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1. Introduction. In the present paper we study the one-dimensional sto- 
chastic equation 

t t 

(1.1) X, = xo + J b (X,) d W ) , +  j a (Xs) dM,, t < S ,  (XI, - 
0 0 

-- 

where b, a: R -, R are Bore1 (or only Lebesgue) measurable functions, xo E R, and 
M is a continuous local martingale with square variation process (M). Here 
S ,  (X) denotes the explosion time of X defined by S ,  (X) = sup,, , S, (X), where 

We always assume that the continuous local martingale M is not trivial, which 
means that P ( < M > ,  > 0) > 0, where { M ) ,  = sup,>, ( M ) , .  The continuous 
local martingale M is characterized by its distribution p on the space 
(C ([o, + a ) ) ,  %?(LO, + a))) of continuous functions x : [0, + co) + R equipped 
with the n-algebra generated by the coordinate mappings. 



344 H. J. Engelbert  

A process X on a filtered probability space (9, 8 P, F) is a (weak) solu- 
tion to equation (1.1) if there can be found a continuous local martingale 
(M, r;3 with prescribed distribution p such that (1.1) is satisfied. 

Let us introduce the sets 

X + E  

E, = (xER: j cr-'(y)dy = f GO, Vt > 01, 
x - e  

where we put a-'Cy) = +a if ~ ( y )  = 0, and 

(1.3) - - .- N ,  = {xER: ~ ( x )  = 0). 
5 

If M = B is a Brownian motion, it was shown in [4] that, for a11 initial 
values X,E R, there exists a solution (X, F )  to equation (1.1) but without drift 
(b = 0) if and only if the condition 

( 1.4) E, c N ,  

is satisfied. Using space transformation, in [4] this existence result was transfer- 
red to stochastic equations with generalized drift 

where LX(t, a) is the (right) local time of the continuous semimartingale (X, F )  
up to S, (X), and v is a set function which is a finite signed measure on every 
interval [ - N ,  N], N 2 1, such that v({x)) < $ for all XER.  We notice that 
every solution (X, F) to equation (1.5) is stopped after first reaching E,, i.e., 

where D,, denotes the first entry time of X into E, (cf. 151, Proposition (4.34) 
(iv)). The condition on v, however, is not quite satisfactory because, e.g., the 

. measure v(dx) = ca-2 (x)dx does not fulfil it whenever E, # 0. This would 
exclude constant drift functions b = c in equation (1.1) (see below). Therefore, 
equation (1.5) was also extended to the case where v is only a frnite signed 

- measure locally on the open set E: (see 151, Remark (4.40) (ii)). But in this case 
not every solution (X, F) of equation (1.5) satisfies (1.6) and the existence 
criterion now takes the following form: 

For every initial value XOER there exists a solution (X, F) of equation (1.5) 
such that the boundary condition (1.6) is satisjied ifand only if the inclusion (1.4) 
holds. 

An important special case is obtained if we assume that the drift measure 
v is given by v (dx) = b (x) a-2 (x) dx, where ba-2  is locally integrable in E w d ,  
as we always agree, 0 - + ao = 0. In this way, we come back to our stochastic 
equation (1.1) which we are mainly interested in. More precisely, we have the 
following slight modification of [5], Theorem (4.53) (I), (2). 
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THEOREM 1.1. Suppose that, for measurable real functions b and cr, the jknc- 
tion ~ c T - ~  is locally integrable in E", For every initial value X O E  R then there 
exists a solution ( X ,  F) of 

such that the boundary condition (1.6) is satisfied if and only if the following 
inclusion holds: 

(1.8) - -- - E, z N,nN,. 
L 

Indeed, if x ~ E E , ,  then for every solution (X, F) of (1.7) with Xo = x ,  
satisfying (1.6) we have X, = xo,  which necessarily implies x, E N ,  as well as 
x0€Nb.  Conversely, the sufficiency of condition (1.8) follows from [ 5 ] ,  Theo- 
rem (4.53) (1). To sketch the idea of the proof, we first observe that (1.8) en- 
sures the existence criterion (1.4) for equation (1.5) with generalized drift 
t;, v (dx) = b {x) C T - ~  (x) dx, and the boundary condition (1.6). Hence, for every 
initial value xo ER, there exists a solution (X, P)  of equation (1.5) satisfying 
(1.6), which, moreover, is fundamental, i-e., 

(see [5], (4.35), (4.40) (ii)). Using this property, condition (1.8), and the occupation 
time formula we easily compute 

1 

j LX (t , a)  u (da) = j b (X,) ds P-a.s. 
R 0 

Thus (X, F) is the desired solution of (1.7). s 

Let us emphasize that all existence results reviewed above for Brownian 
motion remain true for arbitrary (non-trivial) continuous local martingales 
M as a driving process. However, we will not deal with this extension in the 
present paper. 

Now the question arises what happens if we drop the boundary condition 
(1.6). It turns out that then the situation becomes quite different: 

(a) There may exist solutions of (1.7) which do not satisfy the boundary 
condition (1.6). 

(b) Condition (1.8) is suficient but not necessary for the existence of solu- 
tions (X, F )  of equation (1.7) for arbitrary initial values X O E R .  

Furthermore, we observe that the restriction E, G N ,  (i.e., b (x) = 0 for all 
XEE,) is too hard and excludes many interesting situations. What happens if 
we drop this condition? Naturally, we come back to condition (1.4): E, c No.  
However, Rutkowski [lo] showed : 
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(c) The condition Em G N ,  is neither necessary nor suficient for the exist- 
ence o f a  solution ( X ,  6;) to equation (1.1) (and hence also to equation (1.7)) with 
arb i t r~ry  initial ualue xO E R. 

To illustrate the situation in greater detail, let us examine several examples 
closely related to examples given by Rutkowski [lo]. 

EXAMPLE 1.2. First we consider equation (1.1) for bounded and continu- 
ous coefficients b and s. Then there always exist non-exploding solutions with 
arbitrary initial value xo€ R;  see Skorohod [12] for M = 3 or' Jacod and 
Memitk[6].-This result is obtained approximating the coefficients uniformly by 
Liljschite functions. We notice that the condition E, G N ,  always holds but, 
obviously, E, G N ,  (and hence also (2.8)) need not be satisfied. This together 
with Theorem 1.1 proves assertion (b). 

EWLE 1.3. Again we consider equation (1.1) for bounded and continu- 
ous b and 6. Additionally, for some c s ~ R  we assume b(a) > 0 and 

o + e  

(1.9) j a - ' ( y ) d y =  +a for all E > O .  
u 

In particular, this implies ~ E E ,  G N,,  This condition on a is satisfied if, for 
example, a is Lipschitz continuous and a~ N,. Let ( X ,  F) be a solution of 
equation (1.1). According to Theorem 2.3 (ii) below we see that the point a is 
non-sticky, i.e., 

m 

(1.10) j lbl (X,)  d ( M ) ,  = 0 P-a.s. 
0 

For the initial value xo = a, (1.10) shows that X does not satisfy the boundary 
condition (1.6). 

EXAMF-LE 1.4. Let (X, F )  be a solution to equation (1.1) for coeficients 
_b  and a, and ~ E R  as in Example 1.3. In view of (1.10), X also solves 

- 
where b = b. If we choose b such that E,\(a) G Nbr we may conclude that 
for the coeficients and a the condition f1.8), E, _c N , n N i ,  holds but our 
solution X for xo = a does not satisfy the boundary condition (1.6), and hence 
X is different from the solution in Theorem 1.1. This proves (a). 

EXAMPLE 1.5. Again, let ( X ,  Fj be a solution to equation (1.1) for coef- 
ficients b and D, and a E R as in Example 1.3. In view of (1.10), for a" = a+ 11,), 
X also solves 
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For these coefficients b and 8, condition (1.4) fails. But we have seen that, for all 
initial values x, ER,  a solution to the above equation does exist. Thus the first 
part of (c) is correct. 

EXAMPLE 1.6. NOW we consider the equation 
t t 

(1.1 1) Xt = ~0 + j I,,, (Xs) ( M ) ,  + S (Xs) dM, ,  t 2 0, 
0 0 

where the diffusion coefficient a and the point ~ E R  are chosen such that 
conditions (1.4) and (1.9).are fulfilled. For any solution (X, F), we have the 
relation (l.lU), in'Gew of Theorem 2.3 (ii) below and, consequently, 

t 

X, = x , + j ~ ( X ~ ) d ~ ~ ,  t 3 0, 
0 

an equation without drift. If M = B is a Brownian motion, it is known that 
every solution X of this equation satisfies the boundary condition (1.6) (cf. [5], 
Proposition (4.34) (iv)). By time change it can easily be seen that this remains 
true for general M. If we choose xo = a as an initial value, this implies X, = a 
for all t 2 0, which, however, contradicts (1.10) unless P ({M), = 0) = 1. Thus 
we have shown that it is not true that (1.1 1) has a solution for all initial values, 
though the condition E, G N ,  is satisfied. This verifies the second part of (c). Of 
course, in this example the condition (1.8) of Theorem 1.1 fails to hold. 

In Example 1.6 we have seen how discontinuous drift can disturb existence 
of solutions while in Example 1.5 with "nicer" drift b the "bad" diffusion 
d cannot prevent existence, contrary to equations without drift. 

The main purpose of this paper is to establish necessary conditions for the 
existence of solutions to equation (1.1). From this we shall see that 0 can be 
chosen bad enough such that equation (1.1) has no solution whatever the initial 
value xo E R and the non-zero continuous drift coefficient b might be. Moreo- 
ver, the continuity of b is not important and can be weakened considerably. 

To this end, as Theorem 1.1 shows, we have to look for diffusion coef- 
ficients a such that E ,  # 0 .  However, it turns out that if Em only consists of 
isolated points (i.e., if E, is denumerable without accumulation points) and if, 
e.g., b is continuous such that N ,  = 0 ,  then there always exist (at least local) 
solutions starting at an arbitrary initial value x ,  ER. The continuity of b can 
also be replaced by the condition that b is non-negative (or non-positive) and 
such that b-I is locally integrable. We will not deal with this problem in the 
present paper, referring the reader to the forthcoming paper [I]. 

It is left as an open problem what happens if E ,  is a more general nowhere 
dense subset of R, perhaps, such that Ez has arbitrarily small Lebesgue mea- 
sure. We shall investigate the opposite case when E, has inner points. Our main 
example deals with the worst case: We will construct diffusion coefficients 
a with E, = R. In Section 2, we shall study the behaviour of solutions (X, F) 
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of equation (1.11, which is of interest in its own right. In Section 3, we collect 
some knowledge on solutions of (1.1) without diffusion (u = 0) for later ap- 
plications. In Section 4, we state necessary conditions for the existence of 
solutions of (1.1). Finally, in Section 5 we deal with the non-existence of solu- 
tions of (1.1) and construct highly singular diffusion coefficients for which ex- 
istence of solutions fails. 

2. Properties of solutions. Let m be an arbitrary non-negative measure on 
(It, B (R)), where 9 (R) denotes the a-algebra of Bore1 subsets of the real line 8. 
We introduce the .sets 

and 
Em = E L  uE,, 

Obviously, 15: (respectively, E,) is closed in the right (respectively, left) topolo- 
gy of R. The set Em is closed and m is a locally finite measure on EL. 

We now define the non-negative measures p and v by 

v(A) = j Ib(~)la-~OI)dy, A E ~ ( R ) .  
A 

Clearly, we have the inclusions E,f E E l ,  E; G E;, E, G E,. In accord- 
ance with Section 1, in the case where b - 0, we denote the sets E:, E;,  and 
E, simply by E J ,  E;, and E,, respectively. Obviously, E: G E l ,  E l  E E;, 
E, E E,. We note that a-2 is locally integrable on E',. 

