PROBABILITY AND MATHEMATICAL STATISTICS Vol. 20, Fasc. 2 (2000), pp. 359–372

DISCRETE PROBABILITY MEASURES ON 2×2 STOCHASTIC MATRICES AND A FUNCTIONAL EQUATION ON [0, 1]

BY

A. MUKHERJEA AND J. S. RATTI (TAMPA, FL)

Abstract. In this paper, we consider the following natural problem: suppose μ_1 and μ_2 are two probability measures with finite supports $S(\mu_1)$, $S(\mu_2)$, respectively, such that $|S(\mu_1)| = |S(\mu_2)|$ and $S(\mu_1) \cup S(\mu_2) \subset 2 \times 2$ stochastic matrices, and μ_1^n (the *n*-th convolution power of μ_1 under matrix multiplication), as well as μ_2^n , converges weakly to the same probability measure λ , where $S(\lambda) \subset 2 \times 2$ stochastic matrices with rank one. Then when does it follow that $\mu_1 = \mu_2$? What if $S(\mu_1) = S(\mu_2)$? In other words, can two different random walks, in this context, have the same invariant probability measure? Here, we consider related problems.

1. Introduction: Statement of the problem. Let μ_1 be a probability measure on 2×2 stochastic matrices such that its support $S(\mu_1)$, consisting of *n* points, is given by

$$S(\mu_1) = \{A_1, A_2, ..., A_n\},\$$

where $A_i = (x_i, y_i)$ denotes the stochastic matrix whose first column is (x_i, y_i) , $0 < x_i < 1, 0 < y_i < 1$ and $x_i > y_i$. The matrix (t, t) will be denoted simply by t. Then, it is well-known that the convolution iterates μ_i^n , defined by

$$\mu_1^{n+1}(\mathscr{B}) = \int \mu_1^n \{ y: yx \in \mathscr{B} \} \mu_1(dx),$$

converge weakly to a probability measure λ , whose support consists of 2×2 stochastic matrices with identical rows. Thus, the elements in $S(\mu_1)$ can be represented by points below the diagonal in the unit square, and the elements in $S(\lambda)$ can be represented by points on the diagonal. Considering λ as a probability measure on the unit interval [0, 1], let G be the distribution function of λ . Then since λ is uniquely determined by the convolution equation

(1.1)
$$\lambda * \mu = \lambda,$$

the function G is uniquely determined by the functional equation

(1.2)
$$G(x) = \sum_{i=1}^{n} p_i G\left(\frac{x - y_i}{x_i - y_i}\right),$$

where $p_i = \mu(A_i)$, $0 < p_i < 1$, $p_1 + p_2 + \ldots + p_n = 1$. Writing $g(x) = G(Lx + t_1)$, where $t_i = \lim_{n \to \infty} A_i^n$, $L \equiv t_n - t_1$, $t_1 < t_2 < \ldots < t_n$, it is easily verified that (1.2) becomes

(1.3)
$$g(x) = \sum_{i=1}^{n} p_i g(a_i x - \alpha_i a_i + \alpha_i),$$

where $0 \le x \le 1$, $1/a_i \equiv x_i - y_i$, $\alpha_i \equiv (t_i - t_1)/(t_n - t_1)$. It is easily shown that g(x) > 0 for x > 0 and g(x) < 1 for x < 1.

In this paper, we study the problem concerning when the limit λ determines uniquely the probability measure μ_1 . This problem was earlier examined in [2] in the case when n = 2. See also [1]; and [3], p. 159.

Such problems come up in a natural manner in the theory of iterated function systems in the context of fractals/attractors. In that context, the measure μ in (1.1) happens to be the distribution that induces the random walk with values in a set of stochastic matrices, and the measure λ in (1.1) is the distribution that uniquely determines the attractor corresponding to the random walk induced by μ . The problem is whether two different systems can give rise to the same attractor.

In terms of the functional equation (1.3), the problem can be stated as follows: If the function g in (1.3) also satisfies the equation

(1.4)
$$g(x) = \sum_{i=1}^{n} p'_{i} g(a'_{i} x - a'_{i} a'_{i} + a'_{i}),$$

where the quantities p'_i , a'_i , α'_i are corresponding to another probability measure μ_2 (with exactly the same meanings as before) such that μ_2^n also converges weakly to the same probability measure λ , then when can we conclude that $\mu_1 = \mu_2$ or, in other words, for each $i \ge 1$, $p_i = p'_i$ and $(x_i, y_i) = (x'_i, y'_i)$? The theorem in the next section is an attempt to answer this question.

2. Main result: A theorem.

THEOREM 2.1. Let μ_1 and μ_2 be two probability measures each with an *n*-point support such that

$$S(\mu_1) = \{A_1, A_2, ..., A_n\}, \quad S(\mu_2) = \{A'_1, A'_2, ..., A'_n\},\$$

where $A_i = (x_i, y_i)$, $A'_i = (x'_i, y'_i)$, $x_i - y_i > 0$, and $x'_i - y'_i > 0$. Suppose that both μ_1^n and μ_2^n converge weakly, as $n \to \infty$, to the same probability measure λ . Let $t_i = y_i/[1 - (x_i - y_i)]$ and $t'_i = y'_i/[1 - (x'_i - y'_i)]$ so that

$$\lim_{n\to\infty}A_i^n=(t_i,\,t_i)\quad and\quad \lim_{n\to\infty}A_i'^n=(t_i',\,t_i').$$

Suppose that the following conditions hold:

(i) for $1 < i \le n$, $t_1 = t'_1 < \min\{t_i, t'_i\}$;

(ii) the map $x \to t_1 \cdot x$ is one-to-one on $S(\mu_1) \cup S(\mu_2)$.

