PROBABILITY AND MATHEMATICAL STATISTICS Vol. 21, Fasc. 2 (2001), pp. 253–263

NOTE ON ASYMPTOTIC NORMALITY OF KERNEL DENSITY ESTIMATOR FOR LINEAR PROCESS UNDER SHORT-RANGE DEPENDENCE

Konrad Furmańczyk

Abstract: We consider the problem of density estimation for a one-sided linear process $X_t = \sum_{r=0}^{\infty} a_r Z_{t-r}$ with i.i.d. square integrable innovations $(Z_i)_{i=-\infty}^{\infty}$. We prove that under weak conditions on $(a_i)_{i=0}^{\infty}$, which imply short-range dependence of the linear process, finite-dimensional distributions of kernel density estimate are asymptotically multivariate normal. In particular, the result holds for $|a_n| = \mathcal{O}(n^{-a})$ with a > 2, which is much weaker than previously known sufficient conditions for asymptotic normality. No conditions on bandwidths b_n are assumed besides $b_n \to 0$ and $nb_n \to \infty$. The proof uses Chanda's [1], [2] conditioning technique as well as Bernstein's "large block-small block" argument.

1991 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE