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A GLOBAL A.PPRBACH TO FIRST PASSAGE TIMES 

Abstract. First passage times for discrete-time stochastic prooess- 
. es are studied from a global point of view, in terms of a mapping that 

takes a numerical sequence to its first passage time function. The con- 
tinuity properties of this mapping with respect to Skorohod's J ,  and 
M ,  topologies are examined. One typically has continuity in ML, but 
in J1 only under extra assumptions. The results are applied to random 
walks and renewal theory. 

1. INTRODUCTION 

Let X = (X,}," be a discrete-time stochastic process with supkXk = + co 
a.s. The related first passage times are 

(1-1) v ( t )  = min { k ;  X k  > t } .  

The results concerning these problems have mainly been focused on asymp- 
totics (Lai and Siegmund [4], [ 5 ] ,  Gut [3], and others). The object of this 
paper is to give a global approach to the subject by mapping the entire process 
X to the first passage time process v, and examining various continuity proper- 
ties of this mapping. Section 3 treats the deterministic setting. Some conse- 
quences for stochastic processes are discussed in Section 4. 

This paper is based on a section of Larsson-Cohn [6],  where further 
details can be found. The author wishes to thank his supervisor ~ l i a n  Gut as 
well 'as Gerold Alsmeyer, University of Miinster, for valuable discussions. 

2. PRELIMINARIES 

By Rm we shall mean n,"~, the countable product of the real line equip- 
ped with the usual (product) topology. We shall find it convenient to require 
that x, = 0 for x E Rm. Let :! Rm consist of the sequences that are unbounded 
above. We remark that a, being the intersection of the sets {x; sup,x, > n}, is 
a Gd-subset of R", and therefore Polish (separable and metrizable by a com- 
plete metric); cf. Cohn 121, Theorem 8.1.4. 
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For any interval I, D (I) denotes the Skorohod space of cadlag functions 
on I. We shall be concerned with two instances of this, namely D [0, co) with 
the J1 topology and D (R) with MI.  Let us call the first space Dl and the second 
one D2. Simply, D will denote either of these two spaces. For easy reference we 
state the following convergence criteria, cf. Lindvall [7] and Skorohod [8]. 

PROPOSI~ON 2.1. Let f and (f,) be functions in D [0,  m), Then f, + f (J1) 
iff rbfn 4 rb f in D [0, b]  for all continuity points b  of S, rb being the restriction 
to  [O, b ] .  

P~OPOSITION 2.2. Let f and {f,} be monotone functions in. D(I).  Then 
f,, 4 f (MI) i fA (t) 4 f (t) for all t that are continuity points off or end-points of I .  

We define a mapping T by letting it take a (deterministic) sequence of real 
numbers to its first passage time function v as in (1.1). Thus T maps % into D. 
The corresponding operator in continuous time has been studied in Whitt [9 ] .  
Following him, we shall occasionally write x-I instead of T(x). 

3. DETERMINISTIC RESULTS 

3.1. The J1 case. We first treat the case D = Dl = (D [ O ,  m), J, ) .  Before 
stating the main result, we introduce some terminology. The ladder epochs of 
X E @  are defined by 

The variables x,, are the corresponding ladder heights. 
For integers 0 < i < j, let Aij consist of those x E 92 that have a ladder 

epoch equal to i, no further ladder epochs between i and j, and satisfy x j  = xi. 
Put A = Ui, j  Ail .  

Let us also say that a non-decreasing, positive integer-valued function f in 
D [0, b] has the configuration K = { n l ,  n2, . . ., n ) with nl < nz < . . . < n p ,  if it 4 ' 
assumes precisely the values in K on [0, b ] .  T h s  is denoted by conf,(f) = K. 

Finally, the set of continuity points of T is denoted by C,,  its complement 
being C$. 

- T H E O R E M ~ . I . C ~ = % \ A .  

Proof.  Assume first that x E @\A, and put T (x) = v. Let y(") tend to zero 
in'Rm, x +  ~ ( " ' E Q .  We must show that 

v C n ) : =  T(x+y(") )+  T ( x )  = v. 

Now, v has a jump at b  iff x has a non-zero ladder' height equal to b. 
Hence, by Proposition 2.1 it sufices to show that v(") -+ v in D [0, b] whenever 
b is not a ladder height of x. Fix such a number b  and take E > 0. Let d, be the 
following metric for J1 on D [0, b]: 
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where A is the time deformation group on 10, b] with identity e, and 11.11 is the 
supremum norm. Furthermore, let conf,(v) = u = in,, n,, . . . , n,), and put 
no = 0. This means that x has ladder epochs no,  . . ., n,, with xnP- ,  < b < xnP. 
Moreover, since x #  A ,  we have xi # xnp for j between n, and n,, ,, 0 < r < p .  

Therefore, there exists 6, 0 < 6 < E, such that if lyp)I < 6 for k < n,, then 
v("] also has the configuration K. Since ytn' + 0, this will indeed be the case for 
large n. The differences between the times for the corresponding jumps then 
cannot exceed 6, and so d,(v["), v) < s for large n, as was to be proven. 

For the converse, take x E A i j .  Let y("' have its j-th component equal to l/n 
and the othZ<s zero, so that ylm) -r 0. If b > xi, then, using the notation as 
above, we obtain j E con& (v'")), but j $ conf, (v), whence db (v("), v) 2 1 . BI 

Remark  3.1. Note that although A is dense, it is of the first category in 
9 (and in Rm), since Ai j  is contained in the closed and nowhere dense set 
{x ;  xi = xi ) .  Hence T is continuous at "most of" ?# in a topological sense. 

Remark  3.2. Although not continuous, T is still Borel measurable. This 
follows from the fact that the Borel 0-algebra of J1 is generated by the f i -  
nite-dimensional sets and that x w x-' (t) is measurable for each t; cf. Lind- 
vall [7]. 

3.2. The MI cask Let us now consider the case D = D, = ( D ( R ) ,  M I ) .  
Note that v(t) = 0 for t < 0 by the convention xo = 0. 

THEOREM 3.2. The first passage 'time mapping is continuous. 

Proof.  Pick x in 4 and let y(") -r 0. Using the notation from the proof of 
Theorem 3.1, we must show that v(")(t) + v (t) for continuity points t of v. Thus, 
we need only consider the case when t > 0 is not a ladder epoch of x. Put 
v (t) = p. 

This means that xk < t for k < p and that x, > t. Clearly, the same thing 
holds for x+ y(") provided that yr) is small enough for k < p, i.e. that n is large 
enough. But then also vtn)(t) = p, and we are done. B 

Remark  3.3. The continuity would be ruined if we replaced D(R) 
by Q [ O ,  a), since the convergence at the end-poigt t = 0 would then fail 
on Aoj .  

Remark  3.4. The above result is not very surprising. Indeed, the prob- 
lems arising from the events Ai j  depend on a special behaviour of the first 
passage time functions, where one jump is replaced by two successive smaller 
ones, cf. Larsson-Cohn [6]. Such paths are close in M I ,  but not in J , .  

Re mark  3.5. Theorems 3.1 and 3.2 can be compared to Theorems 
7.1 and 7.2 of Whitt [9] for continuous time. In that case one has continuity 
(MI) everywhere and continuity (J1) for strictly increasing functions. How- 
ever, the latter condition is not necessary (consider x (t) = -II , , , ,  (t) + tI[,,,, (t)), 
and so it seems that simple necessary and ~ ~ c i e n t  conditions are not known. 
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4. CONSEQUENCES FOR STOCHASTIC PROCESSES 

4.1. General results. The results of Section 3 have immediate consequences 
for discrete-time stochastic processes due to the continuous mapping theorem. 

PROPOSITION 4.1. Let X and X("' be discrete-time stochastic processes that 
are unbounded above a.s. 

(a) Suppose that P (X E A )  = 0. if X("' converges almost surely, in probabdli- 
ty, or weakly to X in Rm, then (X("))-' converges in the same way t o ~ X - I  in D l .  

(bJ If the assumption that X does not belong to A is dropped, then the same 
hoMs with Dl replaced by D2.  

The case of convergence in probability can be given a more abstract 
formulation. Namely, for any separable metric space S, let Lo (Sj be the (metrizab- 
le) space of random elements of S on some fixed probability space, endowed with 
the topology of convergence in probability. The mapping T: 42 + D induces 
a mapping from Lo(%) into LO(D), which we call F. If D = D2, then F is 
continuous; if D = Dl, then F is continuous at X iff P(XE A )  = 0. 

Just like in Remark 3.1, the set C> = {X; P(XE A )  > 0) is dense (as is its 
complement) in Lo (Old). However, we do not know if it is of the first category. 
The sets {X; P (X E A i j )  = 0 )  are also dense in interesting cases, cf. Lars- 
son-Cohn [6] .  

4.2. Random walks and renewal theory. The conditions in Proposition 4.1 (a) 
are particularly simple to deal with if X is a random walk with positive drift, 
i.e. if X, = &, where (I.',) are i.i.d. with positive mean. Indeed, if ( X  E A o j )  is 
a null set, then P(Xj = 0) = 0 by stationarity. Conversely, if P(Xj = 0) van- 
ishes for all positive j, then so does P(Xj-Xi) = 0 ,  and X does not belong to 
Aij. Thus, T is continuous at X iff P (X, = 0) = 0 for all n 2 1, which is perhaps 
most simply characterized in terms of the point masses of Yl: 

PROPOSI~ON 4.2. Let X be as above. Then P (X  E A) = 0 if and only if there 
do not exist point masses of Y1 (distinct or not) that sum up to zero. 

Thus, it suffices to have Y, continuous or Yl > 0 a.s. In the latter case, X is 
- a renewal process and (v ( t ) -  1) is the classical renewal counting-process. For 

a concrete example: if X("] converges weakly in R" to an i.i.d. sequence of 
exponential variables, then (X1"))-l converges weakly in Dl to a Poisson pro- 
cess starting at 1. Note that weak convergence in R" is equivalent to conver- 
gence of the finite-dimensional distributions, cf. Billingsley [I]. 
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