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Abstract. We develop potential theory of Schridinger operators
based on fractional Laplacian on Euclidean spaces of arbitrary dimen-
sion. We focus on questions related to gaugeability and existence of
g-harmonic functions. Results are obtained by analyzing properties of
a symmetric a-stable Lévy process on R, including the recurrent case.
We provide some relevant techniques and apply them to give explicit
examples of gauge functions for a general class of domains.
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1. INTRODUCTION

The paper deals with Schrodinger type operators corresponding to sym-
metric a-stable Lévy processes X, on R? equipped with a multiplicative func-
tional e, (t) = exp (_[:) q(X,)ds), where q is a given function (in a Kato class). We
study the existence and properties of g-harmonic functions. In particular, we
address ourselves to problems related to gaugeability.

Many potential-theoretic properties of X, for ae(0, 2) are dramatlcally
different from those of Brownian motion yet they may be regarded as typical
for a general class of Lévy processes on R?. This motivates a thorough study of
the Feynman—Kac semigroups related to the symmetric stable Lévy processes,
especially that the explicit calculations are very often feasible in this particular
case, which stimulates and enriches the general theory.

Results of this paper complement the earlier ones contained in [6]. Results
of [6] were basically restricted to bounded Lipschitz domains and were based
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on the Conditional Gauge Theorem (CGT). This rather-sophisticated result
with a difficult and technical proof allows to derive the potential theory for the
considered Schrodinger operators on Lipschitz domains directly from the exist-
ing one for fractional Laplacian. More general domains were dealt with those
in [6] by approximating them by Lipschitz domains. Note that the case
o >d =1, when X, is recurrent, was not considered in [6].

In the present paper we cover also the recurrent case. Furthermore, we
aim to give some general but explicit examples of the gauge function and in
order to accomplish it we develop techmques based on a study of Green
potentials. In comparison with [6] we now rely on a different methodology
consisting in focusing on local properties of g-harmonic functions, which are
then extended by some general procedures. Thus, we only need to use the local
version of CGT for the small ball, which is a simple consequence of Khasmin-
ski’s lemma and 3G Theorem for the ball. We also depart in various situations
from the gaugeability assumption -and study potential theory on unbounded
open sets without Lipschitz character.

We now briefly describe the contents of the paper. Secuon 2 is prelimina-
ry; we collect here basic facts concerning potential theory of symmetric a-stable
Lévy processes with special emphasis on the recurrent case. In Section 3
we provide relevant estimates for the Green function for the ball, most notably
the so-called 3G Theorem. Although results pertaining to the transient case
(o < d) are known, they are included in unified proofs, original at least in the
recurrent case. As a consequence of 3G Theorem we formulate a “small” CGT
for balls. : '

In Section 4 we discuss problems related to gaugeab1l1ty By means of the
“small” CGT we prove a Harnack inequality for nonnegative g-harmonic func-
tions. Then we give an extension of the Gauge Theorem. We also summarize
the connections between the existence of g-harmonic-functions and gaugeabili-
ty. Our results are related to but more general than the ones presented in
" Section ‘4 in [10]

~In Section 5 we include auxiliary results on the Green potent1als and weak

fract10nal Laplacian needed in the subsequent sections. ,

i Section 6 contains characterizations of g-harmonic functions u as solu-
t1ons of the equatlon S*u = 0 under approprlate gaugeability or nonnegativity
conditions, which supplements and augments earlier results in [6]. We also
give examples of the gauge function based on Green potentials. '

In Section 7 we apply results of Section 4to investigate the gauge function
of half-lines (— o0, y) = R*. Although results obtained in this section are moti-
vated by those in [10], Section 9, the approach of [10] is not applicable here,
and we use }altern;itive methods of proof. The difference between the Brownian
motion case and the case of the general symmetric a-stable Lévy process with
ae(0, 2) resulting from the discontinuity of the paths of the latter is very plain
to see in this section.
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In Section 8 we describe the action of Kelvin transform on g-harmonic
functions, which allows us to construct easily the examples of the gauge func-
tion for “large” domains based upon gauge functions for bounded domains.

2. PRELIMINARIES

For convenience of the reader we collect here mformat10n and references
necessary to understand the paper.

2.1. Notation and terminology. Most of the notation and terminology is
adopted here from [3] and [6]. However, we often consider simultaneously
both cases: the transient (x < d) and the recurrent one (x > d = 1). In the
recurrent case many previously considered objects either have different prop-
erties or take on a different meaning. We remark that all functions considered
in this paper are defined on the whole of R? due to non-locality of the theory
of a-harmonic functions for a < 2. We always require Borel measurability
on R?. Thus, for an open set D = R% by L* (D) we denote the class of all Borel
measurable functions on R? that are bounded on D. A similar convention
applies to the definition of I? (D) for 1 < p < oo. As usual, fe L (D) means that
flge ! (RY for every compact K = D. Analogously, C (D) (Ci (D), respectively)
denotes the class of Borel functions on R? that are continuous (have bounded
continuous derivatives up to order k, respectively) on D, and Coy(D) is a sub-
class of C(D) consisting of functions that are continuous everywhere and
vanish on D°. C.(D) (CZ (D), respectively) is the class of continuous functions
with compact support contained in D (and infinitely differentiable, respective-
ly). We write A< Z(R?) if A is a Borel subset of R? and fe #(R%) (f e & + (RY),
respectively) if the function f is Borel measurable (and nonnegatlve respec-
tively) on R?.

The notation C(a, b, ..., z) means that C is a constant depending only on
a, b, ..., z. We adopt the convention that constants may change their value but
their dependence does not change from one use to another. Constants are
always positive and finite. As usual we write diam (4)'= sup {jv—wl|: v, we 4},
dist (x, A) = sup{|x—v|: ve A}, and dist(4, B)=sup{lv—w|: veA, weB},
where xeR? and 4, B < R

2.2. Symmetric o-stable processes and «-harmonic functions. Throughout
the paper we assume, unless stated otherwise, that a €(0, 2). Occasionally, as in
Section 3, we consider the case of a = 2. We denote by (Xt, P¥) the standard
rotation invariant (“symmetric”) a-stable Lévy process in R%, de{1, 2, ...} (ie.
homogeneous, with independént increments), with the index of stability «, and
the characteristic function of the form E%xp (iuX,) = exp (—t|u|?), ueR%, t > 0.
The index of stability & = 2 corresponds to the process of Brownian motion. As
usual, E* denotes the expectation with respect to the distribution P* of the

i "24;;";/. .
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process starting from xeR?. We always assume that sample paths of X, are
right-continuous and have left-hand limits a.s. The process (X,) is Markov with
transition probabilities given by P,(x, A) = P*(X,e A) = u,(A—x), where p, is
the one-dimensional distribution of X, with respect to P°. We have
P,(x, A) = j (D& x, y)dy, where p(t; x, y) = p,(y—x) are the transition densi-
ties of X,. The function p,(x) = p,(—x) is continuous in (¢, x) for t > 0, and has
the following useful scaling property: p,(x)=t"%*p,(x/t'/®). The process
(X,, P¥) is strong Markov with respect to the so-called “standard filtration”
{#; t >0} and quasi-left-continuous on [0, co]. The shift operator is de-
noted hy 6,. The operator 6, is also extended to Markov times 7 and is de-
noted then by 0,. For a < 2 the process X, has the infinitesimal generator A*/*
given as

u(x+y)—u(x)
|y|d+a
where o (d, y) = I'((d—7)/2)/(2"n"? | (y/2)]). For a < d the process X, is tran-
sient and the potential kernel of X, is given by
A (d, a)
ly ="

A% y(x) = of (d, —a) PV | dy, ueC:(RY),
. Rd

K,(y—x)= [ p(t; x, y)dt = x, yeRY

V]
see [1] and [15]. Whenever « > d the process X, is recurrent (pointwise recur-
rent if @ > d = 1) and it is appropriate to consider the so-called compensated
kernels [2]. Namely, for « > d we put

a0

K.(y—x)= [ (p(t; x, y)—p(t; 0, xo))dt,
0

where xo =0fora>d=1,xo=1fora =d=1and x, = (0, 1)forcx=¢f=2.
It turns out that for a =d=1 or 2

1.1
K,(x)==In—; ~
_ T |x|
“and for a>d =1 ‘
A1, 0) x|t

K,(x) = xeR?.

Ix|1=¢ ~ 2I (¢)cos(na/2)’

For Ae #(R%, we put T, = inf{t > 0; X,€ A}, the first entrance time of A°,
14 =1inf{t > 0; X, ¢ A}, the first entrance time of 4%, and 7, = inf{t > 0; X, ¢ 4},
the first hitting time of A°. A point x e R? is called regular for a (Borel) set A if
P*{t/y =0} = 1; A itself is called regular if all points xe A° are regular for A.
We say that ue #(R? is a-harmonic in an open set D = R? if

2.1) u(x) = Eu(X,,), xeU,
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for every open bounded set U with the closure U contained in D. It is called
regular a-harmonic in D if (2.1) holds for U = D. If D is unbounded, then by
a usual convention E*u(X,,) = E*[tp < ©; u(X,;)]. Under (2.1) it is always
assumed that the expectation in (2.1) is absolutely convergent; in particular,
finite. '

By the strong Markov property of X, a regular a-harmonic function u is
necessarily o-harmonic. The converse is not generally true [3].

When r >0, B=B(0, r) = R? and |x| < r, the P*-distribution of X,  has
the density function P, (x, °) (the Poisson kernel), explicitly given by the formula

i . . rz—lxlz al2 4
22) © P(x, ) =C B x—y=% W>r, -

with C¢ = I (d/2)n~%?~1sin(na/2), and equal to O otherwise [2].

2.3, Killed symmetric a-stable Lévy motion. Let D be a bounded domain.
We often assume that D is regular. By (PP) we denote the semigroup generated
by the process (X,) killed on exiting D. The semigroup (PP) is determined by
transition densities p? (x, y) which are symmetric, that is p? (x, y) = p? (¥, ),
and continuous in (¢, x, y) for t > 0 and x, yeD. Thus, for any f € # . (R%) we
have

PPf(x)=E*[t <tp; f(X)] = if)f(y)pf’(x, y)dy.

We call I?(D) (1 € p < o) or, for regular D, C, (D), an appropriate space
for the semigroup (PP),»o. The semigroup acts on each of the appropriate
spaces as a strongly continuous semigroup of contractions.

The Green operator for D is denoted by Gp. We set

Gp(x, y) = ojopz”(x, y)dt

and call Gp(x, y) the Green function for D. We have .

Gpf(x) = E"[If(Xt)dt] IGD(X y)f(y)dy

for, e.g., nonnegative Borel functions f on R%. When D is fixed, we often write
G(x, y) instead of Gp(x, y). If D is regular, then Gp(x, y) has the following
properties: Gp(x, y) = Gp(y, x); Gp(x, y) is positive for x, ye D and continu-
ous at x, ye R? for x # y; Gp(x, y) = 0 if x or y belongs to D*. For x, ye R? we
have (unless x = ye D)

GD(xy y) = Ka(xs y)_ExKa(XtD’ y)’

where K, (x, y) = K,(x—y).
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Let B=B(0, 1) = {xeR*%: |x| < 1}, ae(0, 2]. It is well known that B is
-a regular domain and its Green function is given by the formula

wix,y) a{2 1

23) G(x, y) = Balx—yl*~* g (+1)d,z x, yeB,

where
wix, y)=(1-x)(1—- Iylz)/lx 2

and B3 = T(d/2)/(2" > [F(a/Z)] ?); see [2] and [10]. If o> d = 1 then G(x y)
is bourided and continuous on B x B and, for x = y, the right-hand side of (2.3)
is equal in the limiting sense, to (1—x2*"1/[2*71r?(a/2)(x—1)]. A domain
D < R? is called Green-bounded if sup,.gsGp1(x) < co. We have

24) 1IGp 1|l = sup E*zp, < Cm (D)
xeR4

by a direct modification of the proof of Theorein 1.17 from [10];. Thus, sets of
finite Lebesgue measure (in particular, bounded sets) are Green-bounded.

