have u(x, y) < co. Let z > y be 
fixed. We may and do assume that x and z are so close that (7.4) holds with 
E = 1/2. 

Define S1 = qX4,) and S2 = T~,,,) + 2, o 8 ,,x,, if X ,,=,, B x or S2 = qX,,, if 
X ,,x,Z, 2 z. Furthermore, for n = 1 ,  2 ,  . . ., we put inductively 

Next, for n 2 l we estimate the following expressions: 

We now estimate the expression 

EW C ~ ( x , z )  < ~ ' z ;  Ixr(x,,,l YII 9 

applying the formula for the Poisson kernel for intervals. Here we have 
x < y < w < z .  We obtain 

- - sin (ud2) j ((z - w )  (w - x) u (v ,  y) dv 
n: (z -V)(X-v)  ) w-. 
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sin ( m / 2 )  f'(- Y )  (Z - x ) T 2  u (v ,  y) 2 L  < 
n: - - v ) ( x - 0 )  x+y -20  

Now, applying (7.4) with E = 112 and Theorem 7.1 we obtain 

converges to 0 as z J  y. 
Therefore we may and will assume that z z y is such that (7.7) is less 

than 1/8. 
Let N = min (n 3 1; Xsn 3 z). We obtain 

(7.8) Ey CN = *r + 1 ; eq (rz)l = Ey [S2. c r., s,,,+ , = r,; e, (TJ] 

= EY p 2 n  -= zz; eq (S2.1 EXSz. [ T ( ~ , ~ )  = T, ;  eq ( T ~ ) ] ]  

G Ey [S 2 .  < r,; eq (S23 Exszn  Ceq(r(x,,)]] 

SUP Ew req (qx,z~)l EY CSZ, < z,; eq (S,,)] . 
WEIY,~) 

Analogously, 

By the recurrence of X,, N < m a.s. By the estimates (7.8), (7.9); th= choice of 
z in (7.7) and by the estimates (7.5) and (7.6) we fmally obtain 

m m m 

+ Ey[N = 2n; eq(rz)] < 2+ 2'"+ 2-" i m. 
n =  1 n =  1 n = l  

The proof is complete. 
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LEMMA 7.6. Assume that u (v, xo) < oo f ir  fixed xo and v < xo. If y < z and 
y, z +xo,  then 

lim sup sup u  (w, z) ,< I .  
weY. 2) 

Proof.  Given 8 > 0, we choose, as in the proof of Lemma 7.3, x < xo 
such that for all z, x < z < x, + (x, -x), (7.4) holds. By the proof of the 
above-mentioned lemma it follows that it is enough to show that if 
x < y < w < z < xo+(xo-x), then 

whenever y,  z 4 xo, uniformly with respect to w E [y, 2). Let us put 
z' = x, +(xo-x). By virtue of Theorem 7.5 we may and do assume that z' is so 
close to xo that u(v, 2') < m for v < z'. We assume, further, that 
(x+xo)/2 < y d w < z < 2'. Then for v G x we obtain 

1 2 -<- 1 
and - 

2 < 
Z - v  xo-v w - v  x+xo-2v' 

By Lemma 7.2 we get 

u(v, 2) < . u t u 7  2') < ~ ( 0 ,  2') 
= Cu(v, z') 

lnfrE[Z,z'] u (r, 2') infrE(x,z*) @-, z') 

for v < x. Then 

EW Cqx,z) < Tz; U (Xqx,,,, 4 1  
- - sin (oor/2) j ((f - W )  (W - X) u (v, 2) dv 

n - z-v)(x-v) ) w-v 

sin (un/2) j ((z - y) (z - x ) ) ' ~ ~  u (v ,  2) 2 dv < 2=12 C 
?I xo-v)(x-v) x+xo-2v 

as y, z -, xo. This completes the proof of the lemma. 

THEOREM 7.7. Let x, < yo and u (v, yo) < rn for v < yo. Then the function 
u(-,  *) is continuous at (xa, yo). 

Proof.  Let u(v, yo) < oo for v < yo and x, y 4 x 0  < yo with x < y. We 
consider three cases. 

Case  1. Assume that xo = yo. Then we have 

inf u(w, y) < u ( x ,  y) < sup u(w, y). 
W E [ X , Y )  WE[X,Y) 

The application of Lemmas 7.3 and 7.6 ends the proof of this case. 
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Case  2. Assume that yo < y. By Lemma 7.2 we obtain 

I A  i d  u{w,  y )  <- u(x3 Y) 4 I V  sup u(w,  y). 
~ Y o , Y )  u(x, YO) wtrYo,yl 

Again, the application of Lemmas 7.3 and 7.6 gives 

The continuity of u ( a ,  yo) at x, ends the proof of this case. 
Case  3; In this case we assume that y < yo. Then we obtain, as above, 

I A  i d  u(w,  y3<9< ~v sup u(w;yo). 
WE[Y,YD) ulx, Y) WELV.YO) 

The remaining arguments are the same as in the previous case and are omitted. 

8. KELVIN TRANSFORM 

In this section we describe the action of the Kelvin transform on a q-har- 
monic function. We use the description to reduce some problems concerning 
q-harmonic functions on unbounded domains to the case of bounded domains. 

As before, we fix  EN and OIE(O, 21. In this section by the Kelvin trans- 
form we understand the mapping T: Rd\{O) -Rd\(0) given by Tx = x/1xI2. 
Note that T~ = idRd\Io). For a function f :  Rd H R w { - a, m), the Kelvin 
transform Tf is defined by 

(8.1) 
Tf (x) = I x ~ " - ~  f (Tx) =  XI=-^ f (x/1xI2), x # 0, 

Tf (0) = 0, 

the latter being a rather useful convention, introduced here for convenience. If 
v is a Radon measure on Rd\{O), then we define a measure v" on Rd\(0) by 
v"(dTx) = (x[" -~  v (dx), which is to mean that for, e.g., 4 E C, (Rd\{O)) 

(8.2) 4 (y) v"(dy) = # (Tx) IX("-~ v (dx) = T# (x) v 
Rd\(ol Rd\Io) Rd\m 

cf. [15]. Note that 5 = v. If v (dx) = g (x) dx, i.e. v is absolutely continuous with 
respect to the Lebesgue measure, then by change of variables we have 

(8.3) ?(dx) = lxl-'" Tg (x) dx on P\(o). 
LEMMA 8.1. For every ball B c Rd such that dist (0, 3) > 0 and all x, y E Rd 

we have 

(8.4) 

The subscripts in (8.4) mark the variables with respect to which the Kelvin 
transform acts. 
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Proof of Lemma 8.1, Let 3 = B(Q,  r), where Q E R ~  and 0 < r < 1Q). 
Recall that TB = BtS,  Q), where 

(8.5) s=Q/IIQI2-r?, e=r / ( lQI2-r2) .  

By regularity of B and T B  and by the convention (8.1) we may and do assume 
that x ,  y E T B c  @\{o). Then (8.4) is equivalent to  

(8-6) l ~ l " - ~  l ~ l " - ~  GB(TJE, TY)  = GTBIX,  Y ) .  

To prove (8.6) we use (3.16) and (2.3): 

LHS I X Y - ~  lyr-d GB ( T X ,  Ty) 
= ( ~ ( ~ - ~ ( y ( ' - ~ r " - ~  G ( ( T x - ~ ) / r ,  (Ty-Q} /r )  

= Ix["-~  lyl"-d ITx- T ~ J ' - ~ B ; I $ ( W ( ( T X - Q ) / ~ ,  ( T ~ - Q ) / ~ ) )  

= B ~ I ~ - Y I " - ~ I ~ ( ~ ( ( T ~ - Q ) / ~ ,  (TY - ~ ) / r ) ) ,  

where we used the fact that 

(8.7) ITx- 01 1x1 lul = Ix-yl. 

We also have 

so we only need to verify that 

w = w (t Tx - Q)/r ,  ( TY - Q)/r)/w (Ix - s)/e, OI - s)/e) = 1 . 
We have by (8.7) 

By (8.5) and (8.7) we obtain 

J (x)  = (r2 I X ~ ~ - I T ~ - Q I ~ , ~ ~ I ~ ) ( I Q ~ ~ - ~ ~ )  
r2 - I x - S [ ~  (IQI2 -r2)2 
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Analogously, J (y) = 1, thus W =  1, and the proof is complete. s 

The next result is obtained by a similar explicit calculation, so we omit the 
proof; the reader may also consult [4]. (The case a = 2 may be obtained, e.g., 
by a limiting procedure, see 1151.) , . 

LE_MIMA - 8.2. For- every ball 3 c Rd such that dist (0, B) > 0 w e  hive for x # 0 

For clarity we note that, for XE(TB)"\{O), (8.10) is trivial; we then have 
6XTB = gX = /x)4-ddTr and w p  = 6,. 

We remark that very general versions of Lemmas 8.1 and 8.2 in fact hold 
true but are not needed here. Proofs of the generalizations may be obtained 
from the authors. 

The main result of the section is the following generalization of Lem- 
ma 8 in [4]. 

THEOREM 8.3, Let d E N, LZ ~ ( 0 ,  2). Let D E Rd be open and q E JFZ (D). Let 
u €8 (Rd) be such that 

(3" + q) u = 0 (distr.) on D. 
Then 

(8.1 1) (PI2 "+ e)  Tu = 0 (distr.) on T(D\(Q)) 

with e01) = l~J-~"qb/ I~ l~) .  
Proof. We may and do assume that u is continuous, see Remark 6.3; If 

QED\(O) and 0 < r < dist(Q, D"u {O)) ,  then, by Proposition 6.1 and the con- 
tinuity of u, we have for B = B(Q,  r) 

Note that for x # 0 we have, by (8.2) and Lemma 8.2, 

EX 2-u (XZTB) = 1 Tu (Y) o", (dy) = J u CV) a", ( d ~ )  
R* Rd 

= Ixla - J u u) OF (dy) = TE(") u (xTB). 
Rd 

By (8.2), (8.3) and Lemma 8.1 we then have for x # 0 
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the integrals being absolutely convergent. It follows that 

Tu(x)=ExTu(X,, , )+GTB(gTu)(x),  x # 0 .  