Let (X, F) be a solution of equation (1.1) for the drift and diffusion coef- 
- ficients b and a with given initial value x, E R. By LX (t, a) we denote the (right) 

local time spent in a up to time t by the continuous semimartingale (X, F )  up 
to S, (X). This is a continuous increasing process in t < S,(X), right-con- 

- tinuous and left-hand limited in ~ E R ,  with LX(O, a) = 0 and such that the 
occupation time formula 

for all bounded or non-negative measurable functions f holds (see, e.g., [7], 
Chapter VI). Here (X) denotes the square variation process of the continuous 
local martingale part (up to S ,  (X)) of X which is defined on [0, S ,  (X)). The 
left-hand limit of the local time will be denoted by LX (t, a). To begin with, we 
study the local time LX (t, a) for a E Nu.  We remember that N ,  is the set of zeros 
of a (cf. (1.3)). The Lebesgue measure on R is denoted by R. 
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LEMMA 2.1. We have Lx (t, a) = 0, a E N,, I-a.e., t < S, (X), P-a.s. 

Proof .  Because of the occupation time formula (2.11, for t < S ,  (X) we 
get P-as.  

and hence 

-. . .- I,, LX (t  , .) = 0 I-a.e., 

which proves rhe lemma. rn 

Now we investigate the behaviour of X in the set E,. As a first step, we 
obtain 

LEMMA 2.2. (i) For every a € E , + ,  LX(t, a) = 0, t < S,(X), P-a.s. 
(ii) For every a E E; , LX_ (t, a)  = 0, t < S ,  (X), P-a.s. 

P r o  of. For proving (i), for fixed t > 0 let A = {LX (t , a) > 0, t < S ,  ( X ) )  
and assume that P ( A )  > 0. Because of the right continuity of LX(t ,  -) thkre exist 
a random variable E > 0 and n 2 1 such that 

has strictly positive probability. On this set, we obtain 

Using Lemma 2.1 and the occupation time formula (2.1), we now estimate 

the last term being finite for t < S, ( X )  P-as.  Hence p([a ,  a  + E)) < + m for 
some E > 0 and, consequently, a E R\EL. This proves P (A)  = 0 for any a E E d ,  
and thus (i). Statement (ii) can be shown analogously. ra 

THEOREM 2.3. Let (X, F) be a solution to equation (1.1) with drift and dif- 
,fusion coeficients b and cr. We then have the following properties: 
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(i) For any a ~ ( ~ L n { b  3 O))u(E;n{b < O } ) ,  

(2.2) ~ ~ ( t ,  a) = L X  (t, a) = 0, t < S ,  (X) P-a.s. 

(ii) For any a E (E: n {b > 0)) u (EL n {b < 0)) u N:, 

(2.3) 1 I{,) (x,) d < M ) ,  = 0, t < S ,  (x)  P-as .  
0 

Proof.  According to Theorem V1.1.7 in Revuz and Yor [7j we get 

for t < S, (X) P-a.s. We now assume a E E: and b (a) 2 0. If view of Lemma 
2.2, LX (t, a) = 0 and from (2.4) we observe that also L5 (t, a) = 0 holds. This 
proves (2.2) for a E E: n {b 2 0). If a E E ,  n ( b  < 01, the proof is analogous. For 
a ~ ( E z  n {b > O))u(E; n {b < O)), (2.3) follows from (2.2) and (2.4) since 
b (a) # 0 in this case. Finally, if a E N: ,  the occupation time formula (2.1) yields 

for all t. < S, (X) P-as. H 

COROLLARY 2.4. I f ( X ,  F) is a solution to equation (1.1) without drift (i.a., 
b = 0), then for every ~ E E ,  

LX (t, a) = L< (t, a) = 0, t < S ,  (X), P-a.s. 

Remark  2.5. In [9], Lemma 4.2, and [lo], Lemma 4.4, Rutkowski has 
shown (2.2) for all a E N, and (2.3) for all a E N ,  n N i  if a satisfies the so-called 
local time condition (LT) (see [XI). But under (LT), N ,  c E,f nE; holds and, 
consequently, the results of Rutkowski are part of Theorem 2.3. Indeed, let 
x o ~ N , \ E z  and choose x, > x, such that a -2  is integrable over [x,, xi]. We 

- consider the trivial solution X of equation (1.1) for b = 0 with X, = x, and 
a non-trivial solution Y of the stochastic equation with reflecting - barriers 
xo and x,: 

f 

I; = X , + L ~ ( ~ ,  X, ) -L~(~ ,  x ~ ) + J G ( Y ~ ) ~ M , ,  t a o 
0 

(cf. Schmidt [I 11). We then have LY (t, xo) > 0, and hence Ly-X (t, 0) > 0 for 
t > 0 sdiciently large with positive probability. This means that (LT) is not 
satisfied. Thus under (LT) we must have N,\E,f = 0. Similarly, N,\E; = 0, 
proving the inclusion N ,  G E,+ n E; . 

THEOREM 2,6. Let (X, F) be a solution to equation (1.1) with drqt and diflu- 
sion coeficients b and a. We then have: 

(i) LX(t, a) = 0, ~ E E , u N ,  A-a.e., t < S,(X), P-a.s. 



Solutions of stochastic equations 351 

(ii) For every nun-negative masurable function f, 
t 

J f (Xs) lg ,~o (Xs) d < X ) ,  = 0, f < S ,  ( X ) ,  P-a-3- 
0 

P r o  of. There is an at most countable set of points a E R (depending on 
t and w) such that L? (t, a) # LX(t, a). For (i), it now suMices to apply Lem- 
ma 2.1 and (2.2). Statement (ii) follows from (i) and the occupation time formula 
(2.1). Ed 

3. Equations without diffusion. In this section, we consider the eqiation - - .  .- - 
f 

which is equation (1.1) for a = 0. If M = B is a Brownian motion, this is a 
(deterministic) ordinary differential equation. For any continuous (and bound- 
ed) function b, equation (3.1) has a (non-exploding) solution. 

Our objective is to establish an occupation time formula for later ap- 
plication. To begin with, we briefly discuss the existence and uniqueness of 
solutions for only measurable but non-negative drift b. In the sequel, we always 
assume that b > 0. The case b < 0 can be handled analogously. 

PROPOSITION 3.1. Suppose that bK1 i s  locally integrable. 
(i) Then, for every x o € R ,  there exists a solution Z to equation (3.1) with 

initial value xo such that the following condition is satis$ed: 
t 

(3 -2) j INb (Z,) d ( M ) ,  = 0, t < S ,  ( Z ) ,  P-a.s. 
0 

(ii) For every solution Z of equation (3.1) such that (3.2) holds and for every 
d > xo we have 

d 

(3.3). sup Z , > d  on { J b - l ( ~ ) d ~ ~ ( ~ ) , )  P-a.s. 
OCt<S,(Z) xo 

Proof.  Similarly to equations without drift (cf. [3]-[5]), the proof is 
given by time change. Let X ~ E R  and define 

We consider the right inverse A of the continuous strictly increasing process 
T defined by A, = inf (s > 0: T, > t ) ,  t 2 0. Now we set 

where <M>-I is the right inverse of the increasing process (M). It can easily 
be verified that Z is a solution to equation (3.1) with explosion time 
S, (2) = (M)?:-  and that Z satisfies (3.2). Explosion does not occur if and 

9 - PAMS 20.2 
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only if (M), < T, for all t 2 0 P-a.s. For proving (ii), we notice that every 
solution Z of equation (3.1) with initial value xo satisfying (3.2) is P-as. given 
by (3.4). Consequently, on {j:ob-l  (s)ds 6 ( M ) , )  we get 

sup Z, = xo + A<,>, 3 xo+ ATd-ro = d P-as., 
O<t<S,(Z) 

completing the proof of the proposition. 

Re mark  3.2. (i) It can easily be seen that the local integrability of b- I  is 
also nscessarg for the existence of a non-trivial solution for arbitrary initial 
values xo E R (cf. [3]). 

