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Abstract. In this paper, we consider the following natural prob- 
lem: suppose pi and pa are two probability measures with fimte 
supports S(pl), S(p2), respectively, such that IS(,u1)1 = lSbz)l  and 
S(pl)uS(pZ) c 2 x 2 stochastic matrices, and p x t h e  n-th convolution 
power of pl under matrix multiplication), as well as pi, converges 
weakly to the same probability measure 1, where S(Aj c 2 x 2 stochas- 
tic matrices with rank one. Then when does it follow that p1 = p2? 
What if S b l )  = S(p,)? In other words, can two different random 
walks, in this context, have the same invariant probability measure? 
Here, we consider related problems. 

1. Introduction: Statement of the problem. Let p1 be a probability measure 
on 2 x 2 stochastic matrices such that its support S  (pl), consisting of n points, 
is given by 

S b 1 )  = (4, Az, .-., An), 

where A, = (xi, y,) denotes the stochastic matrix whose first column is (xi, y,), 
0 < xi < 1,0 < y, < 1 and xi > y, .  The matrix ( t ,  t) will be denoted simply by t. 
Then, it is well-known that the convolution iterates py, defined by 

PI+' (9) = S P ?  ( Y :  yx  ~ g }  p1 (dx), - - 

converge weakly to a probability measure A, whose support consists of 2 x 2 
stochastic matrices with identical rows. Thus, the elements in S(p1) can be 
represented by points below the diagonal in the unit square, and the elements 
in S  (A) can be represented by points on the diagonal. Considering 1 as a proba- 
bility measure on the unit interval [0 ,  11, let G be the distribution function of A. 
Then since A is uniquely determined by the convolution equation 

(1.1) A * p  = A, 

the function G is uniquely determined by the functional equation 
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where pi = p(Ai) ,  0 < p i  < 1, pl+p2+ ...+p, = 1 .  Writing g(x) = G(Lx+tl ) ,  
where ti = lirn,,, A:, L = t,- t l ,  t l  < t2 < . .. < t,, it is easily verified that 
(1 -2) becomes 

n 

(1.31 g(x)  = C ~ i g ( a i x - a i a i +  83, 
i = l  

where 0 < x < 1, l /ai  = x i  -yiy ai = (t ,  - tl)/(t ,  - tl). It is easily shown that 
g(x) > 0 for x > 0 and g(x) < 1 for x < 1. 

In this paper, we study the problem concerning when the limit 1 deter- 
r n i n e s ~ ~ i ~ u e l ~  the probability measure pl.  This problem was earlier examined 
in [2] in the case when n = 2. See also [I]; and [3], p. 159. 

Such problems come up in a natural manner in the theory of iterated 
function systems in the context of fractals/attractors. In that context, the mea- 
sure p in (1.1) happens to be the distribution that induces the random walk 
with values in a set of stochastic matrices, and the measure J1 in (1.1) is the 
distribution that uniquely determines the attractor corresponding to the ran- 
dom walk induced by y. The problem is whether two different systems can give 
rise to the same attractor. 

In terms of the functional equation (1.31, the problem can be stated as 
follows: If the function g in (1.3) also satisfies the equation 

where the quantities pf, a:, a: are corresponding to another probability mea- 
sure p, (with exactly the same meanings as before) such that p; also converges 
weakly to the same probability measure A, then when can we conclude that 
p1 = p2 or, in other words, for each i 2 1, pi = pi and ( x i ,  yi) = (xi,  ya? The 
theorem in the next section is an attempt to answer this question. 

2. Main result: A theorem. 
THEOREM 2.1. Let p, and p, be two probability measures each with an 

n-point support such that 

where Ai = ( x i ,  yi), A: = (xi, y:), xi-yi > 0, and x f  -yi > 0. Suppose that both 
p-nd p; converge weakly, as n -r ao, to the same probability measure 1. 

Let ti = yi/[l -(xi -yi)] and ti = y!J[ l -  (x: - yi)] so that 

lim AT = ( t i ,  ti) and lim A? = (ti, ti). 
n+ w n+ ao 

Suppose that the following conditions hold: 
(i) for 1 < i < n, t, = t i  < min ( t i ,  t:); 
(ii) the map x + tl  . x is one-to-one on S (p l )  U S  (p2). 
Then p1 = p2. 