2.4. Kato class #° We say that a Borel function g belongs to the Kato
class #* if q satisfies either of the two equivalent conditions (see [17]):

(29 limsup § Iq(y) K,(x—y)dy =0,
r—+0 xeR4 |x~y| <
26) - : lim sup jP lgl(x)ds = 0.
) . t—~0 xeR? g

For open D < R? we write ge #5.(D) if for every compact K = D we have
1xqe #*and we put #%. = ¢2.(R%.Ford = 1 < a < 21t follows that ge #*if
and only if

@) sup | lg0)ldy < .

xeR% | —y|<1 -

~ For general « and de N, (2.7) is necessary (but:not sufficient) for q to belong
to #° In particular, #%. < L}, for all oce(O 2) and d> 1.If fel*(R% and

ge #% then f, fge #°.
- Let D be a Green-bounded domain in R? and ge #* For any b > 0 there
exists a > 0 dependmg only on a, g and b such that

GD|q| aGD1+b. .

Consequently, for a fixed ge _#% but a variable domain D, we have

28 SunglEx[f q(X;)ds]| =11Gpgllo =0 if IGp1ll, 0.
XE Q
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Also, Gpge I* (RY) N C (D), and we have lim__ Gpq(x)=0if z is regular for D.
In particular, G, qe Co(D) if D is regular.

2.5. Feynman—-Kac semigroups. For ge #* we define the additive func-
tional

A(t) = j'q(Xs)dS, t=0.
0 ‘

The corresponding multiplicative functional e,(¢) is defined as
- e () =exp(A(1), t=0.

For all 5, ¢ > 0'we have e (5+1) = e,(s) {e,(t)ob}. If now 7 is a Markov time such
that for every ¢t > 0 we have T t+roG on {t < t}, then for g > 0 we obtain the
following important fact, referred to in the sequel as Khasminski’s lemma:

29 I sup E*A(t)=¢ < 1, then sup E* e, () <(l—g)7t.
xeR4

xeR4

Note that (2.9) applies to constant times t = to and to exit times 7 = 7. By (2.8)

and (2.4) applied to B instead of D, we infer that for a given ¢ > 0 there exists.

d=4(x, q, ¢ such that if m(B) < J, then

SuRglExA(TB)l = |Gz dllo <.

As a standard apﬁlication of (2.9) and (2.6) we get
(210) limsupE*ep,(s)=1 énd supE eq () < exp(Co+C 1)
s—0 xeR4

for some C,, C; >0 and all ¢t > 0. In particular, it follows that
0<e_ (1) <er) <ey() < oo as. on {r <o}

for every Markov time 7. (Note that the same conclusion holds more generally
for ge #%,. because trajectories of X, are a.s. bounded on finite time intervals.)

By (T;) = (T?) we denote the Feynman—Kac semlgroup killed on’ ex1t1ng D.
Thus; for nonnegative Borel f we have

Tf(x)=E*[t <1p; eq(t)f(Xt)]-

(B)is a strongly continuous semigroup of bounded operators on each of the

spaces appropriate for the semigroup (PP). Furthermore, for every 1 < p < oo,

we have || T]l, < |IT:|lo < exp(Co+C,1t). For every t > 0, T; is a bounded ope-
rator from I? into I° determined by a symmetric kernel function u,, which is in
Co(D x D) for regular D. For each fel¥ (1 <p < ), we thus have

Tf(x) = {ulx, »f(dy, t>0.



300 . K. Bogdan and T. Byczkowski

Moreover, if D is regular, T, maps L' (D) into C, (D) for t > 0. The potential
operator V for (T;) is 1ntroduced as follows:

Vi) = [ Tf()dt = EX[ [ e(0) £ (X dd],
0 1]

where f is nonnegative and Borel measurable on D. We call V the g-Green
operator. If [: 1Tl dt < co with the operator norm taken in I (D), then Vis
bounded on I?, 1 < p < oo. In particular, V1€ L* (D) and the operator V has
a symmetric kernel V(x y) called the g-Green function whlch is glven by the
formula

L] >0}

Vix,y) = [ ulx, y)de. -

]
Thus, we have Vf(x) = [, V(x, y) f(»)dy.

2.6. Stopped Feynman—Kac functional. The Gauge Theorem. Let D be
a domain in R? and let ge #* We will usually assume that D is bounded or of
finite Lebesgue measure. Then by 2.3 we obtain 75 < oo a.s. Since we also have
j:) |g (X)lds < oo as. for each t > 0, the random variable e, (7p) is well-defined
a.s. The function

u(x) = E¥¢,(tp)

is called the gauge (function) for (D, g). When it is bounded in D, hence in R?,
we say that (D, q) is gaugeable. For a fixed ge #* but a variable domain D we
use the alternative notation uy for the gauge for (D, g). If Gp g is bounded from
below, then by Jensen’s inequality we obtain

2.11) inf up(x) > 0.
xeRd

In particular, (2.11) holds when D is Green-bounded and ge _#°.
If (2.11) holds and (D, g) is gaugeable, then (E, g) is gaugeable for any

“domain E = D. In fact, |juglle < [[4plle 145 *Iloo-

For domains D < R? of finite Lebesgue measure it follows-that if u (x) < o

.. for some x e D, then u is bounded in R? (see [10]). This important fact will be

referred to as the Gauge Theorem.

2.7. Cenditional o-stable Lévy motion. As in [6], the conditional a-stable
Lévy motion remains here to be an indispensable important technical tool. For
definition and properties of this process in R? for o < d we refer to [6]. We only
recall here that for a bounded domain D and yeD by the a-stable y-Lévy
motion we understand the process conditioned by the Green function G, (-, y)
of D, while for £€0D the a-stable £-Lévy motion is, in turn, the process con-
ditioned by the Martin kernel K (-, &) of D.

We examine properties of these processes briefly when a > d = 1. For this
purpose we now assume that D is an open bounded interval in R'.
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We observe that if « = 1 = d, then single points are polar [1] and this case
can be dealt with as in [6]. In particular, the behavior of the y-Lévy motion
and £-Lévy motion at their lifetimes is similar as for o <d.

When o > 1 = d, the situation is different: single points are not polar in
this case and we have to modify our arguments.

First of all, observe that when o > 1 = d, the Green function Gp(x, y) of
the interval D is bounded on D x D. Thus, the whole of D remains to be the
state space of the conditional process in this case. As another consequence,
Gp(-, y) is regular a-harmonic in D\{y}, so E*Gp(X.,,,. y) = Gp(x, y) for
x # y. Thus;for x# y we have IR

P} {tp\y < Tp} = Gp(x, Y) " E* [1tp\y < Tp; Gp(X.p,,» W]
= Gp(x, y)" ' E*Gp(Xsp,, ) = Gp(x, )" Gp(x, y) = 1.
We have obtained
2.12) PH{T, <) = 1.

On the other hand, in the same way as in the proof of Lemma 4.3 in [6] we
obtain for U = D and x, yeD:

GU (xa y)
Gp(x, y)

Observe that the above formula remains valid also when x = y, where G, (y, y)
is defined in the limiting sense by (2.3). We can also show that
P;{Ty <1p; X1, =y} =0 for yeU, xeD, x # y. The result may give the
reader some insight into the evolution of the y-process trajectories near y.

Next, using Corollary 1 from [2] we can show for « > 1 =d that the
¢-conditioned a-stable process exits D only through the point &, exactly as in
the case a < d. We define the lifetime of the a-stable y-Lévy motion to be { with
{=1py for a<d and { =1 when a >d = 1. For the E-Lévy motion we
always have { = 1.

Hence, for all ae(0, 2) and d > 1 we have P;{hm,H;X, =yt=1 for x ;é »
x, yeD. Analogously, for every £ 0D and x e D we have P§ {lim,1., X; = &} = 1.

The following result is very important in the sequel (see [12] and [3],
Lemma 6 and Lemma 17 for justification). Let D be a bounded domain with
the exterior cone property. Then the distribution of the pair (X,,_, X,,) with
respect to P* (x e D) is concentrated on D x D¢ with the density function g* (v, y)
given by the following explicit formula:

Py {ty =1p} =

g%Gn(x v), (v,y)eDxD".

2.13) g (v, y) = I
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Integrating (2.13) over D we obtain the density function

L’j( ’ (Z)GD(JC U)
|U yld+a

(2.14) g 0) =] v, yeD,
, _ D
of the a-harmonic measure wp(dy) = P*{X.,edy} of the set D.
By (2.13) and routine arguments we obtain for @ > 0, measurable with
respect to & and any Borel f > 0, the following important formula:

tTD—-"*

(2.15) E* [f(,.X"’) &) =E*[f(X.,) Ex., . [#]] , XxeD.

L)

3. GREEN FUNCTION FOR THE BALL

The purpose of the present section is to provide some relevant estimates
for the Green function for the ball given by (2.3) above. We put

t paf2-1
= [— e 1),,/2 t>0.
The integrand is decreasing in r and _
Gy «(kt) < kI5(@), =0, k>1.
LemMa 3.1. There is a constant Cy = Cy(d, &) such that for all t >0
Crt < B a1] < if a<d,

| Cit < ([t At l)fz] <C, ifa>d=1
and for a=d=1 or 2 |
‘ CT! < L(t)log(t**+1) < C4,
Ci'< L *<C, ift<2

The proof of Lemma 3.1 is elementary and will be omitted. A calculation

allows us for - the choice of C,=(2d/[a(d—x)])v (¥ ta) if a<d,

Ci=4/a—1)ifa>d=1and C, =8 or3ifa =d = 1 or a = d"= 2, respectively.
- We put §(x) = dist(x, BY) = (1—[x]) v0, xeR%. We clearly have

5()50) _ «s(x)é(y)
(3.2) = <wx,y) <4 7 x, yEB.
We also_write
598G |
ox, y)= o yeB.

COROLLARY 3.2. For all x, yeB (x # y) we have
CT' < G(x, Y B x—y i [o(x, )2 A1]) < 4C;  if a<d,
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C

1< G(x, y)(Biloglo(x, Y2 +1)) <4C,  fa=d=1 or 2,
Cil<

L< G, By o lx, Y2 alx; ) VP <4C Ha>d=1.

The above estimates for o < d and o = d = 2 are well known (see [13], [9],
and Lemma 6.19 of [10]) and we state them only for completeness.

The following result is an extension, for B, of the so-called 3G Theorem
(see, e.g., [11], [5], [6], [7]). Although (3.4) with @ = d = 2 and (3.3) below are
special cases of more general results formulated in those papers, we obtain the
full proof of (3.4) and (3.3) as a by-product of estimates needed for (3.5) and (3.4)
with a = d = 1. Since the case of the ball is of primary interest (see the proof of
Theorem 4.1 below), it deserves an independent elementary proof analogous to
the proof of Proposition 5.15 in [10] and we give the arguments in detail

ProroSITION 3.3. There is C, = C,(d, a) such that for all x, y, ze B we

hqve» :
(3.3)
G(x, »)G(y, 2) x—y*~¢y—z*"¢ .
G(x, 2) < 2‘ |x—z]*"¢ fa<d
(3.4) - ' _, o
G(x,y)G(y, 2) 4 4 ' .
————< J . =d= s
Gx.2) Cz(loglx_y|+1§g|y_zl) | foa=d=1 or»2 |
(3.5) |
G(x, G, 2)

G(x.2) < Cy{6(y) [5(2c)v5_(y)y5(z)]}fm—1}/z .l‘zj"m ode L

unless x =y =1z .in (3.3) or (34)."
Proof. Let ae(0, 2], deN, and x, y, ze B. We may and do assume that
x#Yy,y#z,z#x. By (23) we have

_ a—d|y,__ Lja—d
3G:= S NGO, 2) _ =y -2,

G(x, 2) L x—z? oo

whére ™ : o
Ii(w(x, y) (w0, 2))

I§(w(x, ) )
We reduce the number of variables by the following application of the Kelvin
transform. For ve RA\{y} we write v* = y—(1—|y|*)Jv=y|~ 2 (v—y). Note that
for v, vy, v,€ R\{y} we have ’ o

W= 2,

(3.6) o* =yl —yl = 1=yl R
(3.7) ‘ p*2—1 = (1=o>) (1= Iy1*)/lv—y}?,
(3.8) L il lo—yl = lod — ol Iy — ¥

6 — PAMS 202
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see, e.g., Appendix in [15]. It follows that w(x, y) = |x*|2—1, w(y, z) = |z*]*—1
and |x* > 1, [z¥ > 1. By (3.7), (3.8), and (3.6) we obtain
A=) A=l2l?) _ (x*2 = 1) Ix— > (2** — 1) Iz — yI?

x—z® A=y x—z?
_(x*P=1)(*>-1)

=27

w(x, 2) =

Assume that |x*| > |z* and |x*| > ﬁ Then |x*2—1 = |x*>—[x*|%/2 =
|x*>/2"and
[*|? (12*>—1) _ [x*[>(|z*]*—1)
2x*—z*> T Bx¥?
This implies, by (3.1), that I§(w(x, z)) > I5(w(y, 2))/8; hence W< 884 14(w(x, y))
and

(39) W< 8 [I5(w(x, )V (W0, 2)]-

= (%> —1)/8.

w(x, z) =

By symmetry, (3.9) holds provided |z*| = |x*| and |z*¥| > \/5.
We now assume that |x*| < \/5 and |z¥| < \/5 Then

610w o= ('x*lzl;*ll(lzﬁf‘“ > (¥ — 1) (22— 1)8.

We obtain, by Lemma 3.1,

I5(w(x, 2)) = Cy ' [(Ix*> —1)(1z*|* — 1)/8]%*
2 C P87 2 I5(w(x, M) I5(w(y, 2));
thus
(3.11) W< 84244 C3

provided |x*| < ﬁ and |z%| < \/_ o

" In particular, by (3.9), Lemma 3.1 and (3. 11) the inequality (3.3) holds with
C, =8#4C3.
For a=d=1 or 2 we note that if |x* > ﬁ or |z*¥ = ﬁ, then
w(x,y)=1 or w(y,z)=1 and, by (3.9) and Lemma 3.1, we have

3G = W< 884C,[log (2w (x, Y viog (2w (y, 2)/3)]

< 844C, oc[(log +log./(1—|xP) (1 - IJ’IZ))

2
v (log T +log/(1—|z2I)(1— |J’|2)):|
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2 2
< 845C, a[log o vlog |y—2|]

4C1 I: 2 2 ]
lo vlog .
S Py

I

By this and (3.11) we obtain
4C, H: 2 2 ]
36 <<{—v8"giC3:| 1o vlo v
{n S § R P R P

- 4C3 4 4 o
. log +log .
n Ix—yl ly—=| o

The proof of (3.4) is complete.

We now consider the case a > d = 1. Since x, y, z are now real numbers,
a simpler notation is possible, but we keep up the one used above.

Let |x*| <2 and |z*| < 2. By (3.1) and Lemma 3.1 we get

(¥ = 12 (22— 12
[(|x*|2 1)(z* - 1)]“/2 . [(|x*|2— (= - 1)]“- b2
|

x* —z%|2 [x* — z*|2

W< %, 4C3

= 42, C3 (x* —z*" v {[(Ix** = 1) (z*> = )]V |x* —z**" 1})
< 1281 C3 (x* —z*|* v |x* —z*|* 1) < 484, C3 |x* —z** 1.
By (3.8) and (3.6) we obtain
|z*—yllx—2 _(A—=IyI*)Ix—2

3.12 x*_z*l — - ’
2 | x— 1 lx—yllz—yl
hence

] : ) —_ — 1—v|2 _ a—1
(3.13) 3G < 4841 C3 {Ix Vy—z (L=]y*)|x Zl}

|x—z| lx—ylly—z
=484, C3(1—|yPy . ‘

We now assume that |x* = |z* = \/i Recall that in this case
w(x, z) = (lz*|*—1)/8 = 1/8. By Lemma 3.1 we have

L(w(x, 2) = CT [w(x, 22 aw(x, 2)* V2] = CT'87 1P w(x, 2)*~ V2,

Using this, Lemma 3.1 and (3.12) we obtain

1) (@—1)/2

[t [
614 30<2 Bma M

bt =2
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x—ylly—zl ] [A=Iy?) Ix—z] |*7*
— 13
_2ﬁga¢c1[ o ] [

z| Ix—ylly—z|
=224 C3(1—ly 1.
If |z = |x¥ = f then we obtain the same conclusion.
We now assume that |x* > 2 and |z¥| < \/_ Note that |x* —z*| < 2|x*|
and |x*—z¥| > |x¥|—|z¥| = |x*|(1—1/\/_), hence
*12_1 ®|2 _ * %12 __1q
—— )_(lx [*—1)(|z¥| 1)< [x*? (|z*> —1)

, |e* —z*{? (- 1/\[ [x*[2

\[ TR (f_])z

(2% 13|x*|24 3. ‘
e = =) > (P - 1.

w(x, z) >

These estimates and Lemma 3.1 yield
I (w(x, 2) > I (w(x, 2)/[2/(/2—1)7])
> Cy 1 (w(x, 2)/[2/(/2— 1))
> O [(/2— 1)2/1612 (1% — 1),
By (3.12) and (3.6) we have

ly—2 = 1=y’ 1—|y?
- *__ % < *
—zl  Ix=ylIx*—z* " |x—y|x*(1—1//2)
2 —|y?
=442./2.
S 1/f|x yIIx*—yI V2

We finally obtain _ -

36 < #! [BM] O (e e Vi et Vil
|JC._Z| » ((\/5._ 1)/4 f’(lz*|2— 12

= (/2447 81 CH[(1— ) (L] " ['y Z']

|x—z]

<@ /2+47 (442 /2771 B2 CHI(L— ) (1 DT,
By analogy, if |z%| > 2 and lx*| < \/5, then

G < (4/2+4F (4+2 /21 B2 CLI(— |2 (1~ 1]V,
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Combined with (3.13) and (3.14) the estimates yield (3.5) with
Gy =#CI[48v2./2v (4. 2+4¢(4+2./27 1.
The proof is complete. =
LEMMA 34. Let ge #% and ¢ > 0. There is ro = ro(g, &, @) > 0 such that
j- Ga(x, y) Gg(y, v)
B GB (xs U)
for every ball B= R* of +adius r < ry.

Proof. Let G be the Green function for the unit ball B(0, 1)c R?
(see (2. 3)) Let xoeR% re(0,7,] and B = B(xo, 1). By scaling we have

(3.16) G,,(z w)=r*" "G((z xo)/r (w—xo)fr), z,weB.

Let v, x, ye B. To prove the lemma we consider three cases.
If « < d, then by (3.16) and (3.3) we have

Gal%, 9)Ga 0y ) _ . ., =YYy —vyrl
TGy ST g

_C[ x—1] ]"”gcz["‘—y'f'y—”']”'"f
x—yly—vll e—=ylly—2l |
<27 G, [x =y o+ y— o 9]

Note that the constant 297 C, in (3.17) does not depend on r, v, x, . By'(2.5)
there is ro = ro(q, &, @) > 0 such that (3.15) holds if 0 <7 < To. '
If a=d=1 or 2, then by (3. 16) and (3 4) we have

Gy(x, ) Gy (y, v)
Gg(x,v) . .

(3.15) lg(yldy <&, x,veB,

(3.17)

< Cyflog (4r/lx = yI) +log (4r/ly —u)1.

< Gz [log(1/1x—yD+log(1/ly—u)]

for every r < 1/4, and the result follows as above. -
T a>d= ‘1‘ then by (3.16) and_{(3 5) we slmply‘have

Gy (x, ) Gy (y, v)
Gg(x,v) -

Our result follows by (2.7). &

In what follows E; denotes the expectation for the a-stable v-Lévy process
conditioned by Gg(-, v), where B is a given ball in R? and x, ve B (cf. 2.7 in
Preliminaries). We also recall that { = 15 if a >d =1 and { = 1, if « < d.

The following technical result on the conditional gauge function Eje,((),
x, v€ B, which may be regarded as an analogue of.(2.10), is a tool for studying
local properties of g-harmonic functions (see, e.g., Theorem 4.1 below).

<C,ri L
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LEMMA 3.5. Assume that qe #% and ¢ > 0. Let ro =r4(q, &, @) > 0 be the
constant of Lemma 3.4. Then for every ball B< R? of radius r < r, we have

(3.18) exp(—e) < EXe, () <(1—¢)™!, x,veB.
Proof. We put G = Gz. We have
4 B
E[fa(X)dt] = G(x,v) ' E*[ | ¢(X,) G(X,, v)dt]
0 0
=IG(x, »GY,v)
. B G(x5 U)
The result follows by Lemma 3.4 and (2.9). & T

Remark 3.6. If Bc R is a fixed ball and Q€ #%, then for ¢ = 6Q with
0 > 0 the expression

g(y)dy, x,veB.

GB(xs y)GB(ys U)
d
sup }; o e 0) lg(v)| dy

can be made arbitrarily small provided ¢ is chosen small enough. If, say, the
supremum is bounded by 1/2, then, by (2.9), it follows as above that the con-
ditional gauge function Eje,({) is bounded by 2 for x, veB.

Remark 3.7. We consider the general finite interval D = (a, b)< R! and
qge #%(D). It can be proved that if (D, q) is gaugeable, then the conditional
gauge function u(x, v) = Ej¢e,({), x, veD, is bounded away from zero and
infinity. Furthermore, # has a jointly continuous symmetric extension i to
D x D such that @(x, x) = 1 for xe D. This Conditional Gauge Theorem (CGT)
complements Theorem 4.10 in [6]. Its proof carries over from [6] with minor
changes due to the different nature of the conditional processes fora >d =1
and is left for the interested reader. We note that we make no use of this result
in our development. In fact, we focus in this paper on local results such as

- “small” CGT given in Lemma 3.5, which turn out to be sufficient to develop

substantial potential theory.

4. GAUGEABILITY AND q-HARMONIC FUNCTIONS

Throughout this section we assume, unless stated otherwise, that ge #1...
As usual, ae(0, 2), deN, X, is the rotation invariant a-stable Lévy process in
R? and D < R? is open.

Let uc#(R%. We say that u is g-harmonic in an open set D< R? if

M(X) = E* [TD < ©; eq(TU)u(XrU)]: XEU,
for every bounded open set U with the closure U contained in D. It is called

regular g-harmonic in D if the above equality holds for U = D and singular
g-harmonic in D if it is g-harmonic in D and u(x) =0 for xeD".
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We always understand that the expectation in the above condition is
absolutely convergent. For ¢ = 0 we obtain the previous definition of a-har-
monicity. By the strong Markov property of X, a regular g-harmonic function
u is necessarily g-harmonic.

For fe# (D) and xeR?! we put

up(x) = E*[tp < a0; ¢, (tp) f (X1p)]
whenever the expectation is well defined, e.g., if f >0 or uj(x) < ©.
THEOREM 4.1. Let fe %, (D°) and K = D be compact. The following Har-
nack inequalify holds:
@4.1) Clup(x) Sup(y) < Cus(x),  x, yek,

with C = C(K, D, q, o). If up(x) =0 for some xeD, then u; =0 on D and
u; =0 ae on D"

Let ge #(D°). If u, (x) < oo for some x € D, then u, (x) < oo for every xe D
and u, is continuous and regular gq-harmonic in D.

Proof Let fe®. (D), u= u,. Note that u=f on D* and for xeR? we
have u(x) = E*[1p < 0; e,(tp) f(X.,)]. Let V < D be open. By the strong
Markov property we obtain

E* [ty < o0; ¢,(ty)u(X,,)]
= E* [TV < 00, eq(TV) Extv [TD < 0] €, (TD) f(X‘[D)]]
= E” [TV < 0; €q (TV) E* [(1 tp< 0} €q (TD) f(ti)) o BtV | %V]]
= E* [TV < ©; TDootv < 00; eq(TV) [eq(rD)oetv] f(er)]
= E*[1p < 0; ¢,(tp) f(X.,)] =u(x), xeR.

Let K = = D and 8¢ = dist(K, D). Put F = {xeD: dist (x, K) < dg/2}. Clearly,

F is a compact subset of D. In particular, glge #% Let gy = ro A (dx/2), where
ro =7o(qly, ) is the constant from Lemma 3.4, where, say, ¢ = 1/2. Let
xeK,0 <r<gy and B = B(x, r). Note that B< F. By (2.15), we have

42 u() = Ple,tpu(X.)] = B [u(X,) Ex,, €], yeB,

where { =13 f a>d=1 and { =1p, for a <d and v =X,,_ (see 2.7 in
Preliminaries).
Lemma 3.5 and (4.2) yield

4.3) AP u(X,)<u(y) <2Pu(X,), yeB.
If |[y—x| <r/2, then by (2.2) we have
E*u(X.;) = | P,(0, z—x)u(z)dz
BC

P.(0,z—Xx)
£ sup —————— (P, (y—x, z—x)u(2)dz < 3** " E'u(X,,).
|z—,¢})>rP,(y—x,z—x),‘,“c b Ju(@) Xeo)
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Similarly, .
- E.;‘u(X_,B)?,3_-"'"l1Eyu(_XTB),.. yeB(x, 1/2).
By (4.3) and the above we obtain , o )
(4.4) 371 u(x) <u(y) <3%u(x),  yeB(x,1/2).

In particular, we may take r = g, in (4.3). We now consider ze K such that
|z—x| = 00/2: Let By.-=B(z, g¢/4). Note that B; = F and BlmB(x Q0/4)
By (4.3) and by (4.4) with r = g, we obtain

u(Z) 1E’u(Xr) 3 Pgo/4(0y Z)u(y)dy

B(x.ea/4)

1Caleo/41°37 Pulx) Iy—ZI“"‘“dy

B(x.e0/4)

>371" 32 ' Z’C"Q%IB(O 2o)l Blz— XI/2) 4= “u(x) > cu(x),

with ¢ = 3724732~ d~1~ed () /d)(0o/diam K)? 2. S1m11ar1y,u(x) cu(z). By
this and (4.4) with r = g,, the inequality (4.1) holds true. o

We now assume that xe D and u(x) == 0. By the first part of the proof, for
every B = B(x,r) with r > 0 small enough we have

: 0=--g-(x)'> lE"u(X ' ;%jP (0,y4x)u(Y)dy;

see (4.3). It follows that u = f= 0 a.e. on' D°. The pointwise equality u = 0 on
D is a consequence of (4.1).

- To prove the last assertlon of the lemma let geﬂ (D“) and u|g| (x) < oo for
some xeD. By cons1der1ng u;, and u,_, where g+ =9 vOand g_ = —(g /\0)
we may and do assume that g > > 0in what follows Let u = U, By the Harnack
inequality, uis locally bounded, hence finite in D, therefore it is regular
- g-harmonic in D by definition. To verify contmulty of u on D; let S = B(¢, )
such that § <D. We have N

(4.5) u(x) = E*u(X.j)+Gs(qu), xeS.

The proof of (4.5) is standard (see, e.g., Theorem 4 71in [10] or Theorem 5.3 in
[6]); we prov1de it only for reader’s convenlence We let

"-'S

Q(t) = 1(t<fs)q(Xt)u(er) €Xp j q(Xs) dS,

- ts

V() = Lywog lg(X u(X:)exp [ g(X)ds, t>0.
t R
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We have

18 T8

TE" [®()]dt = E*[ [ q(X)u(X g)exp | q(X,)dsdt]
0 : 1] ’ ot

s

=Bl aX) B [egrs)u(X )] dr]

=E*[ I q(Xz)u X,)dt] = Gs(qu) ().

To justify the gbove application of Fubini’s theorem we observe that qulge #°
because u is bounded on S. Therefore, by similar calculations as-above,

[ E*[¥(©)]dt = Gs(lqlu)(x) < 0.
V]

On the other hand, we observe that j;slq(Xs)| ds < o0, and so the function
s

4.6) . [o,zs‘]am‘—wxp'yq(xs)ds“"

is absolutely continuous (a.s.). The denvatlve of the functions a.s. equals
—q(X,)exp j'sq(X )ds a.e. Therefore

s TS

g E*[®(1)]dt = E*[u(X.y) | q(X.yexp [q(X,)dsdt]
0 t

= E*[u(X;5) {eg(vs) —1}] = u(x)— E¥u(Xy),

each term being finite. This. proves (4.5). Recall that qulge #* yields
Gs(qweCy (S), and that E*u(X,J) is smooth in xS because it is a-harmonic.
By (4.5), u is continuous in S. The proof is ‘complete. m

We: note that if u is g-harmonic in open D # @, then
|u (x)] dx :
< 0 -
ao L+ R .
see, eg (4 3) in the proof above. ' : _
The next result is a very useful . complement of the Gauge Theorem.

THEOREM 4.2. Let m(D) < o0, qe #*and feRB, (D‘) If there is xe D such
that 0 < us(x) < oo, then (D, q) is gaugeable
Proof We fix xoeD Assume that 0 < s (xo) < 0. Let uy (x) = E*ey(tp),

xeR% Our aim is to verify -that u; (xp) < 0.
By replacing f with f A 1 we may and do restrict our con51derat10ns to the

@.7)

case f € LY (D°), || fllo < 1. Then, clearly, u, < u,. However, f may equal zero

on a large part of D° and a reverse inequality Uy (x0) < cuy(xo), wh1ch we prove
below, is by no means .obvious. . v
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There exist open bounded sets 4, B, C such that xoeA, A<B,BcC,
CcD, and the Lebesgue measure of 4 = D\A is so small that

4.8) 12 < E*e (tg) <2, xeR%

see (2.9) and comments below it. We may also assume that B has the exterior
cone property, e.g. B = {xeD: dist(x, D) > 8} for a suitable J > 0.
We define an auxiliary sequence of stopping times. Let S, = 0 and for
n=0,1,... :
— S2"1+‘1 = TB_C.).BSZn + SZH!
»
SZn+2 =140 952"+ N + S2”+1 =T,0 0130952“4.32"-"1'5 OAGSZ;"'F Szn.

We note that, e.g., S,, < 7p and S5, < 1, if and only if X5, €4, n=0,1,...
We put :

u(x) = E* [X,,AEDC; eq(TA)f(XtA)]: xeR’.

By the strong Markov property, (4.8) and the assumption ||f]|l, <1 we
obtain

@0

Us(xo) = ZOE’W [S2n < Tp, San+2 = Tn; €4(1p) f(X:,)]

= 3 [E®[Szn < 5, Sauss = 0; € (tp) f (Xop)]
n=0

+Exo [S2n <7p, XSz..+1ED\Cs S2n+2 = Tp, eq(TD)f(XtD)]
+E*[S;, < Tp, X5,,.,€C, Szp12 = Tp; eq(TD)f(Xm)]]

4.9) = Y [E*°[S2n < tn; €(San) EXs2n [ X, € D%; e(t5) f (Xop)]]
n=0

+E™ [S2 < tp; €, (S2a) E**2n [X,, € D\C; e, (t5) u(X,)]]
+E™ [S30 < Tn; €(S2n) EX2n [ X, € C; (1) u(X,)]] ]

- (4.10) < i [E*°[S2n < Tp; €4(S2) EXs2n [Sfme C*; 2¢,(ts)]]

n=0
+ Exo [SZn < Tp; eq (SZn) EXS:" [Xta € Ca eq (TB) u (th)]]] .

We write
v(x) = E*[X.eD; f(X,)], xeR,

and we claim that v > 0 on 4. Indeed, if f > 0 on a set of positive Lebesgue
measure in D¢ and x€ 4, then the mean value property of v on a ball B< 4
centered at x, and the explicit form of the Poisson kernel for B yield v(x) > 0.
If f = 0 a.e. on D°, we proceed as follows. Let w(y) = E*f (X.,), y € R%. Observe
that w = fon D° and since w is finite (f < 1), it is a-harmonic in D. Also w > 0
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on D because u; > 0 on D. If w attained a global maximum on D, say at y,, we
would obtain

0= 4 w(r0) = of @, o) [ TRy
-, — )jwd — o, —a)j (y°) dy <0,

|d+u |d+a

which is a contradlctlon It follows that
v(x)=r=E"[XtdeDC w(X,)]=EwX,)-E*[X, c4; w(X )]

= w(x)—E*[X, e 4; w(X,)] > w(x)—supw(y) > 0,
yeA
provided xe 4 is such that w(x) is sufficiently close to sup,.pw(y). Since
e,(tp) > 0 a.s,, it follows that u > 0 on 4. In particular, by Theorem 4.1, there is

a constant k¥ > 0 such that u(x) > « for xe C\B.
Let ge %, (B°) be bounded, ye B, and Z = E’[¢e,(15)g(X.,)]. We have

o (d, —

| |d+z

Z= HE’ [eg (D)1 Ga(y, v) g(Z)dzdv
where & (d, —a)|z| "¢ *dz is the Lévy measure of X,, Gy is the Green function
for B and E} denotes the expectation with respect to the process conditioned by
G (-, v); see (2.13), (2.14). As in 2.7 in Preliminaries, { = tp, if 2 <d and
{(=tpifa>d=1

Assume that g = 0 on C\B. Then there is a constant ¢; > 0 such that
[v—z| = ¢, (1+]z]) a.e. on B°x B with respect to g(z)dzdv; hence

o (d,
Z <l | [ R e Goly, a2

dzd
A+l "

< ¢z ll9llw _‘.W(d — o) E}[e,(0)1Gg(y, p:)Adv, -

where ¢y =cr %% [ (1 +]2) 74 %dz < 0. With ¢3 = (dlam(C))'”“/m(C\B) we
then have

& (d, —o)

|d+a

<czesllgllof § EXle (01 Ga(y, ) gy dzdv

BC\B lv—

< ¢26319llw EBY [X:5 € C; g (z5)]-

By this, (4.10), (4.8) and the definition of x we obtain

o]

up(xo) < Y, E™[ 82, < p; €4(S2n) E*s [ X, € C; e, (x)u(X,)]] (1 +2c, c3.1c_1).

n=0
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Note that we have not yet used the fact that u,(x,) < oo to obtain the estimate
and the same arguments apply to u;(xo). Namely, there is # > 0 such that

U (xO) Z E*e [SZn < 1Tp; eq (S2n) EXSZ" [the C eq (TB)
n=0
x EXe= [X €D e, ()] ] (1 +2c2 c3n 1)

oo

. Z E*° [S 2n < Tp; eq (S2n) EXSZ" [X'm € C e (TB) u (Xrg)]]

n=0
-, T X2k M (142¢5¢307Y)

<2k 1(1+2¢;04 7™ Dus(xo) < o0,

where we used (4.8), the definition of «, (4.9) and the finiteness of u(xo). The
proof is complete. =

'The multidimensional Brownlan analogue of Theorem 42 also tholds true
for connected D but is not needed here. The proof is similar, only the set
A above should be chosen connected, which is possible in dimension d = 2. For
the one-dimensional Brownlan result with a simpler proof, see [10], Theo-
rem 9.9.

