PROBABILITY AND MATHEMATICAL STATISTICS Vol. 21, Fasc. 2 (2001), pp. 321–328

ON THE APPROXIMATION OF A RANDOM VARIABLE BY A CONDITIONING OF A GIVEN SEQUENCE

Krzysztof Kaniowski

Abstract: Let $(\Omega, \mathfrak{F}, P)$ be a non-atomic probability space. If (X_n) is a sequence of r.v.'s satisfying $X_n \to 0$ a.s. (respectively, in probability) as $n \to \infty$ and $EX_n^+ \to \infty$, $EX_n^- \to \infty$ as $n \to \infty$, then for any r.v. Y there exists a sequence (\mathfrak{U}_n) of σ -fields such that $E(X_n|\mathfrak{U}_n|) \to Y$ a.s. (respectively, in probability) as $n \to \infty$.

1991 AMS Mathematics Subject Classification: 60A10.

Key words and phrases: Conditional expectation, almost sure convergence, stochastic convergence.

THE FULL TEXT IS AVAILABLE HERE