Discrete probability measures 361 

[Let us remark that condition (ii) means that if (a,  6)  and (c ,  d) are two 
different points in S (p,) v S I&), then t l  (a - b) + b # t ,  (c - 4 + d. Geometrical- 
ly, this means that if we consider the points P = Itl, tl), A = (1, 0), Ai = (xi, yi) 
and A! = (xi, y:) in the unit square, then the line through Ai (respectively, A;) 
parallel to the line PA does not contain any of the points A j ,  j # d (respectively, 
A;, j # i), and Af, 1 ,< i 6 ~1 (respectively, Ai, 1 ,< i ,< n). Let us also remark 
that the theorem remains true if we replace conditions (i) and (ii) above by the 
following conditions: 

(i') for 1 d i < n, t,-= t: > max { t i ,  g } ;  
Fir) thedTap- x + t. . x is one-to-one on S (pl) u S b4.1 

P r o  of. The function g corresponding to A satisfies the equations 

Substituting one into the other, from (2.1) and (2.2) we have 

Writing h (x )  = g (x)  -pl pi g (a ,  a; x)  -pn pk g (a, a; x -an a; + I), then we have 

where the summations in both expressions above are for i = 1 to i = n, j = 1 to 
j = n such that (i, j) # (1, 1) and ( i ,  j) # (n ,  n). 

Now notice that 

and 

a.al.x-acaca+ai,-qai+ai I J J . i '  < o iff 4 LX;(I-$)+;(I  -:). 
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Since g(x) > 0 for x > 0, we have 

: (i, j) # ( I ,  I}, (i, j) # (n, n) 

Note that pl = a', .= 0, and that - 

also, 

rnin ( - I-- 3:- i + l  1 < m m  * { a (  a I -  i) +- :( 1 ;  i) : i + . ~ , ~ < j < q  

This means that 

Since g(x) < 1 for x < 1, instead of considering the "minimum" if we 
considered the "maximum" above, we would obtain similarly (after some cal- 
culations) 

max { I-- ( I--  :) : i + n  } =max { I-- I;:(l-$):j+n], 

so that 

Let us now make the following observation. The points A, ,  Ai and A> are 
the points (xi, y,), (xi, y,) and (xj, y;), respectively. 

Note that the condition 

is equivalent to the condition that the points t ,  A, and t ,  A$ are identical. 
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Similarly, the condition 

is equivalent to the condition that the points t, Ai and t, A,? are identical. 
Now suppose that we are given that the points A, and A; are the same 

and that there are no points A, E S (pl) and A> E S (pa)  such that the condition 
(2.6) holds unless they are the same. Then, of course, it follows from (2.4) that 
the points (xi,, yio) = (x;,, y,?,) for some io > 1 and jo > 1. But notice that 

(2.8) - g ( x ) =  
I 

E I S ( ~ I ~ ) ,  Q < x d a i , ( l - l / a i o ) ,  
~ ; g ( a ; x ) ,  O < ~ < o c ~ ~ ( l - l / a ; b ) ,  

and also 

where 
B1 = m i n { a i ( l - l / a i ) :  i #  1, i # i o } ,  

Since g ( x )  > 0 for x > 0 and since A, = A; and Aio = A;,, it follows from (2.8) 
and (2.9) that 

As a result, aio = a& and aio = a;,,. Now we can go back to (2.3) and subtract 
appropriate terms from both sides. Writing 

h ( x )  = h ( x )  - p p,?, g (a a,?, x - a[i, a,?, + 0 1 ; ~ )  

-p- p'. g ( a  a! x - ~ ' .  a. a. +a'. a. -a! a'. + a ! )  
10 J O  to JO JO 10 10 J O  10 J O  JO J O  

- 
= h(x )  - Pio P; g (ai, a; x - mio aio + mi,) 

- P,?~ Pi0 9 (aio a;o x - aio + a,, - olio aio + aio) 

we then have . - 

where the summation in both expressions on the right are for i = 1 to i = n, 
and j = 1 to j = n such that (i, j) # ( I ,  I ) ,  ( i ,  j) # (n, n), (i, j )  # (io, jo), 
( 4  j )  # (1 ,  j d  and ( i ,  j )  # (i0, 1). 

Again, following the same analysis as before, we now have 
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It follows from (2.12) that there exist i1 and jl such that il 4 { I ,  io), j l  & (1, jo) 
and Ail = AS,. Like in (2.9) and (2.10), we can again show that pi, = p i , .  The 
induction process continues and it follows that p1 = p,. w 

Let us now give an example to show that in Theorem 2.1 the condition 
that the map x + t l . x  is one-to-one cannot be removed. 