(ii) The solution to equation (3.1) satisfying (3.2) is unique: As mentioned 
in the proof of Proposition 3.1, every solution Z to equation (3.1) with initial 
value xo satisfying (3.2) has the representation (3.4). 

(iii) The condition of Proposition 3.1 that bK1 is locally integrable can be 
weakened: There can be given necessary and sflicient conditions for the ex-. 
istence and also for uniqueness of solutions to equation (3.1) for arbitrary 
initial value xo E R .  

We now come to the occupation time formula. 

PROPOSITTON 3.3. Suppose that b 2 0 and let Z be a solution to equation 
(3.1) satisfying the condition (3.2). Then Z has a local time 9 ( t ,  a) with respect to  
the increasing process ( M ) ,  i.e., for every non-negative measurable function f; 

Moreover, we have 

P r o  of. By (3.2), for any non-negative measurable f, 
- 

t t t 

- j f (ZS) d ( M ) ,  = J f (23 b- (ZS) b (Zs) d (M)s  = j f (Zs) b- (ZS) dZs 
0 0 0 

and by time change in the integral (cf. 121, T IV.44) we get 

for every t < S, (Z) P-as. This proves the assertion. rn 

4. Necessary conditions for existence. Now we come back to the inves- 
tigation of equation (1.1) and derive necessary conditions for the existence of 
solutions. 
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THEOREM 4.1. Let b and D be measurable functions. Suppose that b is 
non-negative and such that b-I is locally integrable and Nh = 0. Let be given an 
(in general) exploding solution ( X ,  F )  of equation (1.1) starting.from xo E EkO), the 
interior of E,, and denote the component of E p )  containing x, by (c,  d). Then, as 
a necessary condition, we have 

(4.1) a(a )  = 0 on Exo, d A sup X,) A-a.e., P-a.s. 
t -=S,IX)  

If, additionally, ( M ) ,  = + m P-a.s., then 
.- - 

(4.2) - b .(a) = 0 on [xo, 4, 1-a.e. 

P r o  o f .  We remember the definition of E, at the beginning of-Section 2. 
Let D = D,; be the first entry time of X into EL. In view of (2.1) and Theo- 
rem 2.6 we get P-a.s. 

D 

(4.3) < X ) D  = j ( ~ 3  d <x>. = I 1% (0) Lx(D, a1 da = 0. 
0 R 

Hence the continuous local martingale part of X vanishes up to D and, con- 
sequently, 

where Z is the unique solution of equation (3.1), cf. Proposition 3.1 and Re- 
mark 3.2 (ii). We note that (3.2) holds automatically because Nb = 0. On the 
other side, using (4.3), (4.4) and the occupation time formula in Proposition 3.3, 
we compute P-a.s. 

where Z ,  = s ~ p , , ~ Z ~  on ( D  = +a). This implies 

In view o f  Zo = xo we have 

and [xo, d) G E,, which proves (4.1). Assertion (4.2) immediately follows from 
(4.1), (3.3) and (4.4). FB 
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COROLLARY 4.2. Suppose that ( M ) ,  = + cc P-a.s. and that b is as in the 
formulation of Theorem 4.1. Let X O E  Ei0), the interior of E ,  and denote the 
component of EbO) containing xo by (c ,  d ) .  if there exists a solution ( X ,  F) of 
equation (1.1) starting fiom xo, then condition (4.2) is satisfied. 

Proof.  The assertion follows from Theorem 4.1 and the inclusion 
E ,  r E,. H 

COROLLARY 4.3. Suppose that ( M ) ,  = + m P-a.s. and that b is as in the 
formulation of Theorem 4.1. Let XOEELO), the interior of E,, and'denote the 
component of.EtO) containing xo by (c,  6). If there exists a solution ( X ,  F) of 
equationr(l.1) starting from xo, then condition (4.2) is sati$ed. 

Proof.  We recall the definitions of v and E,  from the beginning of Sec- 
tion 2. The assertion now follows from the inclusion E, G E,. 

