DISCRETE PROBABILITY MEASURES ON 2×2 STOCHASTIC MATRICES AND A FUNCTIONAL EQUATION ON $[0,1]$

A. MUKHERJEA AND J. S. RATTI (TAMPA, FL)

Abstract

In this paper, we consider the following natural problem: suppose μ_{1} and μ_{2} are two probability measures with finite supports $S\left(\mu_{1}\right), S\left(\mu_{2}\right)$, respectively, such that $\left|S\left(\mu_{1}\right)\right|=\left|S\left(\mu_{2}\right)\right|$ and $S\left(\mu_{1}\right) \cup S\left(\mu_{2}\right) \subset 2 \times 2$ stochastic matrices, and μ_{1}^{n} (the n-th convolution power of μ_{1} under matrix multiplication), as well as μ_{2}^{n}, converges weakly to the same probability measure λ, where $S(\lambda) \subset 2 \times 2$ stochastic matrices with rank one. Then when does it follow that $\mu_{1}=\mu_{2}$? What if $S\left(\mu_{1}\right)=S\left(\mu_{2}\right)$? In other words, can two different random walks, in this context, have the same invariant probability measure? Here, we consider related problems.

1. Introduction: Statement of the problem. Let μ_{1} be a probability measure on 2×2 stochastic matrices such that its support $S\left(\mu_{1}\right)$, consisting of n points, is given by

$$
S\left(\mu_{1}\right)=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}
$$

where $A_{i}=\left(x_{i}, y_{i}\right)$ denotes the stochastic matrix whose first column is $\left(x_{i}, y_{i}\right)$, $0<x_{i}<1,0<y_{i}<1$ and $x_{i}>y_{i}$. The matrix (t, t) will be denoted simply by t. Then, it is well-known that the convolution iterates μ_{1}^{n}, defined by

$$
\mu_{1}^{n+1}(\mathscr{B})=\int \mu_{1}^{n}\{y: y x \in \mathscr{B}\} \mu_{1}(d x),
$$

convererge weakly to a probability measure λ, whose support consists of 2×2 stochastic matrices with identical rows. Thus, the elements in $S\left(\mu_{1}\right)$ can be represented by points below the diagonal in the unit square, and the elements in $S(\lambda)$ can be represented by points on the diagonal. Considering λ as a probability measure on the unit interval $[0,1]$, let G be the distribution function of λ. Then since λ is uniquely determined by the convolution equation

$$
\begin{equation*}
\lambda * \mu=\lambda, \tag{1.1}
\end{equation*}
$$

the function G is uniquely determined by the functional equation

$$
\begin{equation*}
G(x)=\sum_{i=1}^{n} p_{i} G\left(\frac{x-y_{i}}{x_{i}-y_{i}}\right) \tag{1.2}
\end{equation*}
$$

where $p_{i}=\mu\left(A_{i}\right), 0<p_{i}<1, p_{1}+p_{2}+\ldots+p_{n}=1$. Writing $g(x)=G\left(L x+t_{1}\right)$, where $t_{i}=\lim _{n \rightarrow \infty} A_{i}^{n}, L \equiv t_{n}-t_{1}, t_{1}<t_{2}<\ldots<t_{n}$, it is easily verified that (1.2) becomes

$$
\begin{equation*}
g(x)=\sum_{i=1}^{n} p_{i} g\left(a_{i} x-\alpha_{i} a_{i}+\alpha_{i}\right) \tag{1.3}
\end{equation*}
$$

where $0 \leqslant x \leqslant 1,1 / a_{i} \equiv x_{i}-y_{i}, \alpha_{i} \equiv\left(t_{i}-t_{1}\right) /\left(t_{n}-t_{1}\right)$. It is easily shown that $g(x)>0$ for $x>0$ and $g(x)<1$ for $x<1$.

In this paper, we study the problem concerning when the limit λ determines üniquely the probability measure μ_{1}. This problem was earlier examined in [2] in the case when $n=2$. See also [1]; and [3], p. 159.

Such problems come up in a natural manner in the theory of iterated function systems in the context of fractals/attractors. In that context, the measure μ in (1.1) happens to be the distribution that induces the random walk with values in a set of stochastic matrices, and the measure λ in (1.1) is the distribution that uniquely determines the attractor corresponding to the random walk induced by μ. The problem is whether two different systems can give rise to the same attractor.

In terms of the functional equation (1.3), the problem can be stated as follows: If the function g in (1.3) also satisfies the equation

$$
\begin{equation*}
g(x)=\sum_{i=1}^{n} p_{i}^{\prime} g\left(a_{i}^{\prime} x-\alpha_{i}^{\prime} a_{i}^{\prime}+\alpha_{i}^{\prime}\right) \tag{1.4}
\end{equation*}
$$

where the quantities $p_{i}^{\prime}, a_{i}^{\prime}, \alpha_{i}^{\prime}$ are corresponding to another probability measure μ_{2} (with exactly the same meanings as before) such that μ_{2}^{n} also converges weakly to the same probability measure λ, then when can we conclude that $\mu_{1}=\mu_{2}$ or, in other words, for each $i \geqslant 1, p_{i}=p_{i}^{\prime}$ and $\left(x_{i}, y_{i}\right)=\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$? The theorem in the next section is an attempt to answer this question.

2. Main result: A theorem.

Theorem 2.1. Let μ_{1} and μ_{2} be two probability measures each with an n-point support such that

$$
S\left(\mu_{1}\right)=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}, \quad S\left(\mu_{2}\right)=\left\{A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{n}^{\prime}\right\}
$$

where $A_{i}=\left(x_{i}, y_{i}\right), A_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}\right), x_{i}-y_{i}>0$, and $x_{i}^{\prime}-y_{i}^{\prime}>0$. Suppose that both μ_{1}^{n} and μ_{2}^{n} converge weakly, as $n \rightarrow \infty$, to the same probability measure λ.

Let $t_{i}=y_{i} /\left[1-\left(x_{i}-y_{i}\right)\right]$ and $t_{i}^{\prime}=y_{i}^{\prime} /\left[1-\left(x_{i}^{\prime}-y_{i}^{\prime}\right)\right]$ so that

$$
\lim _{n \rightarrow \infty} A_{i}^{n}=\left(t_{i}, t_{i}\right) \quad \text { and } \quad \lim _{n \rightarrow \infty} A_{i}^{\prime n}=\left(t_{i}^{\prime}, t_{i}^{\prime}\right)
$$

Suppose that the following conditions hold:
(i) for $1<i \leqslant n, t_{1}=t_{1}^{\prime}<\min \left\{t_{i}, t_{i}^{\prime}\right\}$;
(ii) the map $x \rightarrow t_{1} \cdot x$ is one-to-one on $S\left(\mu_{1}\right) \cup S\left(\mu_{2}\right)$.

Then $\mu_{1}=\mu_{2}$.
[Let us remark that condition (ii) means that if (a, b) and (c, d) are two different points in $S\left(\mu_{1}\right) \cup S\left(\mu_{2}\right)$, then $t_{1}(a-b)+b \neq t_{1}(c-d)+d$. Geometrically, this means that if we consider the points $P=\left(t_{1}, t_{1}\right), A=(1,0), A_{i}=\left(x_{i}, y_{i}\right)$ and $A_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$ in the unit square, then the line through A_{i} (respectively, A_{i}^{\prime}) parallel to the line $P A$ does not contain any of the points $A_{j}, j \neq i$ (respectively, $A_{j}^{\prime}, j \neq i$), and $A_{i}^{\prime}, 1 \leqslant i \leqslant n$ (respectively, $A_{i}, 1 \leqslant i \leqslant n$). Let us also remark that the theorem remains true if we replace conditions (i) and (ii) above by the following conditions:
(i') for $1 \leqslant i<n, t_{n}=t_{n}^{\prime}>\max \left\{t_{i}, t_{i}^{\prime}\right\}$;
(ii') the map $x \rightarrow t_{n} \cdot x$ is one-to-one on $S\left(\mu_{1}\right) \cup S\left(\mu_{2}\right)$.]
Proof. The function g corresponding to λ satisfies the equations

$$
\begin{align*}
& g(x)=\sum_{i=1}^{n} p_{i} g\left(a_{i} x-\alpha_{i} a_{i}+\alpha_{i}\right) \tag{2.1}\\
& g(x)=\sum_{j=1}^{n} p_{j}^{\prime} g\left(a_{j}^{\prime} x-\alpha_{j}^{\prime} a_{j}^{\prime}+\alpha_{j}^{\prime}\right) \tag{2.2}
\end{align*}
$$

Substituting one into the other, from (2.1) and (2.2) we have

$$
\begin{aligned}
g(x) & =\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i} p_{j}^{\prime} g\left(a_{i} a_{j}^{\prime} x-\alpha_{i} a_{i} a_{j}^{\prime}+\alpha_{i} a_{j}^{\prime}-\alpha_{j}^{\prime} a_{j}^{\prime}+\alpha_{j}^{\prime}\right) \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} p_{j}^{\prime} p_{i} g\left(a_{i} a_{j}^{\prime} x-\alpha_{j}^{\prime} a_{j}^{\prime} a_{i}+a_{i} \alpha_{j}^{\prime}-\alpha_{i} a_{i}+\alpha_{i}\right)
\end{aligned}
$$

Writing $h(x) \equiv g(x)-p_{1} p_{1}^{\prime} g\left(a_{1} a_{1}^{\prime} x\right)-p_{n} p_{n}^{\prime} g\left(a_{n} a_{n}^{\prime} x-a_{n} a_{n}^{\prime}+1\right)$, then we have

$$
\begin{align*}
h(x) & =\sum \sum p_{i} p_{j}^{\prime} g\left(a_{i} a_{j}^{\prime} x-a_{j}^{\prime} \alpha_{i} a_{i}+a_{j}^{\prime} \alpha_{i}-\alpha_{j}^{\prime} a_{j}^{\prime}+\alpha_{j}^{\prime}\right) \tag{2.3}\\
& =\sum \sum p_{i} p_{j}^{\prime} g\left(a_{i} a_{j}^{\prime} x-\alpha_{j}^{\prime} a_{j}^{\prime} a_{i}+a_{i} \alpha_{j}^{\prime}-\alpha_{i} a_{i}+\alpha_{i}\right)
\end{align*}
$$

where the summations in both expressions above are for $i=1$ to $i=n, j=1$ to $j=n$ such that $(i, j) \neq(1,1)$ and $(i, j) \neq(n, n)$.

Now notice that

$$
a_{i} a_{j}^{\prime} x-a_{j}^{\prime} \alpha_{i} a_{i}+a_{j}^{\prime} \alpha_{i}-\alpha_{j}^{\prime} a_{j}^{\prime}+\alpha_{j}^{\prime} \leqslant 0 \quad \text { iff } \quad x \leqslant \alpha_{i}\left(1-\frac{1}{a_{i}}\right)+\frac{\alpha_{j}^{\prime}}{a_{i}}\left(1-\frac{1}{a_{j}^{\prime}}\right)
$$

and

$$
a_{i} a_{j}^{\prime} x-\alpha_{j}^{\prime} a_{j}^{\prime} a_{i}+a_{i} \alpha_{j}^{\prime}-\alpha_{i} a_{i}+\alpha_{i} \leqslant 0 \quad \text { iff } \quad x \leqslant \alpha_{j}^{\prime}\left(1-\frac{1}{a_{j}^{\prime}}\right)+\frac{\alpha_{i}}{a_{j}^{\prime}}\left(1-\frac{1}{a_{i}}\right) .
$$

Since $g(x)>0$ for $x>0$, we have

$$
\begin{aligned}
& \min \left\{\alpha_{i}\left(1-\frac{1}{a_{i}}\right)+\frac{\alpha_{j}^{\prime}}{a_{i}}\left(1-\frac{1}{a_{j}^{\prime}}\right):(i, j) \neq(1,1),(i, j) \neq(n, n)\right\} \\
&=\min \left\{\alpha_{j}^{\prime}\left(1-\frac{1}{a_{j}^{\prime}}\right)+\frac{\alpha_{i}}{a_{j}^{\prime}}\left(1-\frac{1}{a_{i}}\right):(i, j) \neq(1,1),(i, j) \neq(n, n)\right\} .
\end{aligned}
$$