Then $\mu_1 = \mu_2$.

[Let us remark that condition (ii) means that if (a, b) and (c, d) are two different points in $S(\mu_1) \cup S(\mu_2)$, then $t_1(a-b)+b \neq t_1(c-d)+d$. Geometrically, this means that if we consider the points $P = (t_1, t_1)$, A = (1, 0), $A_i = (x_i, y_i)$ and $A'_i = (x'_i, y'_i)$ in the unit square, then the line through A_i (respectively, A'_i) parallel to the line PA does not contain any of the points A_j , $j \neq i$ (respectively, A'_j , $j \neq i$), and A'_i , $1 \leq i \leq n$ (respectively, A_i , $1 \leq i \leq n$). Let us also remark that the theorem remains true if we replace conditions (i) and (ii) above by the following conditions:

(i') for $1 \le i < n$, $t_n = t'_n > \max\{t_i, t'_i\};$

(ii') the map $x \to t_n \cdot x$ is one-to-one on $S(\mu_1) \cup S(\mu_2)$.]

Proof. The function g corresponding to λ satisfies the equations

(2.1)
$$g(x) = \sum_{i=1}^{n} p_i g(a_i x - \alpha_i a_i + \alpha_i),$$

(2.2)
$$g(x) = \sum_{j=1}^{n} p'_{j} g(a'_{j} x - \alpha'_{j} a'_{j} + \alpha'_{j}).$$

Substituting one into the other, from (2.1) and (2.2) we have

$$g(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_i p'_j g(a_i a'_j x - \alpha_i a_i a'_j + \alpha_i a'_j - \alpha'_j a'_j + \alpha'_j)$$

=
$$\sum_{j=1}^{n} \sum_{i=1}^{n} p'_j p_i g(a_i a'_j x - \alpha'_j a'_j a_i + a_i \alpha'_j - \alpha_i a_i + \alpha_i).$$

Writing $h(x) \equiv g(x) - p_1 p'_1 g(a_1 a'_1 x) - p_n p'_n g(a_n a'_n x - a_n a'_n + 1)$, then we have

(2.3)
$$h(x) = \sum \sum p_i p'_j g(a_i a'_j x - a'_j \alpha_i a_i + a'_j \alpha_i - \alpha'_j a'_j + \alpha'_j)$$
$$= \sum \sum p_i p'_j g(a_i a'_j x - \alpha'_j a'_j a_i + a_i \alpha'_j - \alpha_i a_i + \alpha_i),$$

where the summations in both expressions above are for i = 1 to i = n, j = 1 to j = n such that $(i, j) \neq (1, 1)$ and $(i, j) \neq (n, n)$.

Now notice that

$$a_i a'_j x - a'_j \alpha_i a_i + a'_j \alpha_i - \alpha'_j a'_j + \alpha'_j \leq 0 \quad \text{iff} \quad x \leq \alpha_i \left(1 - \frac{1}{a_i}\right) + \frac{\alpha'_j}{a_i} \left(1 - \frac{1}{a'_j}\right)$$

and

$$a_i a_j' x - \alpha_j' a_j' a_i + a_i \alpha_j' - \alpha_i a_i + \alpha_i \leq 0 \quad \text{iff} \quad x \leq \alpha_j' \left(1 - \frac{1}{a_j'} \right) + \frac{\alpha_i}{a_j'} \left(1 - \frac{1}{a_i} \right).$$

Since g(x) > 0 for x > 0, we have

$$\min\left\{\alpha_{i}\left(1-\frac{1}{a_{i}}\right)+\frac{\alpha_{j}'}{a_{i}}\left(1-\frac{1}{a_{j}'}\right):\ (i,j)\neq(1,\ 1),\ (i,j)\neq(n,\ n)\right\}$$
$$=\min\left\{\alpha_{j}'\left(1-\frac{1}{a_{j}'}\right)+\frac{\alpha_{i}}{a_{j}'}\left(1-\frac{1}{a_{i}}\right):\ (i,j)\neq(1,\ 1),\ (i,j)\neq(n,\ n)\right\}.$$

Note that $\alpha_1 = \alpha'_1 = 0$, and that

$$\min\left\{\frac{\alpha'_j}{a_1}\left(1-\frac{1}{a'_j}\right): j \neq 1\right\} < \min\left\{\alpha'_j\left(1-\frac{1}{a'_j}\right)+\frac{\alpha_i}{a'_j}\left(1-\frac{1}{a_i}\right): j \neq 1, 1 \le i \le n\right\};$$

also,

$$\min\left\{\frac{\alpha_i}{a_1'}\left(1-\frac{1}{a_i}\right): i \neq 1\right\} < \min\left\{\alpha_i\left(1-\frac{1}{a_i}\right)+\frac{\alpha_j'}{a_i'}\left(1-\frac{1}{a_j'}\right): i \neq 1, 1 \le j \le n\right\}.$$