Therefore, by Lemma 5.3, 

PI2 Tu + Q Tu = 0 (distr.) on TB . 
From this local result, (8.11) follows. I 

The potential-theoretic counterpart of Theorem 8.3 is the following 

~ R B M  8.4. Let d i  N ,  a E (0, 2). Let D E Rd be open and q ~ f i ~ ;  (D). If 
WEL@(F) is Sq-harm~ni~  in D, then Tw is Q-harmonic in T{D\(O)), where 

P Cy) = IYl - 2Q q C y / l ~ l ~ ) +  
P r o  of. If w = 0 on D and w = 0 a.e. on D: then Tw is trivially p-har- 

monic in T(D\{O)). 
Otherwise, let U be open bounded with D c D\{O). By Lemma 4.3 the 

gauge function u (x)  = G e,(z,) is positive and finite for every x E P. The same 
being true for Tu (except for x = 0), by Theorem 6.4 and Lemma 4.3 we see that 
(TV, p) is gaugeable for every open V precompact in U. By Theorems 6.4 
and 8.3, Tw is Q-harmonic in K hence in D. H 

Remark 8.5. If w = 0 on D, then under the assumptions of Theorem 8.4, 
it follows that w = 0 a.e. on Dc. Indeed, by (6.11, PI2 w = 0 {distr.) on D, thus 
w is a-harmonic on D and vanishes in D. By the important uniqueness result of 
181, w = 0 a.e. on Dc. We do not use this observation in our development and 
state it only for completeness. 

The analogues of Theorems 8.3 and 8.4 also hold true for a = 2 but a de- 
tailed verification is left for the interested reader. 

The following example is an analogue of Example 4 in [lo]. It illustrates 
Section 7 and indicates how to use the Kelvin transform to investigate q-har- 
monic functions on "large" domains. 

EXAMPLE 8.6. Let 01~(0,2), D = (- 1 , O ) c  R1 and let ~ ( x )  = c]xl-@, XED, 
where PER and c > 0. Note that e ~ p ( D )  if and only i f B  < U A  1, which we 
assume in what follows. For small c > 0 we have IIGD pllm < 1. Thus, by-Khas- 
minski's lemma there is c, = co (a, 8 ,  y )  > 0 such that (D, Q) is gaugeable if 
c < co. For convenience we further assume that co is so small that the con- 
ditional gauge function is bounded by 2; see Remark 3.6. 

Let f (x) = Ixtu-l, x ~ R l .  If u # 1, then, up to a constant, f is the potential 
kernel (compensated potential kernel if a > 1) of X,. Thus, regardless of 
a E (0, 2), f is U-harmonic in R1\(0). Clearly, it is not regular a-harmonic in 
R1\(0). However, it follows that 
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i.e. f is regular u-harmonic in D. The equality in (8.12) may be verified by 
considering intervals D, = (- 1, - l / n ) ,  n = 2, 3, . . . , applying (2.1) and (2.2) 
and letting n 4 co. 

Let u (x) = Ex [e, (zn) f (XI,) ] ,  x E Ri. By our assumptions we have 

Clearly, u is regular g-harmonic in D. By Lemma 8.4, Ter(x) = Ixla-l er(l/x) is 
q-harmonic in TD = {-  M, - 1) with q (x) = c I X ~ ~ - ~ " ,  x E T D . ,  Note that 
ql,, E 6" if and only if #I < 201, which does not restrict our previous range of /I. 
By (8.13) we -have T ~ ( x )  = Tf (x) = Jx["-l Ixll-g = 1, XE(-1, O ) u ( O ,  oo) and 
14 Tu&) < 2, XE(-m, -1). Let B, = (-n, -1-1/n),  n = 2, 3, ... Observe 
that by quasi-left-continuity of X, it foIIows that, for every X E R ' ,  
P x  {z~, = rTD) -t 1 as n -, m, because, for x E D, Px {X,,, = - 1) = 0 (see, e.g., 
1161). By Fatou's lemma and bounded convergence we easily obtain 

Tu (x) = lim Ex re, (z~,) TU (X,,,)] = Ex [ lim eq (TB,) Tu (X=e,,II 
n-r rn n - f w  

= EreQ ( z ~ ~ ) ,  x E T D .  

We see that' the gauge function for ((- co, -11, c lxla-2a) is bounded on R1 
provided /I < o! A 1 and c > 0 is small enough. 

The critical rate (a A 1)- 2a of decay of q at idnity in Example 8.6 is not 
optimal (cf. [lo], Example 9.4, for the case a = 2). Better results require weak- 
ening of the defining conditions for the Kato class (D) by taking into account 
the asymptotics of GD at 8D. However, such an extension is beyond the scope of 
the paper. 
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