Note that $\alpha_{1}=\alpha_{1}^{\prime}=0$, and that

$$
\min \left\{\frac{\alpha_{j}^{\prime}}{a_{1}}\left(1-\frac{1}{a_{j}^{\prime}}\right): j \neq 1\right\}<\min \left\{\alpha_{j}^{\prime}\left(1-\frac{1}{a_{j}^{\prime}}\right)+\frac{\alpha_{i}}{a_{j}^{\prime}}\left(1-\frac{1}{a_{i}}\right): j \neq 1,1 \leqslant i \leqslant n\right\}
$$

also,

$$
\min \left\{\frac{\alpha_{i}}{a_{1}^{\prime}}\left(1-\frac{1}{a_{i}}\right): i \neq 1\right\}<\min \left\{\alpha_{i}\left(1-\frac{1}{a_{i}}\right)+\frac{\alpha_{j}^{\prime}}{a_{i}}\left(1-\frac{1}{a_{j}^{\prime}}\right): i \neq 1,1 \leqslant j \leqslant n\right\} .
$$

This means that

$$
\begin{equation*}
\min \left\{\frac{\alpha_{i}}{a_{1}^{\prime}}\left(1-\frac{1}{a_{i}}\right): i \neq 1\right\}=\min \left\{\frac{\alpha_{j}^{\prime}}{a_{1}}\left(1-\frac{1}{a_{j}^{\prime}}\right): j \neq 1\right\} . \tag{2.4}
\end{equation*}
$$

Since $g(x)<1$ for $x<1$, instead of considering the "minimum" if we considered the "maximum" above, we would obtain similarly (after some calculations)

$$
\max \left\{1-\frac{1-\alpha_{i}}{a_{n}^{\prime}}\left(1-\frac{1}{a_{i}}\right): i \neq n\right\}=\max \left\{1-\frac{1-\alpha_{j}^{\prime}}{a_{n}}\left(1-\frac{1}{a_{j}^{\prime}}\right): j \neq n\right\}
$$

so that

$$
\begin{equation*}
\min \left\{\frac{1-\alpha_{i}}{a_{n}^{\prime}}\left(1-\frac{1}{a_{i}}\right): i \neq n\right\}=\min \left\{\frac{1-\alpha_{j}^{\prime}}{a_{n}}\left(1-\frac{1}{a_{j}^{\prime}}\right): j \neq n\right\} . \tag{2.5}
\end{equation*}
$$

Let us now make the following observation. The points A_{1}, A_{i} and A_{j}^{\prime} are the points $\left(x_{1}, y_{1}\right),\left(x_{i}, y_{i}\right)$ and ($x_{j}^{\prime}, y_{j}^{\prime}$), respectively.

Note that the condition

$$
\begin{equation*}
\alpha_{i}\left(1-1 / a_{i}\right)=\alpha_{j}^{\prime}\left(1-1 / a_{j}^{\prime}\right) \tag{2.6}
\end{equation*}
$$

is equivalent to the condition that the points $t_{1} A_{i}$ and $t_{1} A_{j}^{\prime}$ are identical.

Similarly, the condition

$$
\begin{equation*}
\left(1-\alpha_{i}\right)\left(1-1 / a_{i}\right)=\left(1-\alpha_{j}^{\prime}\right)\left(1-1 / a_{j}\right) \tag{2.7}
\end{equation*}
$$

is equivalent to the condition that the points $t_{n} A_{i}$ and $t_{n} A_{j}^{\prime}$ are identical.
Now suppose that we are given that the points A_{1} and A_{1}^{\prime} are the same and that there are no points $A_{i} \in S\left(\mu_{1}\right)$ and $A_{j}^{\prime} \in S\left(\mu_{2}\right)$ such that the condition (2.6) holds unless they are the same. Then, of course, it follows from (2.4) that the points $\left(x_{i_{0}}, y_{i_{0}}\right)=\left(x_{j_{0}}^{\prime}, y_{j_{0}}^{\prime}\right)$ for some $i_{0}>1$ and $j_{0}>1$. But notice that

$$
\cdots \quad g(x)= \begin{cases}p_{1} g\left(a_{1} x\right), & 0 \leqslant x \leqslant a_{i_{0}}\left(1-1 / a_{i_{0}}\right) \tag{2.8}\\ p_{1}^{\prime} g\left(a_{1}^{\prime} x\right), & 0 \leqslant x \leqslant \alpha_{j_{0}}^{\prime}\left(1-1 / a_{j_{0}}^{\prime}\right)\end{cases}
$$

and also

$$
g(x)= \begin{cases}p_{1} g\left(a_{1} x\right)+p_{i_{0}} g\left(a_{i_{0}}\left[x-\alpha_{i_{0}}\left(1-1 / a_{i_{0}}\right)\right]\right), & 0 \leqslant x \leqslant B_{1}, \tag{2.9}\\ p_{1}^{\prime} g\left(a_{1}^{\prime} x\right)+p_{j_{0}}^{\prime} g\left(a_{j_{0}}^{\prime}\left[x-\alpha_{j_{0}}^{\prime}\left(1-1 / a_{i_{0}}\right)\right]\right), & 0 \leqslant x \leqslant B_{1}^{\prime},\end{cases}
$$

where

$$
\begin{aligned}
& B_{1}=\min \left\{\alpha_{i}\left(1-1 / a_{i}\right): i \neq 1, i \neq i_{0}\right\} \\
& B_{1}^{\prime}=\min \left\{\alpha_{j}^{\prime}\left(1-1 / a_{j}^{\prime}\right): j \neq 1, j \neq j_{0}\right\} .
\end{aligned}
$$

Since $g(x)>0$ for $x>0$ and since $A_{1}=A_{1}^{\prime}$ and $A_{i_{0}}=A_{j_{0}}^{\prime}$, it follows from (2.8) and (2.9) that

$$
\begin{equation*}
p_{1}=p_{1}^{\prime}, \ldots \quad p_{i_{0}}=p_{j_{0}}^{\prime} \tag{2.10}
\end{equation*}
$$