This means that

(2.4)
$$\min\left\{\frac{\alpha_i}{a_1'}\left(1-\frac{1}{a_i}\right): i \neq 1\right\} = \min\left\{\frac{\alpha_j'}{a_1}\left(1-\frac{1}{a_j'}\right): j \neq 1\right\}.$$

Since g(x) < 1 for x < 1, instead of considering the "minimum" if we considered the "maximum" above, we would obtain similarly (after some calculations)

$$\max\left\{1-\frac{1-\alpha_i}{a'_n}\left(1-\frac{1}{a_i}\right): i \neq n\right\} = \max\left\{1-\frac{1-\alpha'_j}{a_n}\left(1-\frac{1}{a'_j}\right): j \neq n\right\},$$

so that

(2.5)
$$\min\left\{\frac{1-\alpha_i}{a'_n}\left(1-\frac{1}{a_i}\right): i \neq n\right\} = \min\left\{\frac{1-\alpha'_j}{a_n}\left(1-\frac{1}{a'_j}\right): j \neq n\right\}.$$

Let us now make the following observation. The points A_1 , A_i and A'_j are the points (x_1, y_1) , (x_i, y_i) and (x'_j, y'_j) , respectively.

Note that the condition

(2.6)
$$\alpha_i (1 - 1/a_i) = \alpha'_j (1 - 1/a'_j)$$

is equivalent to the condition that the points $t_1 A_i$ and $t_1 A'_j$ are identical.

Similarly, the condition

(2.7)
$$(1-\alpha_i)(1-1/a_i) = (1-\alpha'_j)(1-1/a_j)$$

is equivalent to the condition that the points $t_n A_i$ and $t_n A'_j$ are identical.

Now suppose that we are given that the points A_1 and A'_1 are the same and that there are no points $A_i \in S(\mu_1)$ and $A'_j \in S(\mu_2)$ such that the condition (2.6) holds unless they are the same. Then, of course, it follows from (2.4) that the points $(x_{i_0}, y_{i_0}) = (x'_{j_0}, y'_{j_0})$ for some $i_0 > 1$ and $j_0 > 1$. But notice that

(2.8)
$$\qquad \qquad -, \quad g(x) = \begin{cases} p_1 g(a_1 x), & 0 \leq x \leq a_{i_0}(1 - 1/a_{i_0}), \\ p'_1 g(a'_1 x), & 0 \leq x \leq \alpha'_{j_0}(1 - 1/a'_{j_0}), \end{cases}$$

and also

$$(2.9) g(x) = \begin{cases} p_1 g(a_1 x) + p_{i_0} g(a_{i_0} [x - \alpha_{i_0} (1 - 1/a_{i_0})]), & 0 \le x \le B_1, \\ p'_1 g(a'_1 x) + p'_{j_0} g(a'_{j_0} [x - \alpha'_{j_0} (1 - 1/a_{i_0})]), & 0 \le x \le B'_1, \end{cases}$$

where

$$B_1 = \min \{ \alpha_i (1 - 1/a_i) : i \neq 1, i \neq i_0 \},\$$

$$B'_1 = \min \{ \alpha'_j (1 - 1/a'_j) : j \neq 1, j \neq j_0 \}.$$

Since g(x) > 0 for x > 0 and since $A_1 = A'_1$ and $A_{i_0} = A'_{j_0}$, it follows from (2.8) and (2.9) that

$$(2.10) p_1 = p'_1, p_{i_0} = p'_{j_0}$$

As a result, $a_{i_0} = a'_{j_0}$ and $\alpha_{i_0} = \alpha'_{j_0}$. Now we can go back to (2.3) and subtract appropriate terms from both sides. Writing

$$h_{1}(x) \equiv h(x) - p_{1} p'_{j_{0}} g(a_{1} a'_{j_{0}} x - \alpha'_{j_{0}} a'_{j_{0}} + \alpha'_{j_{0}})$$

$$- p_{i_{0}} p'_{j_{0}} g(a_{i_{0}} a'_{j_{0}} x - a'_{j_{0}} \alpha_{i_{0}} a_{i_{0}} + a'_{j_{0}} \alpha_{i_{0}} - \alpha'_{j_{0}} a'_{j_{0}} + \alpha'_{j_{0}})$$

$$\equiv h(x) - p_{i_{0}} p'_{1} g(a_{i_{0}} a'_{1} x - \alpha_{i_{0}} a_{i_{0}} + \alpha_{i_{0}})$$

$$- p'_{j_{0}} p_{i_{0}} g(a_{i_{0}} a'_{j_{0}} x - \alpha'_{j_{0}} a'_{j_{0}} a_{i_{0}} + a_{i_{0}} \alpha'_{j_{0}} - \alpha_{i_{0}} a_{i_{0}} + \alpha_{i_{0}})$$

we then have

$$(2.11) h_1(x) = \sum \sum p_i p'_j g (a_i a'_j x - a'_j \alpha_i a_i + a'_j \alpha_i - \alpha'_j a'_j + \alpha'_j) = \sum \sum p_i p'_j g (a_i a'_j x - \alpha'_j a'_j a_i + a_i \alpha'_j - \alpha_i a_i + \alpha_i),$$

where the summation in both expressions on the right are for i = 1 to i = n, and j = 1 to j = n such that $(i, j) \neq (1, 1)$, $(i, j) \neq (n, n)$, $(i, j) \neq (i_0, j_0)$, $(i, j) \neq (1, j_0)$ and $(i, j) \neq (i_0, 1)$.