We recall that for (bounded open) gaugeable sét Bc R, the gauge function
u(x) = E*e,(tp) is g-harmonic in B. The following simple “converse” result
clarifies the role of gaugeability for the existence of g- harmomc functlons

LEMMA 43. Let g€ #%.(D) and .assume that ueQ(R") is q-harmomc in D.
Then, unless u =0 on D and u = 0 a.e. on D", it follows that (B, q) is gaugeable
Jor. every open bounded set B such that BcD.

Proof. Let xe B. Our assumptions and the deﬁnltlon of q-harmon1c1ty
yield

u()| = |E* teg (ep) (X )| < E[eg (1) 4 (X o)1 < o0

If u(x) # 0 or u # 0 on a subset of D¢ of positive Lebesgue measure, then the
- second expectation above is positive. By Theorem 4.2, (B, g) is gaugeable in
‘elther case. m

For completeness we remark that if # = 0 on D, then, under the assump-
tions of Lemma 4.3, it follows that # = 0 a.e. on D°. However, our exposition
does not depend. on this uniqueness property and it will be more convenient to
prove it later on; see Remark 8.5 below. .

LEMMA 4.4. Let ge #2.(D;UD,), where Dy, D; are ‘open sets in R%. If
uec A, (R% is g-harmonic on Dy and on D,, then u is g- harmomc on Dy UD,.
Proof Let D=D;uD,. We ﬁrst assume that u(x) 0 for some x€D;.

By Theorem 4.1, u = 0 on D, and u = 0 a.e. on Dj. In particular, u =0 a.e. on
D,. Using Theorem 4.1 once more we see that u = 0 on D,, so that, ﬁnally,
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u=0 on D,uD, and u=0 ae. on R’ We obtain the same conclusion if
u(x) = 0 for some xe D,. Such a function u is clearly g-harmonic in D; U D,.

In what follows we may and do assume that u(x) > 0 for all xeD;UD,.
Recall that by the definition of g-harmonic functions u (x) < 0, xe D, UD,. To
prove Lemma 4.4 we need to verify that for every. open bounded U such that
UcD and every xeU we have

(@.11) u (x) = E™[e,(ty) u(X;,)].

Let U;,U, be open bounded sets such that Ulc:Dl, Uzc:Dz and
U= UluUz By g-harmonicity we have

4.12) u(x) E* [e, ('cul)u(Xml)] xeU; (xeRY) =
and
4.13) u(x) = E*[e,(ty)u(X.,)], xe€U, (xeRY).
Let xeU be fixed. We define
T, =0,

Tn-1 = TZn—2+TU100Tzn-23
T'an’TZrlwl'l'TUzoeTzn_la n=1’ 2:

We first show that
(4.14)° u(x) = E*[e,(T)u(Xr,)], m>0.

Clearly, (4.14) holds for m = 0 and 1. Suppose that for some ne N it follows
that u(x) = E*[e,(Ton-1)u(Xr,,_,)]. On the set {T,,_; <7y} we have
Xr,,.,€U,. By (4.13) and the strong Markov property we have

u(x) = E*[Thn-1 = tv; €(Tn-1)u(X1,,_,)]
+E*[Typ—y < Ty eq(Ton—1) EX7-1[e,(1y,) u(X., )]
= E*[Ty0-1 = 05 (T (X, )1+ E* [ Toa-1 < 705 €g(Ta) (X )]

= Ele(T)u(Xn,)]. ’

Similarly, if for some neN o
u(x) = E*[e(Ton)u(X1,,)],
then
4 () = B [ey(Tyns ) U (X, )],

By induction, (4.1‘4) holds true. By quasi-left-continuity, it follows P*-a.s. that
T, — twy and X1, — X,,, as m — oo. By continuity of u on U we obtain P*-a.s.

4.15) e (T)u(Xg,) e (tp)u(X,,) asm—oo.
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By (4.14) and Fatou’s lemma,
(4.16) u(x) 2 E* [e, (tu)u (Xo,)]-

Since u > 0 on D\U and P*{X,,eD\U} > 0, the right-hand side of (4.16) is
positive. Since u(x) < oo, by Theorem 4.2, (U, q) is gaugeable. To complete the
proof we note that, for me N, P*-as, we have

E*[e,4(ty) | Fr,.] = e, (T )EXT'"E (tv);

hence e,,(T,,,) < cE*[e,(ty) | #r,.), where ¢ = [inf,.ga B¢, (TU)] 1js finite be-
causeU is" Green-bounded. We put #={T,, <1y, m=1,2,...} and
O = {T,, = ty for some meN}. Since u is bounded on U by unlform inte-
grability and (4.15) we obtain

(4.17) lim E* [T, < ty; ey (To) u(X1,)] = E*[2; e, (to) u(X ;)]

By the monotone convergence thecorem we have
(4.18) lim E*[T,, = ty; eg(Tn) u(X1,)] = E*[0; e, (ty)u(X:,)].

By (4.14), (4.17) and (4.18), the equality (4.11) holds true. m

LEMMA 4.5. Let D,, D, be open sets in R®. Let qe #%.(D,uD,) and let
u be g-harmonic on D, and on D,. If bounded open subsets of Dy uD, are
gaugeable, then u is g-harmonic on Dy uD,.

Proof. Let D= D;uD, #@. Since u is continuous on D, it is locally
bounded in D. Let U, V' be open bounded and such that U < ¥, V< D. We also
assume that U has the outer cone property. Let

¢y = sup u(x) < 00, ¢;3= [ lu@EI/(1+]x)***dx < o0
xeV Rd

(see (4.7)) and note that there is c; < oo such that
ly—v| = cs(L+]yl) for yeVe, vel.

For ve U we denote by { the lifetime of the v-Lévy motion on U (see Prelimina-
ries). The following estimates are similar to those in the proof of Theorem 4.2.
We have for xeU

E*[e, (ty) [u(X:,)I]
#d, —9)

= E* [Xp €V ey (o) lu(Xo )]+ f I Gy(x, v)———W E5 e, (O] lu(y)l dvdy

<S¢ Eey(tpg)+e3?™ | [ Gy(x v)d(d 2

DTy I)'”“Ex[ (O lu(y) dvdy
vevu
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<ci Eey(ty)+c, C;d_aJGU(x, v) o (d, —a) Ej [e, ()] dv
v

L (d,
( lm)E"[ O dvdy

¢y ¢34 *diam (V) *e
e e+ 28 n D) J JGue 0 0D

=cq4E¥ey(1y) < 0,
where ¢4 = (¢; +¢; ¢34 *diam (V)**4/m(V\U)). Let
v(y) = u(y)+ca B eg () + B [e,(tp) u(X:)1,  yeR’.

Note that v > 0 on R? and v is g-harmonic on U, and U,. By Lemma 4.4, v is
g-harmonic o U = U, uU.,, therefore so is u. This completes the proof. a

5. GREEN POTENTIALS

Let xe(0, 2), deN, and D = R’ be open. As usual, by G, we denote the
Green operator for D and our symmetric a-stable process X,:

™D

Gpf(x) = E"If(X:)dt

whenever it makes sense, e.g., if fe4,. (R% or the expectation is absolutely
convergent (say fe#(R? is bounded and Gp1(x) = E*tp < o0).

The following simple result states an important global integrability prop-
erty of the Green potentials Gp f. Recall that o < 2.

LEMMA 5.1. Assume that f € B, (R%) and Gy, f (x) < oo for some x € D. Then
[ Gp f(x)
e (LX)

Proof. Assume that x,e D is such that Gy f(xo) < 00. Let B = B(xy, 1),
where 0 < r < dist(xy, D). We have

(5.1) dx < o0.

™D ™D

0 > Gp f (xo) = E"°_[f(X)dt E® [ f(X)dt -~

= E*EX= [ f(X)dt = | Gp f (y) 05 (dy).
0 Be
By (2.2) we easily conclude that G f (y) < o a.e., Gp f is locally integrable on

R? and, finally, that (5.1) holds. m

Remark 5.2. Clearly, Gp = Gp if B is an open ball, B = D. Under the
assumptions of Lemma 5.1, by the fact that for every ¢ >0

inf {Gg(x, y): dist(x, B°) > ¢, dist(y, B) > ¢} >0
(see (2.3)), we obtain feLl (D).

-4
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Recall that for any function u satisfying (4.7) we can define A%?u as the
distribution given by (A2 u, ¢) = (u, 4%? @), pe C® (RY); see [6] for a detailed
exposition.

The following result is an extension of Proposition 3.13 in [6].

LEMMA 5.3. Assume that fe#B(R% and Gp|f](x) < oo for some xeD.
Then

(5.2) A"‘/2 Gpf= ~—~f (distr.) on D

Proof. Note that the right-hand side of (5.2) is a well- deﬁned dlstnbutlon
on Dby Remark 5. 2 By Lemma 5.1 the same holds true for the left- hand side
of (5.2). ; -

It is enough to prove (5.2) for f e %, (R?). We assume that f e %, (R%) and
B<D is open and bounded. We have, for xeR?,

. Gpf(x) = G f(x)+E*Gp f(X-p).

Since Gp, f(x) < oo a.€., we see in particular that E*Gp f(X,,) is regular
a-harmonic in B (see Theorem 4.1). Since 4%? annihilates a-harmonic functions,
to prove (5.2) we may and do assume that D is bounded and feL' (D) (see
Remark 5.2). The validity of (5.2) in this case was proved in Proposition 3.13 of
[6] for d > a. In what follows we essentially repeat arguments given there but
we treat all de N, ae(0, 2). As usual, K, denotes the RICSZ kernel (or compen-
sated kernel if « > d = 1) in R%. We have < ,

(53) GD(x’ y)=K¢(xa y)—ExKa(Xrlv y)’ X, yED’

see [2]. As usual, Gp(x, y) = j: pp(t, x, y) is the Green function of D defined

by means of the transition densities for the process killed at 7. (Note that, if

a > d =1, (5.3) may fail to hold for some unbounded sets D). Assume that f is
bounded For xeD we obtain

Gp f(x) = 1I)Gu(x, »f()dy L -
= Ij)Kq(x, y)f(y)dy—iE"Kg(Xm, ») f()dy

= [ K, (x, NS 0)dy— Ex[jK Xeps y)f(y)dy]

The application of (5.3) and Fubini’s theorem are Justlﬁed since the integrals
are absolutely convergent. ;

The last term above is (finite) regular a-harmonic in D and to prove (5 2),
we only recall that for ¢ C® (RY), K, 4%* ¢ = — ¢ (pointwise). This is well
known and can be obtained by means of the Fourier transform; see also [15],
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Lemma 1.11. With this result we obtain, for ¢ C” (D),
(A2 Gp f, ¢) = (&> K, 1p f, §)

= [ [ Ka(s ) 1p0) £ 0)dy 492 ¢ (x) dx

=~ [ LOS OISOy = (. 8.

where we use symmetry-K,(x, y) = K,(y, x). For general f e L' (D), the result
follows by 4n approximation argument. = :

We consider sp(x) = Gp1(x) = E*1;, for xeR% By the definition of 1p,
5p(x) =0 on D°. For B = B(xg, )< R%, |x—xo| <r and |[y—x,| > r, by (2.2)
and (2.14) we obtain

; 277 af2 '
ot Pl sy = p, (=00 =) I
|y —Xol*—
' o (d, —a) Gg(x, v)

d+md
lo—y1**e H .

