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NOTE ON ASYMPTOTIC NORMALITY
OF KERNEL DENSITY ESTIMATOR FOR LINEAR PROCESS
UNDER SHORT-RANGE DEPENDENCE

BY.

KONRAD FURMANCZYK* (WARSZAWA)

Abstract. We consider the problem of density estimation for
a one-sided linear process X, =Y. a,Z,-, with iid. square integra-
ble innovations (Z)2 - . We prove that under weak conditions on
{@)i%a, which imply short-range dependence of the linear process,
finite-dimensional distributions of kernel density estimate are asymp-
totically multivariate normal. In particular, the result holds for
laa) = @{n~*) with a@>2, which is much weaker than previously
known sufficient conditions for asymptotic normality. No conditions
on bandwidths b, are assumed besides b, — 0 and nb, —+ o0. The proof
uses Chanda's [13, [2] conditioning technigue as well as Bernstein’s
“large block-small block™ argument.

1. Introduction. Let X,, X5, ..., X, be n consecutive observations of a line-
ar process

o
(LD X,=Y a,Z,, t=1,2,..,n,

r=0
where (Z,){~ -, is an innovation process consisting of ii.d. random variables
with mean zero and finite variance. Assume that X; has a probability density f,
which we wish to estimate. As an estimator of f we will consider the standard
kernel type estimator (see e.g. Chanda [1]) given by

(12) fub) = 3 K ((x—X )/by)nb,)
=1
for xeR, where b, is a sequence of positive numbers such that b, —» 0 and
nb, —» oo as n— oo, and K is a bounded density function.
Chanda [1], [2] showed that one-dimensional distributions of f, are asymp-
totically normal under a general condition on (a2, and provided E|Z,f < o
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for some ¢ > 0, b, — 0 but nb, — oo, and assumptions (A.1) and (A.4) (listed in
our Section 2) hold. The condition on (@), is Z:;jriari“ = ¢(j° for some
0= 1, where a =38/2(1+8)and 6 = if 0 <e<2and §d =2 if ¢ = 2. In par-
ticular, if the innovations have a finite second moment (&= 2), it yields
Yo7 la|® = ©(j°), which is much stronger than conditions (A.5) and (A.6)
assumed in Section 2. In the case of innovations having finite second moment,
Hallin and Tran [4] proved asymptotic multivariate normality of finite-dimen-
sional distributions of scaled and centered f, provided that assumptions (A.0)
and (A.3) hold, the characteristic function of Z, belongs to I (R), the coef-
ficients of the linear process X, tend to zero in such a way that |a,| = @ (¢~ “*+)
for some o > 0 as r — oo and the bandwidth b, tends to zero sufficiently slowly
so that
nb,13+29UB+29) (loglogn) ™! — co.
The aim of the present note is to show that under assumptions on the dis-
tribution of Z, and K, which are comparable to those of Hallin and Tran [4],
finite-dimensional distributions of f, are asymptotically normal for a much
wider class of linear processes. Moreover, in contrast to Hallin and Tran [4],
the sole conditions imposed on the bandwidths are b, — 0 and nb, — oo, which
are identical to the usual condition imposed in the independent case.
2. Assumptions and the statement of the main result.
(A.0) The kernel K satisfies the Lipschitz condition.

(A.1) For every real a, |~ _|K(y+a)—K(y)ldy < Mal, where M denotes
a generic constant.

(A.2) The support of K is compact.
(A.3) Q(x):=sup {K(): |y = x|} is integrable.

(Ad) 7 lupw)du < co, where ¢ denotes the characteristic function
of Z 1~

A3 Y ;@ = 0(j~*) for some o> 0.
(A.6) Z:LJ la) = 0(j~?*%) for some o > 0.
We now state the main result of the paper.
TueoreM 2.1. Suppose assumptions (A.1), (A.4) and (A.5) hold true and
X1, ..., Xg are s distinct points of R. Then
2.1)  T(xyg,..., %)
= (b2 (fu(¥) = Ef, (x1), -, Ju (x)— Ef, (x)) S N 0, ),

where X is a diagonal matrix with diagonal elements o;; =f(x) [~ K*(u)du
for i=1,...,8s.
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3. Some auxiliary results. Let ||-]|, denote the supremum norm in the
space under consideration.

Lemma 3.1, If assumption (A.4) holds true, then
(3.1)  the probability density f is bounded and continuous;

(3.2) the density hy, of X, := Zi;:i a,Z,, satisfies the Lipschitz con-
dition for all 1> 0 and supenllhdle < M;

(3.3)  the density g;;, of Ryyi=X,—X,; =)

(3.4)  the joint probability density f; (x, y) of (X1, X ;+,) exists for all je N, and

(3*5) Supjéf‘f ”Lum S M:

(3.6)  the joint probability density f; ; (x, y, z) of (X, Xi+1, Xi+j+1) exists for
all i, jeN, and

B.7)  supienllfifle <M.