EXAMPLE 2.2. Consider the probability measures pl  and p2 such that 

S h 1 )  = t A l ,  A25 A315 
where, - .. 

' A1 = (3/8, 5/24), A2 = (516, 1/6), A = (19124, 518) 

with 
1 = / p1 (A,) = 2/37 PI 6 4 3 )  = 1/6? 

and 

s b 2 )  = ( A ; ,  AB 7 A ; ) ,  
where 

A; = A1 = (3/8, 5/24), A', = (14/15, 2/15), A; = (91/1207 29/40) 

with 
p2(-4'1= 1/6, /12 (4) = 4/5, p2 (-4;) = 1/30. 

It  is easily verified that 

Notice that 
t l - A ,  = t l . A ;  = (113, 113) 

so that the map x +  t l . x  is not one-to-one on S(p l )uS(p2) .  
Let A, = (w)  lim,,, pl. Then the function g1 corresponding to 1, satisfies 

the equation 

for 0 < x < 1. Similarly, i f  1, = (w) limn,, p:, then the function g ,  correspon- 
ding to A, satisfies the equation 

for 0 < x < 1. 
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Observing that g ,  and g, both satisfy 

g , (x )= l ,  g2 (x )= l  for x 2 1 ,  

and 

gl(x) = 0 = q2(x) for x < 0, 

it foIlows immediately that the function 

satisfies both-(2.13)'and (214). Thus, though pl # p,, it follows that A; = A,. 

The following result, though it seems limited, does not seem. to be trivial. 

T ~ R E M  2.3. Suppose p1 and p2 are two probability measures on 2 x 2  
stochastic matrices such that both S(pl) and S(,u2) consist of n points. Suppose 
that 

(i) (w) limn-, p! = (w) limn+ p; = A; 
(ii) p1 (Ai) = p2 (A;) = pi, 1 < i < n, where S (pi) = {Al, A 2 ,  . . ., A,} and 

S(p2)  = {A; ,  4, ..., A;). 
We assume: ti < t i+ l ,  1 < i < n - 1 .  Then, i fnG4 ,  then p, = p 2 .  

Proof.  We prove only the case where n = 4, which is not trivial. 
Let g be the function (as defined earlier) corresponding to 1 so that g satis- 

fies the equations 

where ai, af, ai, a: have the same meanings as in (1.3) and (1.4). [We are 
assuming here, for simplicity, t, < t ,  < t ,  < t4, where ti = limn,, A;, and also 
t i  < ti < t i  < t i ,  where = lim,,, AT.] 

It follows from (2.15), since ol, = a; = 0 and o14 = a: = 1, that 

and that 
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Notice that (2.16) implies that, for some 6 > 0, 

g ( a l x ) = q ( a ; x ) ,  0 6 x d 6 .  

I Thus, if a, > a;,  then 

. . 

so -that, for 0 < x < 6 ,  
I 

g (4 X )  = 0, 

which contradicts the fact that for x > 0, g ( x )  > 0. Thus, a, < a;. Similarly, 
a; < a,  and, consequently, al = a;. 

It follows from (2.17) that there exists 6 > 0 such that 

g(a4{x-1)+1)  = g(ak(x-1)+1) 

for 1 - 6 i x < 1. Writing y for x- 1 and putting h (JJ) = g (y  +'l), we obtain 

h(a ,y )=h(a iy ) ,  - S < y < 0 .  

Noting that g ( x )  < 1 for x  < 1 and g(1) = 1 so that h ( y )  < 1 for y < 0 and 
h(0) = 1, we will again get a contradiction unless a, = a;. Thus, it follows that 
Al = A; and A, = A;, since t, = t; and t ,  = t i .  

Now we infer from (2.15) that 

for O < x < l .  
It follows from (2.18) that 

(2.19) min {a2 (1 - l /az) ,  u3 (1 - l/a3)} = min id2 (1 - l /ai) ,  a; (1 - l/a$)] 

. and 

(2.20) max ( l /a2  + a2 (1 - l / a z ) ,  l /a3 + a3 (1  - l /a3))  

= rnax {lla; + a; (1 - l/ak), l/a; + a; (1 - lla;)}. 

First, we consider the following: 

Case  1: 

(2.2 1) a2 (1 - l /a2) = 01'2 (1 - l/a;).  

