NOTE ON ASYMPTOTIC NORMALITY OF KERNEL DENSITY ESTIMATOR FOR LINEAR PROCESS UNDER SHORT-RANGE DEPENDENCE

BY
KONRAD FURMANCZYK* (WARSZAWA)

Abstract

We consider the problem of density estimation for a one-sided linear process $X_{t}=\sum_{r=0}^{\infty} a_{r} Z_{t-r}$ with i.i.d. square integrable innovations $\left(Z_{i}\right)_{i=-\infty}^{\infty}$. We prove that under weak conditions on $\left(a_{i}\right)_{i=0}^{\infty}$, which imply short-range dependence of the linear process, finite-dimensional distributions of kernel density estimate are asymptotically multivariate normal. In particular, the result holds for $\left|a_{n}\right|=\mathscr{O}\left(n^{-a}\right)$ with $a>2$, which is much weaker than previously known sufficient conditions for asymptotic normality. No conditions on bandwidths b_{n} are assumed besides $b_{n} \rightarrow 0$ and $n b_{n} \rightarrow \infty$. The proof uses Chanda's [1], [2] conditioning technique as well as Bernstein's "large block-small block" argument.

1. Introduction. Let $X_{1}, X_{2}, \ldots, X_{n}$ be n consecutive observations of a linear process

$$
\begin{equation*}
X_{t}=\sum_{r=0}^{\infty} a_{r} Z_{t-r}, \quad t=1,2, \ldots, n, \tag{1.1}
\end{equation*}
$$

where $\left(Z_{i}\right)_{i=-\infty}^{\infty}$ is an innovation process consisting of i.i.d. random variables with mean zero and finite variance. Assume that X_{1} has a probability density f, which we wish to estimate. As an estimator of f we will consider the standard kernel type estimator (see e.g. Chanda [1]) given by

$$
\begin{equation*}
f_{n}(x)=\sum_{j=1}^{n} K\left(\left(x-X_{j}\right) / b_{n}\right) /\left(n b_{n}\right) \tag{1.2}
\end{equation*}
$$

for $x \in \mathbb{R}$, where b_{n} is a sequence of positive numbers such that $b_{n} \rightarrow 0$ and $n b_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and K is a bounded density function.

Chanda [1], [2] showed that one-dimensional distributions of f_{n} are asymptotically normal under a general condition on $\left(a_{i}\right)_{i=0}^{\infty}$ and provided $E\left|Z_{1}\right|^{e}<\infty$

[^0]for some $\varepsilon>0, b_{n} \rightarrow 0$ but $n b_{n} \rightarrow \infty$, and assumptions (A.1) and (A.4) (listed in our Section 2) hold. The condition on $\left(a_{i}\right)_{i=0}^{\infty}$ is $\sum_{r=j}^{\infty} r\left|a_{r}\right|^{\alpha}=\mathcal{O}\left(j^{-\theta}\right)$ for some $\theta \geqslant 1$, where $\alpha=\delta / 2(1+\delta)$ and $\delta=\varepsilon$ if $0 \leqslant \varepsilon<2$ and $\delta=2$ if $\varepsilon \geqslant 2$. In particular, if the innovations have a finite second moment $(\varepsilon=2)$, it yields $\sum_{r=j}^{\infty} r\left|a_{r}\right|^{1 / 3}=\mathcal{O}\left(j^{-\theta}\right)$, which is much stronger than conditions (A.5) and (A.6) assumed in Section 2. In the case of innovations having finite second moment, Hallin and Tran [4] proved asymptotic multivariate normality of finite-dimensional distributions of scaled and centered f_{n} provided that assumptions (A.0) and (A.3) hold, the characteristic function of Z_{1} belongs to $L^{1}(\mathbb{R})$, the coefficients of the linear process X_{t} tend to zero in such a way that $\left|a_{r}\right|=\mathcal{O}\left(r^{-(4+\sigma)}\right)$ for some $\sigma>0$ as $r \rightarrow \infty$ and the bandwidth b_{n} tends to zero sufficiently slowly so that
$$
n b_{n}^{(13+2 \sigma) /(3+2 \sigma)}(\log \log n)^{-1} \rightarrow \infty .
$$