Proof. The proof of (3.1) is straightforward, and therefore will be omitted.
Relation (3.2) follows from (2.6) in Chanda [1]. For a fixed le N we have

* a,Z,., exists for all 1> 0;

r=1

f ﬁ;@(a,u)jsdus; jf | (@, u)] du.

= r=|i

Substituting z = q,u, we get
J lo@wldu<ial™ | l¢(2)dz < oo,
= k- #1

and thus the characteristic function of R,; belongs to L' (R), and (3.3) follows.

To prove (3.4) and (3.6) it suffices to show that for any i=1, 2, ... and
any j = 1, 2, ... the characteristic function fiof (X1, X j+1) belongs to I (R?)
and the characteristic function f;; of (X, X;+1, X;4;+,) belongs to I' (R®).
We use the method employed in Giraitis et al. [3]. Let us note first that for any
jeN

(3.8) fi s ) < | (uao +va)) b (vay)
and for any i, jeN
{3.9) |fei (4, 0, 2) < | (uag +va;+2a;. ) ¢ (vag +za) P (za,),
since
i+

fitw,v)= ﬁ Plua-s+va;-), [l v,2)= IT ¢wa_s+va;_t+za;.;-),

5= — 5= i
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where a; =0 for j<0 by definition. Substituting z; = uae+va;+2d;+
Z; = Vag+zay, 23 = ZGy, We get

(10) [ I (uto-+0a+ 301 ) b o+ 0) b (aduddz = ol >( | 16(@N42F

Now it follows from (3.9) and (3.10) that j:,j(u, v, 2)e [} (R?), and using the
Fourier inversion formula we obtain

1
fille < ==laol ™.
n

Thus (3.7) is satisfied. Similarly we can show (3.5).
Let

fpta—q
(3.11) Up:=n"'2 ¥ Y,
t=(j—1)p+g)+1

(3.12) Yii=cY®+dY?, YO = by V(K {(-—X)/b)—EK((-—X)/b).

Levma 3.2. Let p = p(n), g = g(n) and k = k(n) be sequences of positive
integers such that

k;[JL
p+q]

Assume that one of the following conditions (i) or (ii) is satisfied:

() (nfb) /2 p~tq = M2*9D = o(1) and assumptions (A.1), (A4) and (A.5)
hold true;

(i) (n/b3)2p~1 g0+ = o(1) and assumptions (A.0), (A.4) and (A.6) hold
true.

Then

, P4, k-0, and %—iﬂ as n— .

k k
Eexp(iuy. U)—[] Eexp(iuU) =o(1) for every real u.
i=1 j=1
Proof. Let ¢ denote the characteristic function of (U, ..., Uj) and let
@; be the characteristic function of U;. Then (see (2.15) in Chanda [1])

(3.13) o™, ..., u)— ﬂ o) < w""(u o W—@; W) eV, ..., u)

IENj Py = ZIEN_,P*I,

nT!Mw IiMw
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where
i-1
Nj=exp(iu Yy U)—oU Vu,...,u), P;=exp(iul),
r=1
P :=P;—E(Piln), nj:=0Zi-np+a-a+1> - Lipra-d
for j=2,..., k. We have

|EN; P| < 2E|P}| < 2E|P;— &+ 2E|— E(P;|n)),

where
Gj = exp {;g’;i Ii €Y vpra+td¥ P npra +m)}
and
() = by 12 (K (- — Xo1+.9/ba)— EK ((-— X/by)).
Since ¢; is an n;-measurable random variable for j=1, ..., k, we obtain

E|&;—E(P;|n))| = E|E(£;—P; 1| < El¢;—P.

Moreover, since lexp(ia)—1] < M |a| for every real a, we have

(3.14) (BN, PJ| < 4EIPy=81 < g 3, (041,00,
where
IL.()= E%K (zﬁX“;"Mm*')-—K(Z—XU—%("”W"”) for zeR.
By (3.2) and (3.3) we have
L= j (x “ ”)mk:(";") k() g (o) dud,

where h:=hiiqg-ne+o+t 304 §1= Greg - npra -

Put
X—U—u X—u
K( ba )—-K( b, )

Ad'{i}ﬂ. Substituting z = (x —u—uv)/b, and applying (3.2) and (A.1) we have

K(z)— K(z+b)

L= ]9 h{u)du.