If 

az (1 - l / a z )  < a, (1 - l /a3)  and a; (I - l /a>) < a; (1 - l / a i ) ,  
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then it follows from (2.18) that there exists 6 > 0 such that 

It  follows from (2.22) that a,  = a', and therefore, from (2.21), a ,  = a;, and 
A2 = A;. From (2.18) it follows that A j  = A;. 

Therefore, we assume that 

(2-23) a2 (1 - 1/a2) = a; ( 1  - l/a;) = a3 (1 - l /a3)  < E\ ( 1  - l / u i ) .  

Since a, < b, we have 1/a2 < l/a,. Then from (2.20) we obtain . 
b 

l /a3  +a3 (1 - l /a3) = max ( l / a i  +a;( l -  l /a i ) ,  l/a; +a;( ]  - I/&)). 

If 

then, by (2.18), for 

we have 

or 

B (as Ex - a3 (1 - l /as)])  = g (a\ [ x - ~ ;  (1 - l/a;)3). 

It follows that there exists S > 0 such that 

h(a3y)=h(a;y ) ,  -6  < y < 0, 

where h(0) = 1 and h ( y )  < 1 for y < 0. It foI1ows that a, = a;, and therefore 
a, = a; and A, = A;.  Consequently, from (2.18), we get A, = A',. Therefore, 
we assume that 

(2.25) l /a3  + a3 (1 - l/a3) = l/a', +EL (1 - l / a i )  > l/a; +a;  (1 - l/a$). 

Then, from (2.23) and (2.15) we get 

(2.26) A; = A3,  

and from (2.18) we obtain 

(2.27) (Pz - ~ 3 1 9  (a3 CX-3 (1 - lla311) 

= Pz  9 (a2 Ex-% (1 - f/az)l) - ~3 g (a; [x  - (1 - l/a;)l).  

By (2.25), for 

11% + a3 (1 - 11~3)  > x 2 max { l /a2  + o12 (1 - lla,), i/a; + u; (1 - l/a;)j 

I0 - PAMS 20.2 
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we then have 

b 2 - ~ 3 )  g ( ~ 3  C x - ~ 3  - l /aAI)  = P2-P3 

which implies that 

P2 = P 3 .  

Consequently, from (2.27) we get 

g (.a [ x  -a2 (1 - l /az)l)  = g ( 4  [x -4 (1  - l/a;)l) 

for 0 ~x 6 ~ 1 ;  I t  follows that 
b 

(2.28) A2 = A;. 

Then from (2.26) and (2.28) we obtain 

A ; = A 3 ,  A 2 = A ; ,  

which is a contradiction since tl < t2 < t3 < t4 and t; < t i  < t i  < t i .  Thus, we 
must assume that 

(2.29) 1/u3 + u3 (1 - l /a3)  = l / a i  + a; ( 1  - I /ai)  

= l/a> +a; (1 - l / u i )  > l /az  + az (1 - l/u2), 

By  (2.18), then there exists 6 > 0 such that 

for 1-6 d x < 1. It follows that p2 < p,. 
Also, from (2.18) (see also (2.23)), for x  < u; (1- l/a;) we get 

Pz  9 (a2 lx--2 (1 - lla2II) = (Pz - ~ 3 )  9 (a', Cx - a; (1 - l/a;ll), 

so that p, > p3. Hence pz = p3. This gives in (2.30): 

g (a; [x - u; ( I  - l/a;)]) = 1 

. for x < l/a; + u; (1 - l/a3), a contradiction. Thus, we cannot asswe (2.23). 
Similarly, we cannot assume 

u2 (1 - l / a z )  = ai(1- l / a i )  = u; ( I  - l/a;) < a3 (1 - l/a3). 

Thus, we must assume, if possible, 

a2 (1 - l / a z )  = oli  (1 - l / a i )  = u3 (1 - l /a3) = a; (1 - l/a;). 

Then l /a2  < l /a3  and l/a', < l/a;. From (2.20) we get 

l /a3 +a3 (1 - l /a3) = i/uk +a; (1 - l/a;). 

It follows that A, = A;. From (2.18) we obtain A, = A',. 
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Case 2: ~ ~ ( 1 - l / a z )  = cti(1-l/a;). 
In this case, 

a$ (1 - l / a i )  < a; ( 1  - l / a i ) ,  

so that, since a; > a;, 

1 - a < 1 - a or l /a ;  > l / a i .  