Again, following the same analysis as before, we now have

(2.12)
$$\min\left\{\frac{\alpha_i}{a'_1}\left(1-\frac{1}{a_i}\right): i \neq 1, i \neq i_0\right\} = \min\left\{\frac{\alpha'_j}{a_1}\left(1-\frac{1}{a'_j}\right): j \neq 1, j \neq j_0\right\}.$$

It follows from (2.12) that there exist i_1 and j_1 such that $i_1 \notin \{1, i_0\}, j_1 \notin \{1, j_0\}$ and $A_{i_1} = A'_{j_1}$. Like in (2.9) and (2.10), we can again show that $p_{i_1} = p'_{j_1}$. The induction process continues and it follows that $\mu_1 = \mu_2$.

Let us now give an example to show that in Theorem 2.1 the condition that the map $x \rightarrow t_1 \cdot x$ is one-to-one cannot be removed.

EXAMPLE 2.2. Consider the probability measures μ_1 and μ_2 such that

$$S(\mu_1) = \{A_1, A_2, A_3\},\$$

where_

• $A_1 = (3/8, 5/24), \quad A_2 = (5/6, 1/6), \quad A_3 = (19/24, 5/8)$

with

$$\mu_1(A_1) = 1/6, \quad \mu_1(A_2) = 2/3, \quad \mu_1(A_3) = 1/6,$$

and

$$S(\mu_2) = \{A'_1, A'_2, A'_3\},\$$

where

 $A'_1 = A_1 = (3/8, 5/24), \quad A'_2 = (14/15, 2/15), \quad A'_3 = (91/120, 29/40)$ with

$$\mu_2(A'_1) = 1/6, \quad \mu_2(A'_2) = 4/5, \quad \mu_2(A'_3) = 1/30.$$

It is easily verified that

$$\lim_{n \to \infty} A_1^n = t_1 \equiv (1/4, 1/4).$$

Notice that

$$t_1 \cdot A_2 = t_1 \cdot A_2' = (1/3, 1/3)$$

so that the map $x \to t_1 \cdot x$ is not one-to-one on $S(\mu_1) \cup S(\mu_2)$.

Let $\lambda_1 = (w) \lim_{n \to \infty} \mu_1^n$. Then the function g_1 corresponding to λ_1 satisfies the equation

(2.13)
$$g_1(x) = \sum_{i=1}^{3} p_i g_1(a_i x - \alpha_i a_i + \alpha_i)$$
$$= \frac{1}{6} g_1(6x) + \frac{2}{3} g_1(\frac{3}{2}x - \frac{1}{4}) + \frac{1}{6} g_1(6x - 5)$$

for $0 \le x \le 1$. Similarly, if $\lambda_2 = (w) \lim_{n \to \infty} \mu_2^n$, then the function g_2 corresponding to λ_2 satisfies the equation

(2.14)
$$g_{2}(x) = \sum_{i=1}^{3} p'_{i}g_{2}(a'_{i}x - \alpha'_{i}a'_{i} + \alpha'_{i})$$
$$= \frac{1}{6}g_{2}(6x) + \frac{2}{3}g_{2}(\frac{5}{4}x - \frac{5}{24}) + \frac{1}{30}g_{1}(30x - 29)$$

for $0 \leq x \leq 1$.

Discrete probability measures

Observing that g_1 and g_2 both satisfy

$$g_1(x) = 1, \quad g_2(x) = 1 \quad \text{for } x \ge 1,$$

and

$$g_1(x) = 0 = g_2(x)$$
 for $x \le 0$,

it follows immediately that the function

$$g(x) = x, \quad 0 \le x \le 1,$$

satisfies both (2.13) and (2.14). Thus, though $\mu_1 \neq \mu_2$, it follows that $\lambda_1 = \lambda_2$.

The following result, though it seems limited, does not seem to be trivial.

THEOREM 2.3. Suppose μ_1 and μ_2 are two probability measures on 2×2 stochastic matrices such that both $S(\mu_1)$ and $S(\mu_2)$ consist of n points. Suppose that

(i) (w) $\lim_{n\to\infty} \mu_1^n = (w) \lim_{n\to\infty} \mu_2^n = \lambda;$

(ii) $\mu_1(A_i) = \mu_2(A'_i) = p_i, \ 1 \le i \le n$, where $S(\mu_1) = \{A_1, A_2, \dots, A_n\}$ and $S(\mu_2) = \{A'_1, A'_2, \dots, A'_n\}$.

We assume: $t_i < t_{i+1}$, $t'_i < t'_{i+1}$, $1 \le i \le n-1$. Then, if $n \le 4$, then $\mu_1 = \mu_2$.

Proof. We prove only the case where n = 4, which is not trivial.