—m

I.(®)=b, j hix—v—b,z)dz < M,
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and thus I.(]) is not greater than

M{llg@dv=ME| Y aZ; 1yp+gii-r
R

r=l+g o

< M{ z af)”z < M(l_,,_q)“(?»llwm.

r=ltg
This implies that the right-hand side of inequality (3.13) is not greater than
k
( by
Ad (ii). By (A.0) we have I (v) <M|v|/b and

5q 2D 0 as n— 0.

L)< Mb; " E| Z t Z - 1)p+ay+1-r| < Mby Z la,| < Mb,; " (I+g)~ ",

r=l4g r=l+g
This implies that the right-hand side of the inequality in (3.13) is not greater than

Mk
(b 2"
Write Q, =0(..., Z,_4,2Z,), u=1,2,..., and

(3.15)  JE(5) = JE(s) = {(x—s-;x,,t-u)_ﬁ(xwf,,,,_ﬂ)m"}

mE(K(x“S;H{,Q) (x X))

(3.16) Om = P(Xy—Ximl > )y Cm=1b" i a)'s

r m

1 240
“E(m’ i“@“ﬁ) £>0.
Observe that

(3.17) JE 0 (s) = j'(K (""“ﬁ"“’)ﬁ((" : W)) By () .

LemmMa 3.3. Let the conditions (A.4) and (A.5) hold. Then

() (75) <

(3.19)  |Ji(s)) < Mb, and |Ji(s) < Mb,|s| for every real s, x and ueN,

b7 gD 0 as n— 0.

where

(3.18) sup EIK

mteN

. Mb, for every real x;

(3.20) E [E(T ;+1}|-<£be;”3-
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Proof. Using the triangle inequality it is enough to bound
E|K ((x—X.m)/by)| and |EK ((x—X)/b,). Since

EK(x : X) b § K @b e—u2)

and

EK(x;X') —b, | K@) f(—by2)dz

and (3.1), (3.2) hold, we see that (3.18) is satisfied.
By argument as in the proof of (3.18), |JZ(s)| < Mb,. On the other hand,
writing

Ja@) =by | K@h-yi(x—5—b,2)dz—by, | K(@)hy,(x—b,2)dz
and using (3.2) we get
i)l < Mb,ls| | K(z)dz < Mb,|s|.

Thus (3.19) is satisfied.
It is clear that (3.20) is equivalent to z NE(YP YY) < Mb;" for every
real x, y. Of course,
EYP YR = b P E(YE ] (Rys1,)
<b 2 tE (YO R Ry JI{IRje 14l < ﬂj‘})l
+b PE(YP B Ris s D I{IRjs 1.4 > ¢})] < Mbyc;+ MQ;

by (3.16) and (3.19). Using the Chebyshev inequality we have

@ ,
(3.21) On< Y a?/ck for every meN.

F=m
The choice of f:=1% yields (3.19).
Lemma 3.4 (Liapunov condition). If U,, ..., U, are independent copies of
(3.11) and

w—-—b""z -0 as n— oo,

il
then
(3.22) i (Var(i ﬁg))_zE Ut =0 asn-om.
i=1 i=1
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Proof Since Var(Z_,\Ug) = kEU?} and (3.20) implies EU? > o?p/2n
for sufficiently large n (see Chanda [1], (2.22)), the left-hand side of (3.22)
is equal to

@(Eﬁxim**) = (G(ﬂmum); = a(iﬁ(f 12)4).
P P mp S
Following Chanda [2] we write

P
(3.23) E(Y Yy < MPEY?+pl+p?1L, +p* I, + p*TI0),

=1

where

i=1
P
Iy = ¥ (gE{YZ Yirs Y jr N HIE (Y Vi Y g n)l)s

Jj=1
I, = Z [E(Y, Yy Y j40)ls
i=1
7
O = % [E(Y: Yiea Yisjen Bs el
w=1

From (3.1) and (3.5) we have EY? = 00 (b, ) and I = @(p). Consequently,
pEY?W —1y __ ; E_{” VE,M_ Y
=0(mby) )=0(1) and = \n)” o(1).

Moreover, since Y% Y;,, is an ;,,-measurable random variable, we obtain
JE(Y? Yie s Yirju o)l
= bm”z iE Y2 AW (Rz+j+ Id)} -+ b-uz |E Yi Yir 1 Jan (Ri‘+j‘ﬁ»1 Jm
+by Y E(YE Vi M ETFs 1 (Ris a1 ) 407 P IE(YT Y ) ER 41 Ris 1 -
From (3.19) and (3.21) we have
|E(Y? Y1 JEe 1 (R jan )
S [E(Y] Vigjor T i (Risjan JT{IR 4 jr 1.0 > c})
HE(Y Y Tt Ris et )T {IR iy je 1 A S €3})]
< Mb; "2 Q4 Mc;b, E|Y3 Yia

and
|EJFy 1 (Risjar, )l € Mb,c;+Mb,Q; for every real x
By (3.5), by Y*E|Y} Y, <M and we have V
E(Y? %11 Yiajs )l < Mboc;+ Mb7* Q.
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Similarly, we can show that
[E(Yy Yis1 Yie o)l < Mb, c;+Mb,; 1Q;.