This means that 

since b 

Thus, since 

max { l / a 2  + a2 (1 - l /a2) ,  l / a ,  + a3 (1 - I / & ) )  
= max {l /ak +a; (1 - l / a i ) ,  l/a\ + a; (1  - l/a',)>, 

it follows that we must have one of the following two possibilities: 
(i) l/az + a, (1 - l / a z )  = l /a ;  +a; (1 - l/a',); 

(ii) l / a3  + a3 (1 - l /a3)  = l /a ;  + a; (1 - l/a;j. 

In the first situation, since a, (1  - l /a2)  = a; (1 - l / a i ) ,  we have a, = a; and 
a,  = a;. This, of course, means that t2  = t i  and 

so that A,  = A',. Then we have 

(2.3 1) (P2 - ~ 3 )  9 (a2 Cx - a t  (1 - l /az ) l )  

= P2 9 (a; [x - a'z (1  - l /a ' , ) l ) -~3  9 (a3 [X - a3 (1 - l /a,)l) .  

This means that 

for if 

then 

so that for B < x < l /a2 + a2 (1  - l /a2)  the right-hand side of (2.31) is p, -p3,  so 
that 

9 (a2 Cx - az (1 - l /az ) l )  = 1 , 
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which contradicts that g(y) < 1 for y < 1. Thus, we can now assume that 

Note that, for lla', +a; (I - I/a;) < x < D, we have 

which means that p2 < p,.  
Now, i f  we have - 

b a2 (1 - l /az)  < a3 (1 - 1/a3) ,  

and also 

a; ( 1  - l /a$) < a; (1 - l / a i ) ,  

then for 

a2 (1 - l/az) = a; (I - l/a;) < x < min (l/a, + a3 (1  - l / a 3 ) ,  l/a; + a; ( 1  - l/a;)) 

we obtain 

Since Az = A;, we have p2 = p3. 
If az (1 - l / a z )  = a3 (1 - l/a,), then it follows from (2.32) that A, = A,, 

which is not possible. 
Also, if 

then either one of these is equal to a3( l  - l /a3),  in which case A,  = A, 
- (a contradiction), or each one is less than M ,  (1 - l/a3), so that for a, (1 - l /a2)  
< x < a3 (1 - l /a3) we have 

(PZ - ~ 3 )  g (a, Cx - a2 (1 - l /az)l)  = Pz  9 (a; Cx -4 (1 - l /a i ) l ) ,  

which means that p ,  $ p3. Thus, in this case, p2 = p,, SO that 

for x > ct; (1 - lla;), a contradiction. 
Thus, we have p, = p,, A ,  = A; and, consequently, from (2.18) we obtain 

g (as [x - a3 (1 - l/a3)1) = C l  (a; tx -a;  (1 - l/a;)l),  



Discrete probability measures 371 

which is a contradiction, since 

1/a3 + a3 (1 - l/a3) < l /ai  + aL(1- lla;) 

in this case. 
Thus, the only possibility is that (i) does not occur and (ii) occurs, that is 

Let 

max {l/a+ ay(1- l/a;), l/a> + a; (1 - l/a>)} 
b < x < M = l /a3 + u3 (1 - l/a3) = l/k', +a; (1 - l/a$). 

Then, we infer from (2.18) that there exists 6 > 0 such that 

g (a3 [x - u3 (1 - 1/a3)1) = g (4 Cx - 4 (1 - l/a;)l) 

for M - S  < x < M. Writing y = x-M and q(yf1) = hCy), we have 

Note that h(O)= 1, andify < 0, then h(y) < 1. For any y < 0 , i f a 3  > a ; ,  then 

a contradiction. Thus, a, $ a;. Similarly, a3 2 a;, so that a, = a;, a, = a;. 
Hence A, = A;. 

It follows from (2.18) that 

for 0 < x < 1. Thus, 

uz (1 - l/a2) = a> (1 - l/a>) 
and 

l/az + uz (1 - l/az) = l/a; +a', (1 - l/a;). 

I t  follows that A2 = A;. a 

We can also prove the following theorem: 

THEOREM 2.4. Suppose ,ul and p, are two probability measures on 2 x 2 
stochastic matrices such that SOL1) and SOL2) consist of n points. Suppose that 

(i) (w) limn + p; = (w) limn + p; = A; 
(ii) S(p1) = S(p2) = {Al, Az, . - - 3  An). 

We assume: ti < t i+l .  Then, if n $4,  p1 = p,. 

We omit the proof (which is simpler than that of Theorem 2.3). 
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