As a result, $a_{i_{0}}=a_{j_{0}}^{\prime}$ and $\alpha_{i_{0}}=\alpha_{j_{0}}^{\prime}$. Now we can go back to (2.3) and subtract appropriate terms from both sides. Writing

$$
\begin{aligned}
h_{1}(x) \equiv & h(x)-p_{1} p_{j_{0}}^{\prime} g\left(a_{1} a_{j_{0}}^{\prime} x-\alpha_{j_{0}}^{\prime} a_{j 0}^{\prime}+\alpha_{j_{0}}^{\prime}\right) \\
& -p_{i_{0}} p_{j_{0}}^{\prime} g\left(a_{i 0} a_{j_{0}}^{\prime} x-a_{j_{0}}^{\prime} \alpha_{i_{0}} a_{i_{0}}+a_{j_{0}}^{\prime} \alpha_{i_{0}}-\alpha_{j_{0}}^{\prime} a_{j_{0}}^{\prime}+\alpha_{j_{0}}^{\prime}\right) \\
\equiv & h(x)-p_{i_{0}} p_{1}^{\prime} g\left(a_{i_{0}}^{\prime} a_{1} x-\alpha_{i_{0}} a_{i_{0}}+\alpha_{i_{0}}\right) \\
& -p_{j_{0}}^{\prime} p_{i_{0}} g\left(a_{i_{0}} a_{j_{0}}^{\prime} x-\alpha_{j_{0}}^{\prime} a_{j_{0}}^{\prime} a_{i_{0}}+a_{i_{0}} \alpha_{j_{0}}^{\prime}-\alpha_{i_{0}} a_{i_{0}}+\alpha_{i_{0}}\right)
\end{aligned}
$$

we then have

$$
\begin{align*}
h_{\mathbf{1}}(x) & =\sum \sum p_{i} p_{j}^{\prime} g\left(a_{i} a_{j}^{\prime} x-a_{j}^{\prime} \alpha_{i} a_{i}+a_{j}^{\prime} \alpha_{i}-\alpha_{j}^{\prime} a_{j}^{\prime}+\alpha_{j}^{\prime}\right) \tag{2.11}\\
& =\sum \sum p_{i} p_{j}^{\prime} g\left(a_{i} a_{j}^{\prime} x-\alpha_{j}^{\prime} a_{j}^{\prime} a_{i}+a_{i} \alpha_{j}^{\prime}-\alpha_{i} a_{i}+\alpha_{i}\right),
\end{align*}
$$

where the summation in both expressions on the right are for $i=1$ to $i=n$, and $j=1$ to $j=n$ such that $(i, j) \neq(1,1),(i, j) \neq(n, n),(i, j) \neq\left(i_{0}, j_{0}\right)$, $(i, j) \neq\left(1, j_{0}\right)$ and $(i, j) \neq\left(i_{0}, 1\right)$.

Again, following the same analysis as before, we now have

$$
\begin{equation*}
\min \left\{\frac{\alpha_{i}}{a_{1}^{\prime}}\left(1-\frac{1}{a_{i}}\right): i \neq 1, i \neq i_{0}\right\}=\min \left\{\frac{\alpha_{j}^{\prime}}{a_{1}}\left(1-\frac{1}{a_{j}^{\prime}}\right): j \neq 1, j \neq j_{0}\right\} . \tag{2.12}
\end{equation*}
$$

It follows from (2.12) that there exist i_{1} and j_{1} such that $i_{1} \notin\left\{1, i_{0}\right\}, j_{1} \notin\left\{1, j_{0}\right\}$ and $A_{i_{1}}=A_{j_{1}}^{\prime}$. Like in (2.9) and (2.10), we can again show that $p_{i_{1}}=p_{j_{1}}^{\prime}$. The induction process continues and it follows that $\mu_{1}=\mu_{2}$.

Let us now give an example to show that in Theorem 2.1 the condition that the map $x \rightarrow t_{1} \cdot x$ is one-to-one cannot be removed.

Example 2.2. Consider the probability measures μ_{1} and μ_{2} such that

$$
S\left(\mu_{1}\right)=\left\{A_{1}, A_{2}, A_{3}\right\},
$$

where

$$
A_{1}=(3 / 8,5 / 24), \quad A_{2}=(5 / 6,1 / 6), \quad A_{3}=(19 / 24,5 / 8)
$$

with

$$
\mu_{1}\left(A_{1}\right)=1 / 6, \quad \mu_{1}\left(A_{2}\right)=2 / 3, \quad \mu_{1}\left(A_{3}\right)=1 / 6,
$$

and

$$
S\left(\mu_{2}\right)=\left\{A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right\},
$$

where

$$
A_{1}^{\prime}=A_{1}=(3 / 8,5 / 24), \quad A_{2}^{\prime}=(14 / 15,2 / 15), \quad A_{3}^{\prime}=(91 / 120,29 / 40)
$$

with

$$
\mu_{2}\left(A_{1}^{\prime}\right)=1 / 6, \quad \mu_{2}\left(A_{2}^{\prime}\right)=4 / 5, \quad \mu_{2}\left(A_{3}^{\prime}\right)=1 / 30
$$

It is easily verified that

$$
\lim _{n \rightarrow \infty} A_{1}^{n}=t_{1} \equiv(1 / 4,1 / 4)
$$

Notice that

$$
t_{1} \cdot A_{2}=t_{1} \cdot A_{2}^{\prime}=(1 / 3,1 / 3)
$$

so that the map $x \rightarrow t_{1} \cdot x$ is not one-to-one on $S\left(\mu_{1}\right) \cup S\left(\mu_{2}\right)$.
Let $\lambda_{1}=(w) \lim _{n \rightarrow \infty} \mu_{1}^{n}$. Then the function g_{1} corresponding to λ_{1} satisfies the equation

$$
\begin{align*}
g_{1}(x) & =\sum_{i=1}^{3} p_{i} g_{1}\left(a_{i} x-\alpha_{i} a_{i}+\alpha_{i}\right) \tag{2.13}\\
& =\frac{1}{6} g_{1}(6 x)+\frac{2}{3} g_{1}\left(\frac{3}{2} x-\frac{1}{4}\right)+\frac{1}{6} g_{1}(6 x-5)
\end{align*}
$$

for $0 \leqslant x \leqslant 1$. Similarly, if $\lambda_{2}=(w) \lim _{n \rightarrow \infty} \mu_{2}^{n}$, then the function g_{2} corresponding to λ_{2} satisfies the equation

$$
\begin{align*}
g_{2}(x) & =\sum_{i=1}^{3} p_{i}^{\prime} g_{2}\left(a_{i}^{\prime} x-\alpha_{i}^{\prime} a_{i}^{\prime}+\alpha_{i}^{\prime}\right) \tag{2.14}\\
& =\frac{1}{6} g_{2}(6 x)+\frac{2}{3} g_{2}\left(\frac{5}{4} x-\frac{5}{24}\right)+\frac{1}{30} g_{1}(30 x-29)
\end{align*}
$$

for $0 \leqslant x \leqslant 1$.

Observing that g_{1} and g_{2} both satisfy

$$
g_{1}(x)=1, \quad g_{2}(x)=1 \quad \text { for } x \geqslant 1
$$

and

$$
g_{1}(x)=0=g_{2}(x) \quad \text { for } x \leqslant 0
$$

it follows immediately that the function

$$
g(x)=x, \quad 0 \leqslant x \leqslant 1,
$$

satisfies both ${ }^{-1}(2.13)$ and (2.14). Thus, though $\mu_{1} \neq \mu_{2}$, it follows that $\lambda_{1}=\lambda_{2}$.
The following result, though it seems limited, does not seem to be trivial.
Theorem 2.3. Suppose μ_{1} and μ_{2} are two probability measures on 2×2 stochastic matrices such that both $S\left(\mu_{1}\right)$ and $S\left(\mu_{2}\right)$ consist of n points. Suppose that
(i) (w) $\lim _{n \rightarrow \infty} \mu_{1}^{n}=(w) \lim _{n \rightarrow \infty} \mu_{2}^{n}=\lambda$;
(ii) $\mu_{1}\left(A_{i}\right)=\mu_{2}\left(A_{i}^{\prime}\right)=p_{i}, 1 \leqslant i \leqslant n$, where $S\left(\mu_{1}\right)=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ and $S\left(\mu_{2}\right)=\left\{A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{n}^{\prime}\right\}$.
We assume: $t_{i}<t_{i+1}, t_{i}^{\prime}<t_{i+1}^{\prime}, 1 \leqslant i \leqslant n-1$. Then, if $n \leqslant 4$, then $\mu_{1}=\mu_{2}$.
Proof. We prove only the case where $n=4$, which is not trivial.
Let g be the function (as defined earlier) corresponding to λ so that g satisfies the equations

$$
\begin{equation*}
g(x)=\sum_{i=1}^{4} p_{i} g\left(a_{i} x-\alpha_{i} a_{i}+\alpha_{i}\right)=\sum_{i=1}^{4} p_{i} g\left(a_{i}^{\prime} x-\alpha_{i}^{\prime} a_{i}^{\prime}+\alpha_{i}^{\prime}\right), \tag{2.15}
\end{equation*}
$$

where $a_{i}, a_{i}^{\prime}, \alpha_{i}, \alpha_{i}^{\prime}$ have the same meanings as in (1.3) and (1.4). [We are assuming here, for simplicity, $t_{1}<t_{2}<t_{3}<t_{4}$, where $t_{i}=\lim _{n \rightarrow \infty} A_{i}^{n}$, and also $t_{1}^{\prime}<t_{2}^{\prime}<t_{3}^{\prime}<t_{4}^{\prime}$, where $t_{i}^{\prime}=\lim _{n \rightarrow \infty} A_{i}^{\prime n}$.]

It follows from (2.15), since $\alpha_{1}=\alpha_{1}^{\prime}=0$ and $\alpha_{4}=\alpha_{4}^{\prime}=1$, that

$$
\begin{equation*}
g(x)=p_{1} g\left(a_{1} x\right)=p_{1} g\left(a_{1}^{\prime} x\right) \tag{2.16}
\end{equation*}
$$

if

$$
0 \leqslant x \leqslant \min \left\{\alpha_{i}\left(1-1 / a_{i}\right), \alpha_{i}^{\prime}\left(1-1 / a_{i}^{\prime}\right): 2 \leqslant i \leqslant 4\right\}
$$

and that

$$
\begin{align*}
g(x) & =1-p_{4}+p_{4} g\left(a_{4}\left[x-\left(1-1 / a_{4}\right)\right]\right) \tag{2.17}\\
& =1-p_{4}+p_{4} g\left(a_{4}^{\prime}\left[x-\left(1-1 / a_{4}^{\prime}\right)\right]\right)
\end{align*}
$$

if

$$
x \geqslant \max \left\{1 / a_{i}+\alpha_{i}\left(1-1 / a_{i}\right), 1 / a_{i}^{\prime}+\alpha_{i}^{\prime}\left(1-1 / a_{i}^{\prime}\right): 1 \leqslant i \leqslant 3\right\} .
$$

Notice that (2.16) implies that, for some $\delta>0$,

$$
g\left(a_{1} x\right)=g\left(a_{1}^{\prime} x\right), \quad 0 \leqslant x \leqslant \delta .
$$

Thus, if $a_{1}>a_{1}^{\prime}$, then

$$
\begin{aligned}
g\left(a_{1}^{\prime} x\right) & =g\left(a_{1} \cdot \frac{a_{1}^{\prime}}{a_{1}} x\right)=g\left(a_{1}^{\prime} \cdot \frac{a_{1}^{\prime}}{a_{1}} x\right)=g\left(a_{1} \cdot\left(\frac{a_{1}^{\prime}}{a_{1}}\right)^{2} x\right) \\
& =g\left(a_{1} \cdot\left(\frac{a_{1}^{\prime}}{a_{1}}\right)^{m} x\right) \quad \text { for } m>1,
\end{aligned}
$$

so that, for $0<x<\delta$,

$$
g\left(a_{1}^{\prime} x\right)=0
$$

which contradicts the fact that for $x>0, g(x)>0$. Thus, $a_{1} \leqslant a_{1}^{\prime}$. Similarly, $a_{1}^{\prime} \leqslant a_{1}$ and, consequently, $a_{1}=a_{1}^{\prime}$.

It follows from (2.17) that there exists $\delta>0$ such that

$$
g\left(a_{4}(x-1)+1\right)=g\left(a_{4}^{\prime}(x-1)+1\right)
$$

for $1-\delta \leqslant x \leqslant 1$. Writing y for $x-1$ and putting $\dot{h(y)}=g(y+1)$, we obtain

$$
h\left(a_{4} y\right)=h\left(a_{4}^{\prime} y\right), \quad-\delta \leqslant y \leqslant 0
$$

Noting that $g(x)<1$ for $x<1$ and $g(1)=1$ so that $h(y)<1$ for $y<0$ and $h(0)=1$, we will again get a contradiction unless $a_{4}=a_{4}^{\prime}$. Thus, it follows that $A_{1}=A_{1}^{\prime}$ and $A_{4}=A_{4}^{\prime}$, since $t_{1}=t_{1}^{\prime}$ and $t_{4}=t_{4}^{\prime}$.

Now we infer from (2.15) that

$$
\begin{align*}
& p_{2} g\left(a_{2}\left[x-\alpha_{2}\left(1-1 / a_{2}\right)\right]\right)+p_{3} g\left(a_{3}\left[x-\alpha_{3}\left(1-1 / a_{3}\right)\right]\right) \tag{2.18}\\
& \quad=p_{2} g\left(a_{2}^{\prime}\left[x-\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right]\right)+p_{3} g\left(a_{3}^{\prime}\left[x-\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right]\right)
\end{align*}
$$

for $0 \leqslant x \leqslant 1$.
It follows from (2.18) that

$$
\begin{equation*}
\min \left\{\alpha_{2}\left(1-1 / a_{2}\right), \alpha_{3}\left(1-1 / a_{3}\right)\right\}=\min \left\{\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right), \alpha_{3}^{\prime}\left(\underline{1}-1 / a_{3}^{\prime}\right)\right\} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{align*}
& \max \left\{1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right), 1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)\right\} \tag{2.20}\\
& \quad=\max \left\{1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right), 1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right\} .
\end{align*}
$$

First, we consider the following:
Case 1:

$$
\begin{equation*}
\alpha_{2}\left(1-1 / a_{2}\right)=\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right) \tag{2.21}
\end{equation*}
$$

If

$$
\alpha_{2}\left(1-1 / a_{2}\right)<\alpha_{3}\left(1-1 / a_{3}\right) \quad \text { and } \quad \alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)<\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right),
$$

then it follows from (2.18) that there exists $\delta>0$ such that

$$
\begin{equation*}
g\left(a_{2} y\right)=g\left(a_{2}^{\prime} y\right), \quad 0 \leqslant y \leqslant \delta \tag{2.22}
\end{equation*}
$$

It follows from (2.22) that $a_{2}=a_{2}^{\prime}$ and therefore, from (2.21), $\alpha_{2}=\alpha_{2}^{\prime}$, and $A_{2}=A_{2}^{\prime}$. From (2.18) it follows that $A_{3}=A_{3}^{\prime}$.

Therefore, we assume that

$$
\begin{equation*}
\alpha_{2}\left(1-1 / / a_{2}\right)=\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)=\alpha_{3}\left(1-1 / a_{3}\right)<\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right) \tag{2.23}
\end{equation*}
$$

Since $\alpha_{2}<\underline{\alpha}_{3}$, we have $1 / a_{2}<1 / a_{3}$. Then from (2.20) we obtain

$$
1 / a_{3}+\dot{\alpha}_{3}^{\prime}\left(1-1 / a_{3}\right)=\max \left\{1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right), 1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right\}
$$

If

$$
1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)=1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)>1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right),
$$

then, by (2.18), for

$$
\max \left\{1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right), 1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right\} \leqslant x<1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)
$$

we have

$$
p_{2}+p_{3} g\left(a_{3}\left[x-\alpha_{3}\left(1-1 / a_{3}\right)\right]\right)=p_{2}+p_{3} g\left(a_{3}^{\prime}\left[x-\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right]\right)
$$

or

$$
g\left(a_{3}\left[x-\alpha_{3}\left(1-1 / a_{3}\right)\right]\right)=g\left(a_{3}^{\prime}\left[x-\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right]\right)
$$

It follows that there exists $\delta>0$ such that

$$
h\left(a_{3} y\right)=h\left(a_{3}^{\prime} y\right), \quad-\delta \leqslant y \leqslant 0
$$

where $h(0)=1$ and $h(y)<1$ for $y<0$. It follows that $a_{3}=a_{3}^{\prime}$, and therefore $\alpha_{3}=\alpha_{3}^{\prime}$ and $A_{3}=A_{3}^{\prime}$. Consequently, from (2.18), we get $A_{2}=A_{2}^{\prime}$. Therefore, we assume that

$$
\begin{equation*}
1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)=1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)>1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right) . \tag{2.25}
\end{equation*}
$$

Then, from (2.23) and (2.15) we get

$$
\begin{equation*}
A_{2}^{\prime}=A_{3}, \tag{2.26}
\end{equation*}
$$

and from (2.18) we obtain

$$
\begin{align*}
& \left(p_{2}-p_{3}\right) g\left(a_{3}\left[x-\alpha_{3}\left(1-1 / a_{3}\right)\right]\right) \tag{2.27}\\
& \quad=p_{2} g\left(a_{2}\left[x-\alpha_{2}\left(1-1 / a_{2}\right)\right]\right)-p_{3} g\left(a_{3}^{\prime}\left[x-\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right]\right) .
\end{align*}
$$