B
By letting |y| > o0 we obtain

M(d %)

We have C¥/o/ (d, —a) = I'(d/2)/[2°T ((d-l;oc y2) I (1+a/2)] For arbitrary open
D and B = B(xg, r) = D, the strong Markov property y1elds

(54) E*15=[Gg(x, v)dv = 2= x—xol* 172,  xeB(xo, 7).
B

:TB D

sp(x) = E"j 15( ,)dt+E"j lD(X,)dt

d
- ﬁ[r gl sD(Xm,,u ) xeB

It follows in particular that s, € C® (D) prov1ded that sp(x) < oo for some xe D.

To investigate the behavior of s, at dD we recall that tp = inf{t > 0:
X,¢D} > 1p and we define sp(x) = E*tp > §p(x) (xeR?). Recall that P*as.
we have 17p = 7 (and so sp(x) = sp(x)) except for those xedD which are ir-
regular for D, the set of such points x being a polar set for X,. The following
semicontinuity property of s; is remarkable because we essentially put no
boundedness restrlctlons on D; 1ts analogue for the Browman motion is false in
this generality. :

LEMMA 54. Let 0 <o < 2. If sD(x) < o0 for some xeD, then sy, is upper
semicontinuous in R°. -

7 — PAMS 202
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Proof. Recall that polar sets are of Lebesgue measure zero. Thus, by
Lemma 5.1,

f sp(X)

3) )T

dx < o0,

We now verify the upper semicontinuity of sp. Let xe R.. We have P*-as.
(5.6) tpob,+t]ltp as t]O0.

For t >0 let p,(x,’y) be the density function of X, under P~ ‘By scaling,
p(x, y) = p.(y—x) =t~ % p, (t"1*(y—x)). Furthermore, there_is a constant
¢ = c(d, a) such that :

pi(d) <c(l+)z)77% zeR"

In consequence, for every bounded set B = R? and t > 0 there is a constant
¢; =c¢4(B, a, t) such that

(5.7) p(x, Y) <c (1+y)™7%  yeR?, xeB.
By (5.5), (5.7), the Markov property, (5.6) and the bounded convergence theo-
rem we obtain for t > 0
o > { p(x, y)sp(dy+t = E*EX 1)+t
Rd
= E*(tpo0,+1) | E*tp, as t|0 (xeRY.

We only need to prove that the function x+— j'n,, p:(x, y)sp(y) is continuous on
R for each t > 0. But p,(x, y) is continuous in x and we can use the bounded
convergence theorem, (5.5) and (5.7) to complete the proof. =

By Lemma 5.4 and the fact that s, < s we obtain the following result:

COROLLARY 5.5. If sp(x) < oo for some xe D, then s is locally bounded in

R* and limy_ixs(y) =0 for every xedD which is'rregular for D.

6. SCHRODINGER OPERATOR

We first make the following simple comparison. Recall that A%2f =0
(distr.) on D if and only if (after a modification on a subset of D of Lebesgue
measure zero) f is a-harmonic in (open) D < RY see [6]. Furthermore, let
4€ Floc(D). Assume that u is g-harmonic in D. Then, by (4.5) in the proof of
Theorem 4.1 and Lemma 5.3,

A2 y+qu =0 (distr) on §
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on every ball S such that S < D; thus
(6.1 A*? u+qu = 0 (distr.) on D.

Whether or not the converse implication is true depends on g and D; we treat
the problem in this section.

PROPOSITION 6.1. Let D < R? be open and qe §5..(D). Assume that
(6.2) A2 y+qu = 0 (distr) on D.

Then for every bounded U with the exterior cone property such that U D we
have : _

(6.3) u(x) = E*u(X.,)+ Gy (qu)(x) ae.,

and the right-hand side of (6.3) is continuous on U.

Proof We essentially repeat the arguments of [6] (but see Remark 6.2
below).

The implicit assumptions for (6.2) are that u satisfies (4.7) and que Li, (D).
In particular, we have u, gue L' (U). We note that (6.2) is unaffected if u is
changed on a set of Lebesgue measure zero. The observation, however, does
not contradict (6.3): because the P*-distribution of X, , i.e. the a-harmonic
measure o ("), is absolutely continuous with respect to the Lebesgue measure
on U* ([3], Lemma 6), E*u(X,,) is unaffected by such a change of u.

Let V be open, bounded and such that ¥ D. We can define

(6.4) B (x) = u(x)—Gy(qu)(x) for ae. xeR?,

where the Grcen.potential is absolutely convergent a.e. since que L' (V). By |

Lemma 5.3 we have
A2 h = —qu+qu =0 (distr) on V,

therefore, after a modification on a set of Lebesgue measure zero in V, h”
becomes a-harmonic in V ([6], Theorem 3.12). So a modified version of ¥ will

- ~

be denoted by A.
Let U be open, U = V and assume that U has the exterior cone property.
For every xeR? for which Gy (lqu|)(x) < o0, thus a.e., we have

Gy (qu) (x) = Gy (qu)(x) + E [Gy (qu)] (X<)-

Similarly as before, we define a.e.

hY (x) = u(x)— Gy (qu) (x),

and we have a.e.

KY (x)— K" (x) = Gy (qu) () — Gu (qw) (x) = E* [Gy (q)] (Xy),

it
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where, for xe U, we used the above-mentioned result on w7 (). By the same
result, (6.4) and o-harmonicity of W we obtain ae.

hP ()~ RY (x) = E* [u(X.p)— ¥ (X.,)] = E*u(X,,)~H (x).
We thus have hY(x) = E*u(X,,) for ae. xeU, or
WY () = E*u(X,,), xeR’,

where / KU denotes the equivalent version of A which is oc—harmomc in U. There-

fore hU-is regular &-harmonic on U. Hence, we have
»

(6.5) u(x) = F*u(X,,)+Gylqu)(x) ae.

In particular, let U be a ball B = B(x,, r) such that BV and 0 <r < r,
where ro = ro(qly, @) is the constant from Lemma 3.4 with ¢ = 1/2 there. We
define for xeR*

h() = () = Eu(X,,), HE) =EuX.,),
£6) = E[ey(ra)u (Xl F ()= E*[ey(rg) (X1

The above functions are regular a-harmonic or regular g-harmonic on B; re-
spectively, and, by Lemma 3.5 with ¢ = 1/2, we have

1H(x) < F(x)<2H(x), xeR,

which justifies the absolute convergence of the expectation defining f. By [6],
Theorem 5.3, for every xeR? we have

f(x) = E*f(X,)+ Gp(af) (x) = h(x)+ Gp(qf) (x),

where the Green potential is absolutely convergent. By (6.5) we obtain

(6.6) . f(x)—u(x) = Ga(g(f—uw)(x) ae.

Since the Green potential is absolutely convergent a.e., by Lemma 5.1 and the
 Fubini-Tonelli theorem we have ,

(6.7) § Gela(f—w)(x)dx = [|q () (f(x)—u ()| s5(x) dx < o0,
B B

where sp(x) = E*1p = [, Gp(x, y)dy, xeR’ Let R(x)=f(x)—u(x), xeR"
Using (6.6), symmetry of Gz and (3.15) we obtain

;f; |4 () R (x)| s(x)dx < [ lq(x)| Gz (IgRI)(x) s5(x) dx
B

= [ [ [la@) Gs(x, y)la () R()| Gs(x, v)dvdydx
BBB .
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(ORI Gae, [ G202 Ga D) v ay
B

B v GB(va y)
<3{1g(RO)ss()dy.
B

By (6.7) it follows that
(6.8) » g(f—u) =0 ae;

thus u = fa.e, by (6.6). In particular, by Theorem 4.1, u is essentially continuous
in B, hehce in- D. Furthermore, u is locally essentially bounded on D, and
consequently que #§.(D), which yields the continuity of the right-hand side
of (6.3). The proof is complete. m '

Remark 6.2. The proof of Proposition 6.1 is based on argumenté re-
produced in [6], Theorem 5.5, after [10], Theorem 5.21, but here we use the
integrability condition (6.7) to obtain (6.8), rather than the condition

(69) Jla) (/@) ~u)fdx < o,

which was used tacitly in [6] and [10]. As the integrability of gf on B is in
some doubt at the considered stage of proof, the present modification of the
proof is necessary. A similar modification may be applied in the case of Theo-
rem 521 in [10].

Remark 6.3. Under the assumptions and with the notation of Proposi-
tion 6. 1 above, there is a function 4 continuous on D, such that & = u on D° and
# =u ae. on D. The function clearly satisfies A%?fi+qii = 0 in the sense of

distributions on D. By the proof of Proposition 6.1, for every xeD there is .

some positive r < dist(x, D) such that for B = B(x, r) we have

() = B [e,ca) i (X1, yeR’,
ie. @ is (regular) g-harmonic on B.

-~By Remark 6.3, Lemmas 4.4 and 4.5 and the usual compactness. argument
we obtam the following result:

THEOREM 6.4. Let D < R® be open and let q € £5,. (D). Assume that uch (R")
sattsf ies

A2 y+qu =0 (distr) on D.

If u is nonnegative or open bounded subsets of D are gaugeable, then, after
a modification on a subset of D of Lebesgue measure zero, u is g-harmonic in D.

Remark 6.5. A part of the above result was proved before by means of

the Conditional Gauge Theorem in [6], Theorem 5.5. Note that for g < 0 the:

gaugeability assumption is always satisfied and, in particular, Theorem 6.4
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extends the analogue of the Weyl lemma for A% given in [6], Theorem 3.12.
Note, however, that the present extension employs substantially the above-
-mentioned result (for g = 0).

We are in a position to give an explicit example of gauge functions based
on sp(x) = E*tp for a broad class of domains. Similar examples based on more
general Green potentials are left for the reader.

PROPOSITION 6.6. Assume that sp(x) < o for some xeD. Let a > 0 and
define

610) 7. w(9)=1+asp(x) q()=[sp0)+1/al"l, xeR.

Then we have

(6.11) E*e,(tp) <u(x), xeR.
If also D is Green-bounded, then
(6.12) E*e,(tp) =u(x), xeR’,

and, in particular,

(6.13) 1= inf E¥e,(tp) < sugE"eq(rD) < 0.
xeRd xeR .
Proof. Note that g is bounded, in particular ge #% By Lemma 5.3
A2y = —a= —a(l+asp)/(1+asp) = —ug (distr.) on D.

Since u > 0, by Theorem 6.4, u is g-harmonic in D, i.e. for every open bounded
set Bc Bc D we have u(x) = E*[e,(t5)u(X.,)], xe B. We consider an in-
creasing sequence {B,}>.; of such sets with U:;l B, = D. By Fatou’s lemma

(6.14)  u(x) = Lim E*[e,(tp,)u(X,, )]

> E*[liminfe, (t5,)u(X, )], xeR%.