Let g be the function (as defined earlier) corresponding to λ so that g satisfies the equations

(2.15)
$$g(x) = \sum_{i=1}^{4} p_i g(a_i x - \alpha_i a_i + \alpha_i) = \sum_{i=1}^{4} p_i g(a'_i x - \alpha'_i a'_i + \alpha'_i),$$

where a_i , a'_i , α_i , α'_i have the same meanings as in (1.3) and (1.4). [We are assuming here, for simplicity, $t_1 < t_2 < t_3 < t_4$, where $t_i = \lim_{n \to \infty} A^n_i$, and also $t'_1 < t'_2 < t'_3 < t'_4$, where $t'_i = \lim_{n \to \infty} A^n_i$.]

It follows from (2.15), since $\alpha_1 = \alpha'_1 = 0$ and $\alpha_4 = \alpha'_4 = 1$, that

(2.16)
$$g(x) = p_1 g(a_1 x) = p_1 g(a'_1 x)$$

if

$$0 \leq x \leq \min \{ \alpha_i (1 - 1/a_i), \alpha_i' (1 - 1/a_i'): 2 \leq i \leq 4 \},\$$

and that

(2.17)
$$g(x) = 1 - p_4 + p_4 g \left(a_4 \left[x - (1 - 1/a_4) \right] \right) \\ = 1 - p_4 + p_4 g \left(a'_4 \left[x - (1 - 1/a'_4) \right] \right)$$

if

$$x \ge \max\{1/a_i + \alpha_i(1 - 1/a_i), 1/a'_i + \alpha'_i(1 - 1/a'_i): 1 \le i \le 3\}.$$

Notice that (2.16) implies that, for some $\delta > 0$,

$$g(a_1 x) = g(a'_1 x), \quad 0 \le x \le \delta.$$

Thus, if $a_1 > a'_1$, then

$$g(a'_1 x) = g\left(a_1 \cdot \frac{a'_1}{a_1} x\right) = g\left(a'_1 \cdot \frac{a'_1}{a_1} x\right) = g\left(a_1 \cdot \left(\frac{a'_1}{a_1}\right)^2 x\right)$$
$$= g\left(a_1 \cdot \left(\frac{a'_1}{a_1}\right)^m x\right) \quad \text{for } m > 1,$$

so that, for $0 < x < \delta$,

 $g(a_1'x)=0,$

which contradicts the fact that for x > 0, g(x) > 0. Thus, $a_1 \le a'_1$. Similarly, $a'_1 \le a_1$ and, consequently, $a_1 = a'_1$.

It follows from (2.17) that there exists $\delta > 0$ such that

$$g(a_4(x-1)+1) = g(a'_4(x-1)+1)$$

for $1-\delta \le x \le 1$. Writing y for x-1 and putting h(y) = g(y+1), we obtain

 $h(a_4 y) = h(a'_4 y), \quad -\delta \leq y \leq 0.$

Noting that g(x) < 1 for x < 1 and g(1) = 1 so that h(y) < 1 for y < 0 and h(0) = 1, we will again get a contradiction unless $a_4 = a'_4$. Thus, it follows that $A_1 = A'_1$ and $A_4 = A'_4$, since $t_1 = t'_1$ and $t_4 = t'_4$.

Now we infer from (2.15) that

$$(2.18) \quad p_2 g \left(a_2 \left[x - \alpha_2 \left(1 - 1/a_2 \right) \right] \right) + p_3 g \left(a_3 \left[x - \alpha_3 \left(1 - 1/a_3 \right) \right] \right) \\ = p_2 g \left(a'_2 \left[x - \alpha'_2 \left(1 - 1/a'_2 \right) \right] \right) + p_3 g \left(a'_3 \left[x - \alpha'_3 \left(1 - 1/a'_3 \right) \right] \right)$$

for $0 \leq x \leq 1$.

It follows from (2.18) that

$$(2.19) \quad \min\left\{\alpha_2\left(1-1/a_2\right), \, \alpha_3\left(1-1/a_3\right)\right\} = \min\left\{\alpha_2'\left(1-1/a_2'\right), \, \alpha_3'\left(1-1/a_3'\right)\right\}$$

and

(2.20)
$$\max \{ 1/a_2 + \alpha_2 (1 - 1/a_2), 1/a_3 + \alpha_3 (1 - 1/a_3) \} = \max \{ 1/a'_2 + \alpha'_2 (1 - 1/a'_2), 1/a'_3 + \alpha'_3 (1 - 1/a'_3) \}.$$

First, we consider the following:

Case 1:

(2.21)
$$\alpha_2(1-1/a_2) = \alpha'_2(1-1/a'_2).$$

If

$$\alpha_2(1-1/a_2) < \alpha_3(1-1/a_3)$$
 and $\alpha'_2(1-1/a'_2) < \alpha'_3(1-1/a'_3)$,

Discrete probability measures

then it follows from (2.18) that there exists $\delta > 0$ such that

$$(2.22) g(a_2 y) = g(a'_2 y), 0 \leq y \leq \delta.$$

It follows from (2.22) that $a_2 = a'_2$ and therefore, from (2.21), $\alpha_2 = \alpha'_2$, and $A_2 = A'_2$. From (2.18) it follows that $A_3 = A'_3$.

Therefore, we assume that

(2.23)
$$\alpha_2(1-1/a_2) = \alpha'_2(1-1/a'_2) = \alpha_3(1-1/a_3) < \alpha'_3(1-1/a'_3).$$

Since $\alpha_2 < \underline{\alpha}_3$, we have $1/a_2 < 1/a_3$. Then from (2.20) we obtain

$$1/a_3 + \alpha_3 (1 - 1/a_3) = \max \{ 1/a_2' + \alpha_2' (1 - 1/a_2'), 1/a_3' + \alpha_3' (1 - 1/a_3') \}.$$

If

$$(2.24) 1/a_3 + \alpha_3 (1 - 1/a_3) = 1/a'_3 + \alpha'_3 (1 - 1/a'_3) > 1/a'_2 + \alpha'_2 (1 - 1/a'_2),$$

then, by (2.18), for

 $\max\left\{1/a_2 + \alpha_2\left(1 - 1/a_2\right), \ 1/a_2' + \alpha_2'\left(1 - 1/a_2'\right)\right\} \leqslant x < 1/a_3 + \alpha_3\left(1 - 1/a_3\right),$ we have

$$p_2 + p_3 g \left(a_3 \left[x - \alpha_3 \left(1 - \frac{1}{a_3} \right) \right] \right) = p_2 + p_3 g \left(a'_3 \left[x - \alpha'_3 \left(1 - \frac{1}{a'_3} \right) \right] \right)$$

or

$$g(a_3[x-\alpha_3(1-1/a_3)]) = g(a'_3[x-\alpha'_3(1-1/a'_3)]).$$

It follows that there exists $\delta > 0$ such that

$$h(a_3 y) = h(a'_3 y), \quad -\delta \leq y \leq 0,$$

where h(0) = 1 and h(y) < 1 for y < 0. It follows that $a_3 = a'_3$, and therefore $\alpha_3 = \alpha'_3$ and $A_3 = A'_3$. Consequently, from (2.18), we get $A_2 = A'_2$. Therefore, we assume that

$$(2.25) 1/a_3 + \alpha_3 (1 - 1/a_3) = 1/a'_2 + \alpha'_2 (1 - 1/a'_2) > 1/a'_3 + \alpha'_3 (1 - 1/a'_3).$$

Then, from (2.23) and (2.15) we get

$$(2.26) A_2' = A_3,$$

and from (2.18) we obtain

(2.27)
$$(p_2 - p_3) g \left(a_3 \left[x - \alpha_3 \left(1 - \frac{1}{a_3} \right) \right] \right) \\ = p_2 g \left(a_2 \left[x - \alpha_2 \left(1 - \frac{1}{a_2} \right) \right] \right) - p_3 g \left(a'_3 \left[x - \alpha'_3 \left(1 - \frac{1}{a'_3} \right) \right] \right).$$

By (2.25), for

$$1/a_3 + \alpha_3(1 - 1/a_3) > x \ge \max\{1/a_2 + \alpha_2(1 - 1/a_2), 1/a_3 + \alpha_3(1 - 1/a_3)\}$$

10 - PAMS 20.2

we then have

$$(p_2-p_3)g(a_3[x-\alpha_3(1-1/a_3)]) = p_2-p_3,$$

which implies that

 $p_2=p_3.$

Consequently, from (2.27) we get

$$g(a_2[x-\alpha_2(1-1/a_2)]) = g(a'_3[x-\alpha'_3(1-1/a'_3)])$$

for $0 \le x \le 1$. It follows that (2.28)

 $A_2 = A'_3.$

Then from (2.26) and (2.28) we obtain

$$A'_2 = A_3, \quad A_2 = A'_3,$$

which is a contradiction since $t_1 < t_2 < t_3 < t_4$ and $t'_1 < t'_2 < t'_3 < t'_4$. Thus, we must assume that

(2.29)
$$1/a_3 + \alpha_3 (1 - 1/a_3) = 1/a'_2 + \alpha'_2 (1 - 1/a'_2)$$

= $1/a'_3 + \alpha'_3 (1 - 1/a'_3) > 1/a_2 + \alpha_2 (1 - 1/a_2).$

By (2.18), then there exists $\delta > 0$ such that

(2.30)
$$(p_2 - p_3) g(a_3 [x - \alpha_3 (1 - 1/a_3)])$$

= $p_2 - p_3 g(a'_3 [x - \alpha'_3 (1 - 1/a'_3)]) \ge p_2 - p_3$

for $1-\delta \le x \le 1$. It follows that $p_2 \le p_3$. Also, from (2.18) (see also (2.23)), for $x < \alpha'_3(1-1/a'_3)$ we get

$$p_2 g \left(a_2 \left[x - \alpha_2 \left(1 - 1/a_2 \right) \right] \right) = (p_2 - p_3) g \left(a'_2 \left[x - \alpha'_2 \left(1 - 1/a'_2 \right) \right] \right),$$

so that $p_2 \ge p_3$. Hence $p_2 = p_3$. This gives in (2.30):

$$g(a'_3[x-\alpha'_3(1-1/a'_3)]) = 1$$

for $x < 1/a'_3 + \alpha'_3(1-1/a_3)$, a contradiction. Thus, we cannot assume (2.23). Similarly, we cannot assume

$$\alpha_2(1-1/a_2) = \alpha'_2(1-1/a'_2) = \alpha'_3(1-1/a'_3) < \alpha_3(1-1/a_3).$$

Thus, we must assume, if possible,

$$\alpha_2(1-1/a_2) = \alpha'_2(1-1/a'_2) = \alpha_3(1-1/a_3) = \alpha'_3(1-1/a'_3).$$

Then $1/a_2 < 1/a_3$ and $1/a'_2 < 1/a'_3$. From (2.20) we get

$$1/a_3 + \alpha_3 (1 - 1/a_3) = 1/a'_3 + \alpha'_3 (1 - 1/a'_3).$$

It follows that $A_3 = A'_3$. From (2.18) we obtain $A_2 = A'_2$.