Choosing f:=%, we get 11, = O(B2).
By {3 7), IE(?} i+1 Yi+}+1)i = Mbﬂ aﬂd HZ == @(pb") Th@ﬂ

2 27
& ( b’”) o(1), %-Il: m(p :) o(1).
Finally,

E(.Yl 1+1Y+}+1Yé+j+w+1}| b i}g(lE(YlYé+1Y+J+1J1+j+1(Rl+j+w+lw))ﬂ
+‘|E(Y1 Yii1Yiiju J&+j+1(Ri+j+w'+I.w))]
HIE(Y: Yie 1 Y je M ETFs a1 (Rik jowr 1,0l
HE(Y Yot Y g N BT it Risjrwosn, wm < Mb}c,+Mb, ' Q,,.
Choosing f:=1 we have
I b,
=00, ° :w( ) o(1)
np n
using the assumption of the lemma.
Define V;=n"12%72"9  y and W= LS I 4

Jlptar-g+l
LemMA 3.5. Let assumptions (A4) and (A.5) hold true. Then
(3.24) k(n)VarU; - c*ci+d*62  as n— w,
k .
(3.25) Y vi+w3o.
i=1

Proof. Clearly,

- P
kVarUlsﬁE(Z Y)? - g Z E(Y; +kaY2,
=1 i=
and, by (3.21),
Mk &
£y E(ﬂ;) —————————— P Y IE(Y, Yo p)| < M
i.f 1 jr.-e

since kp/n — 1. Moreover,
EY{=c*E(YPY +d° E(YY) +2edE(YP YY)

and E(Y()? — o2 for every real x. In order to complete the proof of (3.24) it is
sufficient to show that E(Y{ Y%) -0 as n— . Obviously,

EYP YY)
a2 a5

bn " n n
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where

I, := b;“jf K(";S)K<y;8)f(5)dﬂ-

)f(x baz)dz = [ ..dz+ [ ...dz,

|zl €2n {zl>zn

I, is writien as

j’ K(Z)K(z+

where z, is an arbitrary real sequence such that z, — oo but z,b, — 0. Then

[ .dz<M | K(z+y“)dz

[zl =zn Izl S zn

in view of (3.1) and the boundedness of K. Substituting u = z-+(y—x)/b,
we have

Klz+2=%Vaz < K ()du = o(l),
) f )

lz} Sz bﬁ lu] 2 Mb 1

[ .dz=0( | K@dzg)=0(1) and I,-0.

lzi>zn {2l > 20

Next, by (3.20),

E(i VW) < MR @A Dy S E(r Y, ) = @(3} = o(1)

i=1 " i=1
and (3.25) is satisfied.

Proof of Theorem 2.1. It is clearly sufficient to consider the case s = 2.
According to the Cramer-Wold device it suffices to prove that whenever
(¢, dye R*\{0}

(326) (€ dF o To(x, ) SN (O, * o} +d 53),
where Tdenotes the vector transposition and o the scalar product in R?. Con-
sider a partition of the set {1, ..., n} into consecutive “large” blocks of size
p and “small” blocks of size g. If we take
~ 1 o 1 o
~pl2pe e ~nt2pS = e

p n bm ¥ o 2 4! q bﬂ 2 2 ( + 1)
then we see that conditions (i) and (i) of Lemma 3.2 hold. Thus it foﬂows from
Lemma 3.2 that in order to arrive at the asymptotic distribution of }: U; we

can assume that the U;,j =1, ..., k, are i.i.d. random variables. It follaws now
from Lemmas 3.4 and 3.5 i:ha.t
k
(c, dF o T(x, Y) = ¥ (U W)+ WS N(0, 2ol +d*a}).
i=1
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Remark. Theorem 2.1 holds true when conditions (A.1) and (A.5) are
replaced by (A.0) and (A.6), respectively. This follows from the reasoning simi-
lar to that in the proof of the main result. Observe that in this case Lem-
mas 3.2-3.5 hold true since

Y@ < (L lalf = 007

r=j

We omit the details.
Since (A.0) and (A.2) imply (A.1), we have

COROLLARY 3.6. Assume that (A0), (A.2), (A4), and (A.5) hold true. Then
the assertion of Theorem 2.1 remains valid.
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