In the next corollary, Fb denotes the set E, for a = 1. In other words, 
Fb consists of all X E R  such that b is not integrable in an arbitrary neighbour- 
hood of x. 

COROLLARY 4.4. Suppose that { M ) ,  = + o~ P-a.s. and that b is as in the 
formulation of Theorem 4.1. Additionally, we assume that a is locally bounded. 
Let xo E F p ) ,  the interior ofFb, and denote the component of F p l  containing xo by 
(c, d). I f  there exists a solution ( X ,  F )  of equation (1.1) starting from xo, then 
condition (4.2) is satisfied. 

P r o  of. Since a is locally bounded, F,  c E,  and the assertion follows from 
Corollary 4.3. ia 

5. Non-existence of so1utions. For simplicity, from now on we assume that 
{ M ) ,  = + co P-as. Moreover, the drift function b is always supposed to be 
non-negative and measurable and such that b-' is locally integrable and Nb = 0. 
From Theorem 4.1 we get the following result on non-existence of solutions. 

THEOREM 5.1. Suppose that a is a measurable function, xo ER, and (c,  d )  is 
an interval such that the following conditions are satisfied: - 

-(5.1) Xo E (c, d)  E Ep, 

(5.2) A ( N f , n  [xo, d)) > 0. 

Then there does not exist a solution ( X ,  F)  of equation (1.1) starting from xo .  

Now we state 

THEOREM 5.2. Let a be a measurable function such that the following con- 
ditions are satisfied: 

(5.3) E, = R, 

(5.4) I(N",[n, +oo))>0 for all n B  1. 
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Then, for every starting point X O E R ,  there does not exist a solution ( X ,  F) of 
equation (1.1). 

P r o  of .  The conditions of Theorem 5.2 imply those of Theorem 5.1 for 
every X O E R .  r 

COROLLARY 5.3. Suppose that a is a measurable function such that (5.4) and 

(5.5) Em = R 

are suti$ed. Then, for auery xo E R, there does not exist a solution (x,' F )  of 
equation (1.-1-) stmting fra* x,. 

I 

Proof.  This follows from E, G E, and Theorem 5.2. s - 

COROLLARY 5.4. Serpposa that the condition 

(5.6) Fb = R 

is satisfled. Then, for every locally bounded measurable function a, for which 
condition (5.4) holds, and for every xo E R, there does not exist a solution ( X ,  F )  of 
equation (1.1) starting from xo. 

Proof.  We recall that Fb consists of all x E R such that b is not integrable 
in an arbitrary neighbourhood of x. If a is locally bounded, Fb E E,  E EM, and 
the assertion follows from Theorem 5.2, a 

Remark  5.5. (i) Under the assumptions of Theorem 5.1, Theorem 5.2, 
Corollary 5.3 and Corollary 5.4, respectively, there also do not exist local 
solutions. 

(ii) Condition (5.3) is equivalent to A(R\E$ = 0. Analogously, (5.4) and 
(5.5) are equivalent to A(R\E,) = 0 and R(R\Fb) = 0, respectively. 

(iii) If b is continuous and N b  = 0, then all conditions on b are satisfied. 
Consequently, if a fulfils (5.4) and (5.9, then there does not exist a solution 
(X, F )  of equation (1.1) whatever the starting point x,  and the continuous drift 
b without zeros are. This rejects the following conjecture of Rutkowski [lo] 
which was the starting point of the present paper: - 

If b is a bounded and continuous function with Nb = 0 and a is an arbitrary 
BoreE measurable function, then there exists a solution of equation ( 1  .l) for every 
xo E R. 

We now give two examples which show that, indeed, there exist functions 
a satisfying the conditions (5.4) and (5.5) and functions b such that b-I is 
locally integrable, N, = 0 ,  and Fb = R. 