The aim of the present note is to show that under assumptions on the distribution of Z_{1} and K, which are comparable to those of Hallin and Tran [4], finite-dimensional distributions of f_{n} are asymptotically normal for a much wider class of linear processes. Moreover, in contrast to Hallin and Tran [4], the sole conditions imposed on the bandwidths are $b_{n} \rightarrow 0$ and $n b_{n} \rightarrow \infty$, which are identical to the usual condition imposed in the independent case.
2. Assumptions and the statement of the main result.
(A.0) The kernel K satisfies the Lipschitz condition.
(A.1) For every real $a, \int_{-\infty}^{\infty}|K(y+a)-K(y)| d y \leqslant M|a|$, where M denotes a generic constant.
(A.2) The support of K is compact.
(A.3) $Q(x):=\sup \{K(y):|y| \geqslant|x|\}$ is integrable.
(A.4) $\int_{-\infty}^{\infty}|u \phi(u)| d u<\infty$, where ϕ denotes the characteristic function of Z_{1}.
(A.5) $\sum_{r=j}^{\infty} a_{r}^{2}=\mathcal{O}\left(j^{-(3+\sigma)}\right)$ for some $\sigma>0$.
(A.6) $\sum_{r=j}^{\infty}\left|a_{r}\right|=\mathcal{O}\left(j^{-(2+\sigma)}\right)$ for some $\sigma>0$.

We now state the main result of the paper.
Theorem 2.1. Suppose assumptions (A.1), (A.4) and (A.5) hold true and x_{1}, \ldots, x_{s} are s distinct points of \mathbb{R}. Then

$$
\begin{align*}
T_{n}\left(x_{1}, \ldots,\right. & \left.x_{s}\right) \tag{2.1}\\
& =\left(n b_{n}\right)^{1 / 2}\left(f_{n}\left(x_{1}\right)-E f_{n}\left(x_{1}\right), \ldots, f_{n}\left(x_{s}\right)-E f_{n}\left(x_{s}\right)\right)
\end{align*} \rightarrow N(0, \Sigma), ~ l
$$

where Σ is a diagonal matrix with diagonal elements $\sigma_{i, i}=f\left(x_{i}\right) \int_{-\infty}^{\infty} K^{2}(u) d u$ for $i=1, \ldots, s$.
3. Some auxiliary results. Let $\|\cdot\|_{\infty}$ denote the supremum norm in the space under consideration.

Lemma 3.1. If assumption (A.4) holds true, then
(3.1) the probability density f is bounded and continuous;
(3.2) the density $h_{l, t}$ of $X_{t, l}:=\sum_{r=0}^{l-1} a_{r} Z_{t-r}$ satisfies the Lipschitz condition for all $l>0$ and $\sup _{l \in N}\left\|h_{l, t}\right\|_{\infty} \leqslant M$;
(3.3) the density $g_{l, t}$ of $R_{t, l}:=X_{t}-X_{t, l}=\sum_{r=l}^{\infty} a_{r} Z_{t-r}$ exists for all $l>0$;
(3.4) the joint probability density $f_{j}(x, y)$ of $\left(X_{1}, X_{j+1}\right)$ exists for all $j \in N$, and
(3.5) $\sup _{j \in \mathcal{N}}\left\|f_{j}\right\|_{\infty} \leqslant M$;
(3.6) the joint probability density $f_{i, j}(x, y, z)$ of $\left(X_{1}, X_{i+1}, X_{i+j+1}\right)$ exists for all $i, j \in \mathcal{N}$, and
(3.7) $\sup _{i, j \in N}\left\|f_{i, j}\right\|_{\infty} \leqslant M$.