‘Let n — oo. Clearly, e,(t5,) = e,(1p) since 7 <oo (a.s.). Also, by quasi left-

-continuity, X,, — X, a.s. By continuity of s, at regular points of D° (Corol-
lary 5.5) we obtain u(X,,)—u(X,,) as. Thus oo > u(x) > E*e,(1p), x€R?,
which is (6.11). ‘

Assume that D is Green-bounded. By (6.11), the relation (6.13) holds for
such D. To prove (6.12), note that

E*[ey(15)| Fp, ] = €4(t3) E¥me, (tp) > €,(t3),  neN, xeRe.

In particular, {e,(7p,)}sn is uniformly P*-integrable (every x e R%). By bound-
edness of u, the same holds true for {e,(tp,)u(X;, )}nen. Invoking (6.14) we
obtain (6.12). =
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Example 6.7. By the above we see that, given r >0, B(0,7)c R"‘is
gaugeable for q(x) = [C¢(r?—|x|?)"*/of (d, —o)+€]~, xeB(0, r), with any
¢ > 0. In particular, (B(0, r), cr™%) is gaugeable for every ¢ < . (d, —a)/Ct.

Example 6.8. We consider the following basic but less explicit example.
Let D = R? be bounded and regular, and define g = Ay, u = ¢, where 1/15 > 0
is the greatest eigenvalue of Gp (in, say, I? (R%), and ¢o€ Co (D) is the corre-
sponding eigenvector, which is known to be positive by a choice (see, e.g., [14]).
We thus have L

T, o0 =Gpllodo)(x), xeR.

By Theorem 6.4, ¢, is g-harmonic in D. Clearly, it is not regular g-harmonic
in D. Note that (D, g) is not gaugeable (see, e.g., the statement of the Gauge
Theorem in [6]), however, by Theorem 4.2 it can be easily verified that (B, g) is
gaugeable for every open set B< D such that D\B is not polar.

7. FUNDAMENTAL EXPECTATION

In this section we investigate the behavior of the gauge function of the
sets D = (— o0, y) S R!. A parallel theory can be developed for sets (x, o0) (cf.
[10] for a = 2). We always assume that ge #%.. Let yeR'. Denote -,
by 7,. We have 7, < o0 P*-as. Therefore, j’;"q(X ) ds is well-defined P*-as.

We define the fundamental expectation as

(7.1) ' u(x, y) = E*e,(t,).

If x > y, then obviously u(x, y)= 1.

Suitable examples of functions u(x, y) are provided at the end of the last.

section.
- We begin our investigations with stating the following important con-
sequence of Theorem 4.1:

.. TuroreM 7.1. Assume that q€ #i.. If x, yeR ;then u(x, y) > 0. If x <y
and u(x, y) < o0, then u(w, y) < oo for every w < y, and u(:, y)is a continuous
regular q-harmonic function on (— o0, y). Moreover, for every w, v such that
w < v <y the following holds:

u(x, y) = G(w,u) qu(" y) (x)+Exu(X=(w.v)’ y)

Applying Theorem 7.1, we obtain
LeMMA 7.2. For x < y < z the following holds:

(72) (1A igf)u(w, )ulx, ) <ulx,z) <(lv sup)u(w, 2))u(x, y).

wely,z,

g
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Proof. By Theorem 7.1 we have
u(x, z) = E*[e, ('cy)u(X z)]
=E*[t, <1, € (Ty)u(Xry z)] +E" [ry = 1, ¢,(1,)]

> inf u(w z) E*[1, < rz, e, (t,)]+ E* ['cy =T} € (‘cy)]
| weiy,2)

> (1A inf u(w 2)ulx, y).
wely,z .
The- proqf of the right-hand side inequality is similar and 1s omltted "
LEMMA 7.3. Let y <z and let y, z— xo. Then
(71.3) . liminf inf u(w,z) > 1
wely,z)

Proof Using the assumption g € f z . and a conditional version of Khas-
minski’s lemma, for a given ¢ >0 we find x < x, such that for all z,
X <z < Xo+(xp—x), the following holds (see Lemma 3.5):

74" et ln(f )E‘” q(C) ,Sup Ewe (é’)<(1~£)"1

where E} denotes the expectation with respect to the process conditioned by
Gx,yy(» v) and, as usuval, { = 7, .y if @ <1 and { = (4, otherwise.
This, g-harmonicity of u(-, z) and the formula (2.15) yield
u(w, z) =E"[e,(txn)u(X;, ., 2)] 2 e e *Eu(X,, ., 2)
e *E” [T(x z) — = Tz, u(Xt(x z)? )] =e *P” {T(x,z) = Tz}-
Let now x < y < w < z. The following direct calculation, using Corollary 1
from [2], gives - -
F(oc) i dv
T'(@/2) : (0—x)(z—v))*~ e

P {1 =1} =P"{X, =2z} =(z—x)'""

I'o) 2 dv .
r (oc/Z)Zf (v— x)(z )t~

> (z—x)l ‘@

_ I () y—x)/(z—x) dv .
S T@2r 5 (o)

As y, z - x,, the last expression converges to

) ! dv
I"(oc/2)2j(v(1 )t 2

This completes the proof. =

=1.

Ll




Potential theory of Schrédinger operator 327

COROLLARY 74. If x; y, z are such that x <y <z and u(x, z) < co, then
u(x, y) < .

Proof By the above lemma together with Theorem 7.1 we obtain
inf,ery,) 4 (W, 2) > 0, which, in turn, by virtue of Lemma 7.2, gives the con-
clusion of the corollary. m

Now, we prove that the set {yeR*; u(x, y) < o if x < y} is either empty
or equal to (— oo, a) (possibly with a = 00).

THEOREM 7.5. Let g€ #f, and let u(x, y) < oo for afxed yeR! andx <y
Then u(x, 2y < o0 whenever z >y and z is close enough to y.

Proof Assume that for some x < y we have u(x, y) < co. Let z >y be
fixed. We may and do assume that x and z are so close that (7.4) holds with
e=1/2.

Define S; = T(xzy and S; = 7,5+ 7,00, ., if X, <X OF 83 = T,y if

Xemy Z 2 Furthermore for n=1,2, ..., we put inductively
S S2n+1:(x,z}0952,, lf XSZne[y’ Z),
2n+1 = . .
SZn lf Xs2"¢[y, Z)’
' S2n+1+'cy0052n+1 : if X52n+1\x'
S2n+2 =
S2n+1 ’ 1fXSZn+1>Z'

Next, for n> 1 we estlmate the followmg expressions:
(7.5)  E’[S2n <7s5 €4(S2n)]
=F [S2n < T35 €(S2n-1) EXs2n-1 [ty <71 € (Ty)]]
_ < E[S2h-1 <713 eq(Szrl)u(st,._“ y1,
(7.6)  E'[Szp+1 < Tz €(San+1) (X550 00 V)]
= B’ [S2n < 25 €4(San) E¥52 [T(x.) < Ta3 €4 (T, 0) 8 Xy V)]

Y sup Ew [eq (C)] Sup E [T(x z) < T U (Xt{x_z)s y);IEEy [S2n < T eq (SZn)]

u,we(x,z)
We now estimate the expresswn

EW [T(x Z) < T‘Z; u(X'I.'(x z)? y)])

applying the formula for the Poisson kernel for mtervals Here we have
x <y<w<z We obtain

E"[ten < Tz u(Xl'(x 2)? y)] : :
_sin (om/Z }‘ ((z w) (w— x))“’ 2y (v, y)dv

(z—v)(x—0) w—v
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sm(om/Z) .f ((z Y(z— x))“’zu(u, y)2dv

- y—v)(x—v)) x+y—2
= (E“?—;;—)'(ch*)—z-xl) 22EF I [, ) <1y (X s Y-

Now, applying (7.4) with ¢ = 1/2 and Theorem 7.1 we obtain
E(x+y)/2 [T(x,y) < Ty; u(XT(x,y)’ _V)] < 2E(x+y)/2 [eq (T(x.y))u (Xf(x,y;! .V)]
- = 2u((x+y)/2, y)<od. ‘

»

Hence -

(77) sup E¥ [T(x z) <7z u(Xt(x z)? J’)]

wely,z)

converges to 0 as z|y.

Therefore we may and will assume that z > y is such that (7.7) is less
than 1/8.

Let N =min{n > 1; X5, > z}. We obtain

(7.8)  E’[N =2n+1; e,(t.)] = E’[S20 < T2y Sant1 = a5 €4(1)]
=F [S an < Tz €4(S2,) EXsan [Tz = T2 €q (Tz)]]
S B [S2n < 725 €, (S20) E¥s2n [e,(1s,)]]
< wil[lyl,)z)Ew [eq(Tee, )] E” [S2n < 125 €4(S2m)].

Analogously,

(79) B[N =2n+2; e)(t.)] = B’ [Szn+1 < To, Sans2 = 7z €4(22)]
=FE [Sz;-+1 < Tz €(San+1) EXs2n+1 [t: =1, ¢ (Tz)]]
S E'[S2n+1 <725 €4(S2n+ 1)"(st..+p Y-

-By the recurrence of X;, N < o a.s. By the estlmates (7.8), (7.9), the chou:e of
z in (7.7) and by the estimates (7.5) and (7.6) we finally obtain

w2 =Fet)= Y B[N =n; e(x)]

n=1

= FE [T(x,z) =Tz €4 (T(x,z))] + Z E [N =2n+ 15 €, (Tz)]

+3 B[N =2n; eq(z,)]gz+z 2774 ¥ 27 < oo,

n=1 n= n=1

The proof is complete. ®
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LEMMA 7.6. Assume that u(v, xo) < o0 for fixed xo and v < x,. If y < z and
¥, Z = Xp, then
(7.10) limsup sup u(w, z) <1
wely,z)

Proof Given £ > 0, we choose, as in the proof of Lemma 7.3, x < x,
such that for all z, x < z < xo+(xo—Xx), (74) holds. By the proof of the
above-mentioned lemma it follows that it is enough to show that if
x<ygsw<z< x0+(xo—x) then

M EY [T(x,z) <1z u(Xt(x,z)S Z)] -0 - |

whenever y, z— Xo, uniformly with respect to wel[y, z). Let us put
z' = X +(xo—x). By virtue of Theorem 7.5 we may and do assume that z' is so
close to x, that u(v,z)< oo for v<z. We assume, further, that
(x+x0)/2<y<w<z<Z. Then for v < x we obtain
1 2 1 2
<

—< and < .
Z—0  Xo—U w—v  Xx+x9—2v

By Lemma 7.2 we get

(v, 2) < - u(v, z) u(, z')

- = Cu(v, 2')
lnfre[z,z') u(r’ Z’) >\ lnfre(x,z’) u_(r, zl) ’

for v < x. Then

EY [‘f(: z) < T, u(X,(x 230 )]
_sin(am/2) ¥ ((z—w) w—x)\"?u(v, z)dv
B s J (z—v)(x—v) w—ov

sin (am/2) } ((z—y) (z—x) )“’2 u(v, z')2dv

(xo—0)(x—1v)/ x+Xo—2v

< 2:1/2 C

-

w2 [ E=Y)(z2—X) o+ ,
= 2322 (W Etxo+x)2 [T(x,xo) < T u( Xr(x,x,,)" Z)] -0
0= - .