By (2.25), for

$$
1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)>x \geqslant \max \left\{1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right), 1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right\}
$$

we then have

$$
\left(p_{2}-p_{3}\right) g\left(a_{3}\left[x-\alpha_{3}\left(1-1 / a_{3}\right)\right]\right)=p_{2}-p_{3}
$$

which implies that

$$
p_{2}=p_{3} .
$$

Consequently, from (2.27) we get

$$
g\left(a_{2}\left[x-\alpha_{2}\left(1-1 / a_{2}\right)\right]\right)=g\left(a_{3}^{\prime}\left[x-\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right]\right)
$$

for $0 \leqslant x \leqslant 1$: It follows that

$$
\begin{equation*}
A_{2}=A_{3}^{\prime} . \tag{2.28}
\end{equation*}
$$

Then from (2.26) and (2.28) we obtain

$$
A_{2}^{\prime}=A_{3}, \quad A_{2}=A_{3}^{\prime},
$$

which is a contradiction since $t_{1}<t_{2}<t_{3}<t_{4}$ and $t_{1}^{\prime}<t_{2}^{\prime}<t_{3}^{\prime}<t_{4}^{\prime}$. Thus, we must assume that

$$
\begin{align*}
1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right) & =1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right) \tag{2.29}\\
& =1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)>1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right) .
\end{align*}
$$

By (2.18), then there exists $\delta>0$ such that

$$
\begin{align*}
& \left(p_{2}-p_{3}\right) g\left(a_{3}\left[x-\alpha_{3}\left(1-1 / a_{3}\right)\right]\right) \tag{2.30}\\
& \quad=p_{2}-p_{3} g\left(a_{3}^{\prime}\left[x-\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right]\right) \geqslant p_{2}-p_{3}
\end{align*}
$$

for $1-\delta \leqslant x \leqslant 1$. It follows that $p_{2} \leqslant p_{3}$.
Also, from (2.18) (see also (2.23)), for $x<\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)$ we get

$$
p_{2} g\left(a_{2}\left[x-\alpha_{2}\left(1-1 / a_{2}\right)\right]\right)=\left(p_{2}-p_{3}\right) g\left(a_{2}^{\prime}\left[x-\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right]\right),
$$

so that $p_{2} \geqslant p_{3}$. Hence $p_{2}=p_{3}$. This gives in (2.30):

$$
g\left(a_{3}^{\prime}\left[x-\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right]\right)=1
$$

for $x<1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}\right)$, a contradiction. Thus, we cannot assume (2.23).
Similarly, we cannot assume

$$
\alpha_{2}\left(1-1 / a_{2}\right)=\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)=\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)<\alpha_{3}\left(1-1 / a_{3}\right) .
$$

Thus, we must assume, if possible,

$$
\alpha_{2}\left(1-1 / a_{2}\right)=\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)=\alpha_{3}\left(1-1 / a_{3}\right)=\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)
$$

Then $1 / a_{2}<1 / a_{3}$ and $1 / a_{2}^{\prime}<1 / a_{3}^{\prime}$. From (2.20) we get

$$
1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)=1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)
$$

It follows that $A_{3}=A_{3}^{\prime}$. From (2.18) we obtain $A_{2}=A_{2}^{\prime}$.

Case 2: $\alpha_{2}\left(1-1 / a_{2}\right)=\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)$.
In this case,

$$
\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right) \leqslant \alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)
$$

so that, since $\alpha_{3}^{\prime}>\alpha_{2}^{\prime}$,

$$
1-1 / a_{3}^{\prime}<1-1 / a_{2}^{\prime} \quad \text { or } \quad 1 / a_{3}^{\prime}>1 / a_{2}^{\prime}
$$

This means that

$$
1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)>1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)
$$

since

$$
\begin{aligned}
\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)-\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right) & <\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)-\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right) \\
& =\alpha_{2}^{\prime}\left(1 / a_{3}^{\prime}-1 / a_{2}^{\prime}\right)<1 / a_{3}^{\prime}-1 / a_{2}^{\prime}
\end{aligned}
$$

Thus, since

$$
\begin{aligned}
\max \left\{1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right)\right. & \left., 1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)\right\} \\
= & \max \left\{1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right), 1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right\}
\end{aligned}
$$

it follows that we must have one of the following two possibilities:
(i) $1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right)=1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)$;
(ii) $1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)=1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)$.

In the first situation, since $\alpha_{2}\left(1-1 / a_{2}\right)=\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)$, we have $a_{2}=a_{3}^{\prime}$ and $\alpha_{2}=\alpha_{3}^{\prime}$. This, of course, means that $t_{2}=t_{3}^{\prime}$ and

$$
y_{2}=t_{2}\left[1-1 / a_{2}\right]=t_{3}^{\prime}\left[1-1 / a_{3}^{\prime}\right]=y_{3}^{\prime},
$$

so that $A_{2}=A_{3}^{\prime}$. Then we have

$$
\begin{align*}
& \left(p_{2}-p_{3}\right) g\left(a_{2}\left[x-\alpha_{2}\left(1-1 / a_{2}\right)\right]\right) \tag{2.31}\\
& \quad=p_{2} g\left(a_{2}^{\prime}\left[x-\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right]\right)-p_{3} g\left(a_{3}\left[x-\alpha_{3}\left(1-1 / a_{3}\right)\right]\right)
\end{align*}
$$

This means that

$$
1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right)=1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right),
$$

for if

$$
1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)<1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right)
$$

then

$$
B \equiv \max \left\{1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right), 1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right\}<1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right)
$$

so that for $B \leqslant x<1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right)$ the right-hand side of (2.31) is $p_{2}-p_{3}$, so that

$$
g\left(a_{2}\left[x-\alpha_{2}\left(1-1 / a_{2}\right)\right]\right)=1,
$$

which contradicts that $g(y)<1$ for $y<1$. Thus, we can now assume that

$$
\begin{equation*}
D \equiv 1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right)=1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)=1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right) . \tag{2.32}
\end{equation*}
$$

Note that, for $1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right) \leqslant x<D$, we have

$$
\left(p_{2}-p_{3}\right) g\left(a_{2}\left[x-\alpha_{2}\left(1-1 / a_{2}\right)\right]\right)=p_{2}-p_{3} g\left(a_{3}\left[x-\alpha_{3}\left(1-1 / a_{3}\right)\right]\right) \geqslant p_{2}-p_{3}
$$

which means that $p_{2} \leqslant p_{3}$.
Now, if we have

$$
\alpha_{2}\left(1-1 / a_{2}\right)<\alpha_{3}\left(1-1 / a_{3}\right)
$$

and also

$$
\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)<\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)
$$

then for
$\alpha_{2}\left(1-1 / a_{2}\right)=\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)<x<\min \left\{1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right), 1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right\}$ we obtain

$$
\begin{equation*}
p_{2} g\left(a_{2}\left[x-\alpha_{2}\left(1-1 / a_{2}\right)\right]\right)=p_{3} g\left(a_{3}^{\prime}\left[x-\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right]\right) \tag{2.33}
\end{equation*}
$$

Since $A_{2}=A_{3}^{\prime}$, we have $p_{2}=p_{3}$.
If $\alpha_{2}\left(1-1 / a_{2}\right)=\alpha_{3}\left(1-1 / a_{3}\right)$, then it follows from (2.32) that $A_{2}=A_{3}$, which is not possible.