Case 2: $\alpha_2(1-1/a_2) = \alpha'_3(1-1/a'_3)$. In this case,

$$\alpha'_{3}(1-1/a'_{3}) \leq \alpha'_{2}(1-1/a'_{2}),$$

so that, since $\alpha'_3 > \alpha'_2$,

$$1 - 1/a'_3 < 1 - 1/a'_2$$
 or $1/a'_3 > 1/a'_2$.

This means that

$$1/a'_3 + \alpha'_3 (1 - 1/a'_3) > 1/a'_2 + \alpha'_2 (1 - 1/a'_2)$$

since

$$\begin{aligned} \alpha_2' \left(1 - 1/a_2'\right) - \alpha_3' \left(1 - 1/a_3'\right) &< \alpha_2' \left(1 - 1/a_2'\right) - \alpha_3' \left(1 - 1/a_3'\right) \\ &= \alpha_2' \left(1/a_3' - 1/a_2'\right) < 1/a_3' - 1/a_2'. \end{aligned}$$

Thus, since

$$\max \{ 1/a_2 + \alpha_2 (1 - 1/a_2), 1/a_3 + \alpha_3 (1 - 1/a_3) \}$$

= max $\{ 1/a'_3 + \alpha'_3 (1 - 1/a'_3), 1/a'_2 + \alpha'_2 (1 - 1/a'_2) \},$

it follows that we must have one of the following two possibilities:

(i)
$$1/a_2 + \alpha_2 (1 - 1/a_2) = 1/a'_3 + \alpha'_3 (1 - 1/a'_3);$$

(ii) $1/a_3 + \alpha_3 (1 - 1/a_3) = 1/a'_3 + \alpha'_3 (1 - 1/a'_3).$

In the first situation, since $\alpha_2(1-1/a_2) = \alpha'_3(1-1/a'_3)$, we have $a_2 = a'_3$ and $\alpha_2 = \alpha'_3$. This, of course, means that $t_2 = t'_3$ and

$$y_2 = t_2 [1 - 1/a_2] = t'_3 [1 - 1/a'_3] = y'_3,$$

so that $A_2 = A'_3$. Then we have

(2.31)
$$(p_2 - p_3) g \left(a_2 \left[x - \alpha_2 (1 - 1/a_2) \right] \right) = p_2 g \left(a'_2 \left[x - \alpha'_2 (1 - 1/a'_2) \right] \right) - p_3 g \left(a_3 \left[x - \alpha_3 (1 - 1/a_3) \right] \right).$$

This means that

$$1/a_2 + \alpha_2(1 - 1/a_2) = 1/a_3 + \alpha_3(1 - 1/a_3)$$

for if

- - .

$$1/a_3 + \alpha_3 (1 - 1/a_3) < 1/a_2 + \alpha_2 (1 - 1/a_2),$$

then

$$B \equiv \max \{ 1/a_3 + \alpha_3 (1 - 1/a_3), 1/a_2' + \alpha_2' (1 - 1/a_2') \} < 1/a_2 + \alpha_2 (1 - 1/a_2),$$

so that for $B \le x < 1/a_2 + \alpha_2 (1 - 1/a_2)$ the right-hand side of (2.31) is $p_2 - p_3$, so that

$$g(a_2[x-\alpha_2(1-1/a_2)]) = 1,$$

which contradicts that g(y) < 1 for y < 1. Thus, we can now assume that

(2.32)
$$D \equiv 1/a_2 + \alpha_2 (1 - 1/a_2) = 1/a_3 + \alpha_3 (1 - 1/a_3) = 1/a_3 + \alpha_3 (1 - 1/a_3).$$

Note that, for $1/a'_2 + \alpha'_2(1-1/a'_2) \le x < D$, we have

$$(p_2-p_3)g(a_2[x-\alpha_2(1-1/a_2)]) = p_2-p_3g(a_3[x-\alpha_3(1-1/a_3)]) \ge p_2-p_3,$$

which means that $p_2 \leq p_3$.

Now, if we have

$$\alpha_2(1-1/a_2) < \alpha_3(1-1/a_3),$$

and also

$$\alpha'_{3}(1-1/a'_{3}) < \alpha'_{2}(1-1/a'_{2}),$$

then for

 $\alpha_2 (1 - 1/a_2) = \alpha'_3 (1 - 1/a'_3) < x < \min \{1/a_3 + \alpha_3 (1 - 1/a_3), 1/a'_2 + \alpha'_2 (1 - 1/a'_2)\}$ we obtain

$$(2.33) p_2 g \left(a_2 \left[x - \alpha_2 \left(1 - 1/a_2 \right) \right] \right) = p_3 g \left(a'_3 \left[x - \alpha'_3 \left(1 - 1/a'_3 \right) \right] \right).$$

Since $A_2 = A'_3$, we have $p_2 = p_3$.