as y, z— Xo. This completes the proof of the lemma. &
THEOREM 7.7. Let xo < yo and u(v, yo) < o for v < ygo. Then the function
u(-, ) is continuous at (xq, yo)-
Proof Let u(v, yo) < o0 for v <y, and x, y - x5 < yo with x <y. We
consider three cases.
Case 1. Assume that x;, = yo. Then we have

inf u(w, y) <u(x,y)< sup u(w,y).
we[x,y)

welx,y)

The application of Lemmas 7.3 and 7.6 ends the proof of this case.
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Case 2. Assume that y, <y. By Lemma 7.2 we obtain

. u x!
1A inf u(w, y) < (x, y) <1v sup u(w, y).
welyo.y) ulx, Yo welyo,y)

Again, the application of Lemmas 7.3 and 7.6 gives
‘ ' u(x,
m 9 _
: ‘ u(xa y 0) )
The continuity of u(-, yo) at xo ends the proof of this case. ‘
‘Case 3. In this case we assume that y < y,. Then we obtain, as above,

. u(x, Y
1A inf u(w, yo) < (x; o) < 1v sup u(w, yo).
wely.yo). u(x,__ y) wely,yo)

The remaining arguments are the same as in the previous case and are omitted. =

8. KELVIN TRANSFORM

In this section we describe the action of the Kelvin transform on a g-har-
g monic function. We use the description to reduce some problems concerning
g-harmonic functions on unbounded domains to the case of bounded domains.
As before, we fix de N and ae(0, 2]. In this section by the Kelvin trans-
form we understand the mapping T: R*\{0} — R%\{0} given by Tx = x/|x|.
Note that T? = idgay,. For a function f: R*—RuU{—c0, o}, the Kelvin
transform Tf is defined by

| @®.1) Tf () = ™S (Tx) = S /i), x #0,
: Tf(0) =0, 4
the latter being a rather useful convention, introduced here for convenience. If

v is a Radon measure on R%\{0}, then we define a measure ¥ on R*\{0} by
#(dTx) = |x|*~9v(dx), which is to mean that for, e.g., ¢ e C.(R"\{0})

®) [ $0)I) = [ STINIv@= | TH)vdx);

R4\{0} R4\(0} R4\(0}

cf. [15]. Note that v-= v. If v(dx) = g(x)dx, i.e. v is absolutely continuous with
respect to the Lebesgue measure, then by change of variables we have

(8.3) 7(dx) = |xI"2*Tg(x)dx on R\{0}.

Levmma 8.1. For everjf ball B = R® such that dist (0, B) > 0 and all x, ye R*
we have '
(84) ’IJ'C T;GB(x’ y) = GTB(JC’ y)

The subscripts in (8.4) mark the variables with respect to which the Kelvin
transform acts. - : : :
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Proof of Lemma 8.1. Let B = B(Q, r), where QeR" and 0<r<|0l
Recall that TB = B(S, g), where

(8.5 S =0/MQ7~r%), e=r/0Q~1.

By regularity of B and TB and by the convention (8.1) we may and do assume
that x, ye TB< R"\{0}. Then (8.4) is equivalent to

(8.6) IxI*~?1yI*~? Gg(Tx, Ty) = Grz(x, y)-
To prove @;6) we use (3.16) and (2.3):
LHS = |x|*~|yI*~* Gp(Tx, Ty)
=Xyl G (Tx— Q)fr, (Ty—Q)/r)
= 2 yle 4 T — Tyl BE L (w (Tx—Q)fr., (Ty— Q)
= B x— I L(w(Tx—Q)/r, (Ty—Q)fr)),
where we used the fact that
(8.7) C I Tx=Tylxllyl = x—yl.
We also have .
RHS = Grz(x, y) = Gysp (X, ¥) = ¢* *G((x—S)/e, y~5)/e)
= B x—yP 18 (w((x—S)/e, (v—5)/a))s
so we only need to verify that
W=w((Tx—Q)/r, (Ty—Q)/r)w((x—S)/e, (y—S)/e) = 1.
We have by (8.7) ‘
1 (Tx—Ql/r)?*1- ITy*QI/r)Z( x—yl ) r’
—(x—Sl/0* 1—(y—5l/e)* \ITx—Tyl/ o

1—(Ty—Qyn?
1= (y—Sl/e’

W=

=1—mw—mm2
1—(x—Sl/e)*
= J(x)J(y).
By (8.5) and (8.7) we obtain .
(2 x> =1 Tx—QF X1 (2P —r?)
r?—|x—5SP (0> —r?)?
_ (x> —|x— TQ* 101*) (1QI* —r?)
r2 —[IxI> =2 (x, Q(Q1> —r2)+1QPP A0 )1 (101> —r?)
_ (P Ix?—[Ox* —2(x, Q101>+ 1/10177101*) (121> —r?)
r2—xI2 (0P —r?)? +2(x, Q) (10 —r’)—1Q?

IxI*(1QI>—7?) yI* (191> —7?)

J(x) =
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(8.8) __ (PP-10P P +2(x, 9—1)(19P—1?)

' 2~ Ix1* Q1 =)+ 2 (x, 9)(121* —r*)—(1QI> —r?)
8.9) =1.
Analogously, J(y) =1, thus W= 1, and the proof is complete. =

The next result is obtained by a similar explicit calculation, so we omit the
proof; the reader may also consult [4]. (The case « = 2 may be obtalned e.g.,
by a limiting procedure, see [15].)

LemMA -8.2. For every ball B < R? such that dist (0, B) > 0'we have for x # 0
(8.10) ° B%p = x* 0} = Tof. -

For clarity we note that for xe(TB)"\{0}, (8.10) is tr1v1a1 we then have
Bfp = 5 = |x|*"%67, and W5 = Ors.

We remark that very general versions of Lemmas 8.1 and 8.2 in fact hold
true but are not needed here. Proofs of the generalizations may be obtained
from the authors.

The main result of the section is the following generalization of Lem-
ma 8 in [4].

THEOREM 8.3. Let de N, 0.€(0, 2). Let D < R? be open and g #%.(D). Let
ucB(R% be such that

(4% +q)u = O (distr.) on D.
Then

(8.11) (842 4 9) Tu = 0 (distr.) on T(D\{0})

with o (¥) = [y~ **q(v/Iy1?).

Proof. We may and do assume that u is continuous, see Remark 6.3 If
QeD\{0} and 0 < r < dist(Q, D°u {0}), then, by Proposition 6.1 and the con-
tinuity of u, we have for B= B(Q, r)

u(x) = E*u(X.,)+Gp(qu)(x), xeR’.
Note that for x # 0 we have, by (8.2) and Lemma 8.2,

E* Tu(X.pp) = I Tu(y)ots(dy) = | u(y) 375(dy)
R4

= |x|*~¢ I u(y) 0f* (dy) = TE® u(X.,).
By (8.2), (8.3) and Lemma 8.1 we then have for x #0
T[Gs(qu)l(x) = [xI*7¢ Gp(qu)(Tx) = |xI""* | Gs(Tx, y)q(»)u(y)dy
R4

= |x}*~ j., Ga(Tx, Ty) Iy~ Iy~ >* Iy~ q(Ty) u(Ty)dy
R

= § Gra(x, Y™ **q(Ty) Tu(y)dy = Grp(eTu)(x),
TB
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the integrals being absolutely convergent. It follows that
Tu(x) = E*Tu(X..)+Gra(eTu)(x), x#0.
Therefore, by Lemma. 5.3,
A% Tu+9Tu = 0 (distr.) on TB.
From this local result, (8.11) follows. m

The potential-theoretic counterpart of Theorem 8.3 is the following

THEORBM 84. Let deN, a.€(0, 2). Let D < R? be open and qe 5. (D). If
we % (R% is "q-harmonic in D, then Tw is g-harmonic in T(D\{O}), where

e () =W~ **q (/.

Proof. f w=0on D and w=0 ae. on D, then Tw is trivially g-har-
monic in T (D\{0}).

Otherwise, let U be open bounded with U = D\{0}. By Lemma 4.3 the
gauge function u(x) = E*e,(ty) is positive and finite for every x € R. The same
being true for Tu (except for x = 0), by Theorem 6.4 and Lemma 4.3 we see that
(TV, o) is gaugeable for every open V precompact in U. By Theorems 6.4
and 8.3, Tw is g-harmonic in ¥, hence in D. &

Remark 8.5. If w = 0 on D, then under the assumptions of Theorem 8.4,
it follows that w = 0 a.e. on D*. Indeed, by (6.1), 4%?>w = 0 (distr.) on D, thus
w is a-harmonic on D and vanishes iri D. By the important uniqueness result of
[8], w =0 a.e. on D°. We do not use this observation in our development and
state it only for completeness.

The analogues of Theorems 8.3 and 8.4 also hold true for « = 2 but a de-
tailed verification is left for the interested reader.

The following example is an analogue of Example 4 in [10]. It illustrates

Section 7 and indicates how to use the Kelvin transform to investigate g-har-
monic functions on “large” domains.

ExampLE 8.6. Let xe(0, 2), D = (—1, 0)c R* and letg(x)—cjxl f . xeD,
where feR and ¢ > 0. Note that ge #*(D) if and only if f <anl, Wh1ch we
assume in what follows. For small ¢ > 0 we have ||Gp¢|l., < 1. Thus, by Khas-
minski’s lemma there is ¢, = ¢o(a, fi, ¥) > 0 such that (D, g) is gaugeable if
¢ < ¢o. For convenience we further assume that ¢, is so small that the con-
ditional gauge function is bounded by 2; see Remark 3.6.

Let f(x) = |x|*~ 1, xe R If « # 1, then, up to a constant, f is the potential
kernel (compensated potential kernel if « > 1) of X,. Thus, regardless of
a€(0, 2), f is a-harmonic in R*\{0}. Clearly, it is not regular a-harmonic in
R"\{0}. However, it follows that

(8.12) [fO)wpdy)=f(x), xeD,
be
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ie. f is regular a-harmonic in D. The equality in (8.12) may be verified by
considering intervals D, =(—1, —1/n), n =2, 3, ..., applying (2.1) and (2.2)
and letting n — oo.

Let u(x) = E*[e,(tp) f(X.,)], xeR'. By our assumptions we have

(8.13) u(x) =f(x), xeD*; f(x)<ulx)<2f(x), xeD.

Clearly, u is regular g-harmonic in D. By Lemma 8.4, Tu(x) = |x|*" ' u(1/x) is
g-harmonic in TD =(—oc, —1) with gq(x) =c|x|#"2*, xe TD. Note that
qlrpe #*if and only if B < 2a, which does not restrict our previous range of .
By (8.13) we have Tu(x) = Tf(x) = [x[* ! |x|' "* =1, xe(—1, 0) U (0, o0) and
1< Tutx) <2, xe(—oo, —1). Let B,=(—n, ~1—1/n), n=2, 3, ... Observe
that by quasi-left-continuity of X, it follows that, -for every xeR!
P*{tg, = trp} — 1 as n — oo, because, for xeD, P*{X, = —1} =0 (see, e.g,
[16]). By Fatou’s lemma and bounded convergence we easily obtain

Tu(x) = lim E*[e,(tp,) Tu(X., )] = E*[lim e,(15,) Tu(X., )]

= E¥e;(trp), xeTD.

We see that the gauge function for (=0, —1), ¢|x|*~2%) is bounded on R!
provided B <aAl and ¢ > 0 is small enough.

The critical rate (ax A 1)—2a of decay of g at infinity in Example 8.6 is not
optimal (cf. [10], Example 9.4, for the case o = 2). Better results require weak-
ening of the defining conditions for the Kato class #*(D) by taking into account
the asymptot1cs of Gp at dD. However, such an extension is beyond the scope of
the paper.
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