EXAMPLE 5.6. Let (r,, r,, . . .) be an enumeration of the non-negative ra- 
tional numbers. We define 
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It  can easily be verified that p is locally integrable. In particular, this implies 

Now we set s (x) = p - I  (x), x E R, where + c~ = 0. In view of (5.7), we obtain 
A(N,) = 0, and hence condition (5.4). On the other side, for every E > 0 we 
compute 

a - e  a - c  
4 

. . 

where n, is chosen such that r , ~ ( l a l - ~ ,  l a l+~ ) .  This yields ~ E E , ,  and hence 
E,  = R. Thus a verifies (5.4) and (5.5). 

EXAMPLE 5.7. Let p be defined as is Example 5.6. We now set 

We then have b = p2 I-a.e., and as above we see that F,  = R. Obviously, 
b (x) > 0 for all x E R. We may assume r ,  = 0. Then 

This shows that b - l  is locally integrable. Hence b satisfies the conditions 
of Corollary 5.4 and, for every locally bounded measurable function a such that 
(5.4) holds and for every x ~ E R ,  there does not exist a solution (X, F )  of 
equation (1.1) starting from xo. 

The next result shows that the conclusion of Example 5.7 (or, more gene- 
rally, the conclusions of Theorem 5.2, Corollary 5.3 and Corollary 5.4) is not 
true if a does not satisfy (5.4). 

PROPOSI~ON 5.8. Suppose that n 2 1 and the difision coeflcient a are such 
_ that 

(5.8) I(N", [n, + co)) = 0 

-- holds. Then, for all xo 2 n, there exists a  solution (X, F) of equation.(l.l) starting 
fiorn xo. This solution is pathwise unique if xo > n. 

P r o  of. Let x, 2 ra and consider the (pathwise unique) solution Z of equa- 
tion (3.1) starting from xo. Then Z is also a solution of equation (1.1). Indeed, 
for this it is sufficient to verify that 

t 

[ ~ ( z , ) ~ M , = O ,  t<S,(Z), P-a.s. 
0 

or, equivalently, 
i 

j a2 (Zs) d (M), = 0, t < S, (Z), P-as. 
0 



Solutions of stochastic equations 357 

Using Proposition 3.3 we obtain 

on {t < S ,  ( Z ) ]  P-a.s. Let now xo > n and (X, F) be an arbitrary solution of 
equation (1.1) starting from x,. First we notice that (5.8) implies 
(n, +a) s E ,  G E,. As in the proof of Theorem 4.1, we can show that 
X,,, = Z,,,, t 2 0, P-a.s. Here Z is as above and D is the first exit time of 
X from (n, + a). Since Z is  non-decreasing, we observe that D = S, (2) = S ,  (X)  
and, conaeqGqntly,.~ = 2. But Z is pathwise unique, and the assertion fol- 
lows. 

Finally, we give the following concluding remarks: 

R e m a r k  5.9. ti) If xo E E i  , then there always exists a local solution (X, F) 
of equation (1.1) up to DE,, starting from xo. Here DEp denotes the first entry 
time of X into E,. To see this, let (c, d) be the component of ET, containing 
x, and set % and if equal to b and CJ on (c, d), respectively, and equal to zero 
otherwise. By Theorem 1.1 (which also holds for arbitrary M) there exists 
a solution (X, f l  of equation (1.1) with coeficients and d starting from x,. 
This is the desired local solution with coefficients b and s. 

(ii) If x o ~ E P 1 ,  the interior of E,, and (c, d) denotes the component 
of Elo) containing xo, then the necessary condition (4.2) or, equivalently, 
R (N', n [x, ,  d ) )  = 0 is also sdicient for the existence of a local solution (X, F )  
of equation (1.1) up to D,; starting from xo (cf. the proof of Proposition 5.8). 

(iii) The problem under which conditions there exists a local solution of 
equation (1.1) starting from xo E ~ E ,  remains open. In the special case when 
E, is a denumerable set of isolated points (hence dE,  = E,) this problem is 
completely solved in [I]. If this problem could also be solved in the general 
situation, then, pasting together the local solutions, we obtain a gIobal solution 
and, perhaps, necessary and sufficient conditions for this. However, the prob- 
Iem seems to be not quite simple if the boundary dE, of E, has accumulating 
points or even is of strictly positive Lebesgue measure. . - 
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