Also, if

$$
\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)=\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\left(=\alpha_{2}\left(1-1 / a_{2}\right)\right)
$$

then either one of these is equal to $\alpha_{3}\left(1-1 / a_{3}\right)$, in which case $A_{2}=A_{3}$ (a contradiction), or each one is less than $\alpha_{3}\left(1-1 / a_{3}\right)$, so that for $\alpha_{2}\left(1-1 / a_{2}\right)$ $<x<\alpha_{3}\left(1-1 / a_{3}\right)$ we have

$$
\left(p_{2}-p_{3}\right) g\left(a_{2}\left[x-\alpha_{2}\left(1-1 / a_{2}\right)\right]\right)=p_{2} g\left(a_{2}^{\prime}\left[x-\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right]\right)
$$

which means that $p_{2} \geqslant p_{3}$. Thus, in this case, $p_{2}=p_{3}$, so that

$$
g\left(a_{2}^{\prime}\left[x-\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right]\right)=0
$$

for $x>\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)$, a contradiction.
Thus, we have $p_{2}=p_{3}, A_{2}=A_{3}^{\prime}$ and, consequently, from (2.18) we obtain

$$
g\left(a_{3}\left[x-\alpha_{3}\left(1-1 / a_{3}\right)\right]\right)=g\left(a_{2}^{\prime}\left[x-\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right]\right)
$$

which is a contradiction, since

$$
1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)<1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)
$$

in this case.
Thus, the only possibility is that (i) does not occur and (ii) occurs, that is

$$
1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right)<1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)=1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right) .
$$

Let

$$
\begin{aligned}
& \max \left\{1 / a_{2}+\alpha_{2}^{\prime}\left(1-1 / a_{2}\right), 1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right\} \\
& \quad \leqslant x<M \equiv 1 / a_{3}+\alpha_{3}\left(1-1 / a_{3}\right)=1 / a_{3}^{\prime}+\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)
\end{aligned}
$$

Then, we infer from (2.18) that there exists $\delta>0$ such that

$$
g\left(a_{3}\left[x-\alpha_{3}\left(1-1 / a_{3}\right)\right]\right)=g\left(a_{3}^{\prime}\left[x-\alpha_{3}^{\prime}\left(1-1 / a_{3}^{\prime}\right)\right]\right)
$$

for $M-\delta \leqslant x \leqslant M$. Writing $y \equiv x-M$ and $g(y+1) \equiv h(y)$, we have

$$
h\left(a_{3} y\right)=h\left(a_{3}^{\prime} y\right), \quad-\delta \leqslant y \leqslant 0 .
$$

Note that $h(0)=1$, and if $y<0$, then $h(y)<1$. For any $y<0$, if $a_{3}>a_{3}^{\prime}$, then

$$
h\left(a_{3} y\right)=h\left(a_{3} \cdot \frac{a_{3}^{\prime}}{a_{3}} y\right)=h\left(a_{3} \cdot \frac{\left(a_{3}^{\prime}\right)^{2}}{a_{3}^{2}} y\right)=h\left(a_{3}\left(\frac{a_{3}^{\prime}}{a_{3}}\right)^{n} y\right) \rightarrow 1,
$$

a contradiction. Thus, $a_{3} \leqslant a_{3}^{\prime}$. Similarly, $a_{3} \geqslant a_{3}^{\prime}$, so that $a_{3}=a_{3}^{\prime}, \alpha_{3}=\alpha_{3}^{\prime}$. Hence $A_{3}=A_{3}^{\prime}$.

It follows from (2.18) that

$$
g\left(a_{2}\left[x-\alpha_{2}\left(1-1 / a_{2}\right)\right]\right)=g\left(a_{2}^{\prime}\left[x-\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)\right]\right)
$$

for $0 \leqslant x \leqslant 1$. Thus,

$$
\alpha_{2}\left(1-1 / a_{2}\right)=\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right)
$$

and

$$
1 / a_{2}+\alpha_{2}\left(1-1 / a_{2}\right)=1 / a_{2}^{\prime}+\alpha_{2}^{\prime}\left(1-1 / a_{2}^{\prime}\right) .
$$

It follows that $A_{2}=A_{2}^{\prime}$.
We can also prove the following theorem:
Theorem 2.4. Suppose μ_{1} and μ_{2} are two probability measures on 2×2 stochastic matrices such that $S\left(\mu_{1}\right)$ and $S\left(\mu_{2}\right)$ consist of n points. Suppose that
(i) (w) $\lim _{n \rightarrow \infty} \mu_{1}^{n}=(w) \lim _{n \rightarrow \infty} \mu_{2}^{n}=\lambda$;
(ii) $S\left(\mu_{1}\right)=S\left(\mu_{2}\right)=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.

We assume: $t_{i}<t_{i+1}$. Then, if $n \leqslant 4, \mu_{1}=\mu_{2}$.
We omit the proof (which is simpler than that of Theorem 2.3).

REFERENCES

[1] S. Dhar, A. Mukherjea and J. S. Ratti, A non-linear functional equation arising from convolution iterates of a probability measure on 2×2 stochastic matrices, J. Nonlinear Analysis 36 (2) (1999), pp. 151-176.
[2] A. Mukherjea, Limit theorems: stochastic matrices, ergodic Markov chains, and measures on semigroups, in: Probabilistic Analysis and Related Topics, Vol. 2, Academic Press, 1979, pp. 143-203.
[3] M. Rosenblatt, Markov Processes: Structure and Asymptotic Behavior, Springer, 1971.

Department of Mathematics
University of South Florida
Tampa, FL 33620-5700, U.S.A.