If $\alpha_2(1-1/a_2) = \alpha_3(1-1/a_3)$, then it follows from (2.32) that $A_2 = A_3$, which is not possible.

Also, if

$$\alpha'_{3}(1-1/a'_{3}) = \alpha'_{2}(1-1/a'_{2}) \ (= \alpha_{2}(1-1/a_{2})),$$

then either one of these is equal to $\alpha_3(1-1/a_3)$, in which case $A_2 = A_3$ (a contradiction), or each one is less than $\alpha_3(1-1/a_3)$, so that for $\alpha_2(1-1/a_2)$ $< x < \alpha_3(1-1/a_3)$ we have

$$(p_2 - p_3)g(a_2[x - \alpha_2(1 - 1/a_2)]) = p_2g(a'_2[x - \alpha'_2(1 - 1/a'_2)]),$$

which means that $p_2 \ge p_3$. Thus, in this case, $p_2 = p_3$, so that

$$g(a'_{2}[x-\alpha'_{2}(1-1/a'_{2})])=0$$

for $x > \alpha'_2 (1 - 1/a'_2)$, a contradiction.

Thus, we have $p_2 = p_3$, $A_2 = A'_3$ and, consequently, from (2.18) we obtain

$$g(a_3[x-\alpha_3(1-1/a_3)]) = g(a'_2[x-\alpha'_2(1-1/a'_2)]),$$

which is a contradiction, since

$$1/a_3 + \alpha_3 (1 - 1/a_3) < 1/a_2 + \alpha_2' (1 - 1/a_2')$$

in this case.

Thus, the only possibility is that (i) does not occur and (ii) occurs, that is

$$1/a_2 + \alpha_2 (1 - 1/a_2) < 1/a_3 + \alpha_3 (1 - 1/a_3) = 1/a_3' + \alpha_3' (1 - 1/a_3')$$

Let

$$\max \{ 1/a_2 + \alpha_2 (1 - 1/a_2), 1/a_2 + \alpha_2 (1 - 1/a_2) \}$$

$$\leq x < M \equiv 1/a_3 + \alpha_3 (1 - 1/a_3) = 1/a_3' + \alpha_3' (1 - 1/a_3').$$

Then, we infer from (2.18) that there exists $\delta > 0$ such that

$$g(a_3[x-\alpha_3(1-1/a_3)]) = g(a'_3[x-\alpha'_3(1-1/a'_3)])$$

for $M - \delta \le x \le M$. Writing $y \equiv x - M$ and $g(y+1) \equiv h(y)$, we have

$$h(a_3 y) = h(a'_3 y), \quad -\delta \leq y \leq 0.$$

Note that h(0) = 1, and if y < 0, then h(y) < 1. For any y < 0, if $a_3 > a'_3$, then

$$h(a_3 y) = h\left(a_3 \cdot \frac{a_3'}{a_3} y\right) = h\left(a_3 \cdot \frac{(a_3')^2}{a_3^2} y\right) = h\left(a_3 \left(\frac{a_3'}{a_3}\right)^n y\right) \to 1,$$

a contradiction. Thus, $a_3 \leq a'_3$. Similarly, $a_3 \geq a'_3$, so that $a_3 = a'_3$, $\alpha_3 = \alpha'_3$. Hence $A_3 = A'_3$.

It follows from (2.18) that

$$g(a_2[x-\alpha_2(1-1/a_2)]) = g(a'_2[x-\alpha'_2(1-1/a'_2)])$$

for $0 \le x \le 1$. Thus,

$$\alpha_2(1-1/a_2) = \alpha'_2(1-1/a'_2)$$

and

$$1/a_2 + \alpha_2 (1 - 1/a_2) = 1/a'_2 + \alpha'_2 (1 - 1/a'_2)$$

It follows that $A_2 = A'_2$.

We can also prove the following theorem:

THEOREM 2.4. Suppose μ_1 and μ_2 are two probability measures on 2×2 stochastic matrices such that $S(\mu_1)$ and $S(\mu_2)$ consist of n points. Suppose that

(i) (w) $\lim_{n\to\infty} \mu_1^n = (w) \lim_{n\to\infty} \mu_2^n = \lambda;$

(ii) $S(\mu_1) = S(\mu_2) = \{A_1, A_2, ..., A_n\}.$

We assume: $t_i < t_{i+1}$. Then, if $n \leq 4$, $\mu_1 = \mu_2$.

We omit the proof (which is simpler than that of Theorem 2.3).

A. Mukherjea and J. S. Ratti

REFERENCES

- S. Dhar, A. Mukherjea and J. S. Ratti, A non-linear functional equation arising from convolution iterates of a probability measure on 2×2 stochastic matrices, J. Nonlinear Analysis 36 (2) (1999), pp. 151-176.
- [2] A. Mukherjea, Limit theorems: stochastic matrices, ergodic Markov chains, and measures on semigroups, in: Probabilistic Analysis and Related Topics, Vol. 2, Academic Press, 1979, pp. 143-203.
- [3] M. Rosenblatt, Markov Processes: Structure and Asymptotic Behavior, Springer, 1971.

Department of Mathematics University of South Florida Tampa, FL 33620-5700, U.S.A.

Received on 4.11.1999