Proof. The proof of (3.1) is straightforward, and therefore will be omitted. Relation (3.2) follows from (2.6) in Chanda [1]. For a fixed $l \in N$ we have

$$
\int_{-\infty}^{\infty} \prod_{r=l}^{\infty}\left|\phi\left(a_{r} u\right)\right| d u \leqslant \int_{-\infty}^{\infty}\left|\phi\left(a_{l} u\right)\right| d u .
$$

Substituting $z=a_{l} u$, we get

$$
\int_{-\infty}^{\infty}\left|\phi\left(a_{1} u\right)\right| d u \leqslant\left|a_{l}\right|^{-1} \int_{-\infty}^{\infty}|\phi(z)| d z<\infty,
$$

and thus the characteristic function of $R_{t, l}$ belongs to $L^{1}(\mathbb{R})$, and (3.3) follows.
To prove (3.4) and (3.6) it suffices to show that for any $i=1,2, \ldots$ and any $j=1,2, \ldots$ the characteristic function \hat{f}_{j} of $\left(X_{1}, X_{j+1}\right)$ belongs to $L^{1}\left(\boldsymbol{R}^{2}\right)$ and the characteristic function $\hat{f}_{i, j}$ of $\left(X_{1}, X_{i+1}, X_{i+j+1}\right)$ belongs to $L^{1}\left(R^{3}\right)$. We use the method employed in Giraitis et al. [3]. Let us note first that for any $j \in \mathcal{N}$

$$
\begin{equation*}
\left|\hat{f}_{j}(u, v)\right| \leqslant\left|\phi\left(u a_{0}+v a_{j}\right) \phi\left(v a_{0}\right)\right| \tag{3.8}
\end{equation*}
$$

and for any $i, j \in N$

$$
\begin{equation*}
\left|\hat{f}_{i, j}(u, v, z)\right| \leqslant\left|\phi\left(u a_{0}+v a_{i}+z a_{i+j}\right) \phi\left(v a_{0}+z a_{j}\right) \phi\left(z a_{0}\right)\right|, \tag{3.9}
\end{equation*}
$$

since

$$
\hat{f}_{j}(u, v)=\prod_{s=-\infty}^{j} \phi\left(u a_{-s}+v a_{j-s}\right), \quad \hat{f}_{i, j}(u, v, z)=\prod_{s=-\infty}^{i+j} \phi\left(u a_{-s}+v a_{j-s}+z a_{i+j-s}\right),
$$

where $a_{j}=0$ for $j<0$ by definition. Substituting $z_{1}=u a_{0}+v a_{i}+z a_{i+j}$, $z_{2}=v a_{0}+z a_{j}, z_{3}=z a_{0}$, we get

$$
\begin{equation*}
\int_{\mathbf{R}^{3}}\left|\phi\left(u a_{0}+v a_{i}+z a_{i+j}\right) \phi\left(v a_{0}+z a_{j}\right) \phi\left(z a_{0}\right)\right| d u d v d z=\left|a_{0}\right|^{-3}\left(\int_{-\infty}^{\infty}|\phi(z)| d z\right)^{3} . \tag{3.10}
\end{equation*}
$$

Now it follows from (3.9) and (3.10) that $\hat{f}_{i, j}(u, v, z) \in L^{1}\left(\mathbb{R}^{3}\right)$, and using the Fourier inversion formula we obtain

$$
\left\|f_{i, j}\right\|_{\infty} \leqslant \frac{1}{2 \pi}\left|a_{0}\right|^{-3} .
$$

Thus (3.7) is satisfied. Similarly we can show (3.5).
Let

$$
\begin{equation*}
U_{j}:=n^{-1 / 2} \sum_{t=(j-1)(p+q)+1}^{j(p+q)-q} Y_{t}, \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
Y_{t}:=c Y_{t}^{(x)}+d Y_{t}^{(p)}, \quad Y_{t}^{(\cdot)}=b_{n}^{-1 / 2}\left(K\left(\left(\cdot-X_{t}\right) / b_{n}\right)-E K\left(\left(\cdot-X_{t}\right) / b_{n}\right)\right) . \tag{3.12}
\end{equation*}
$$

Lemma 3.2. Let $p=p(n), q=q(n)$ and $k=k(n)$ be sequences of positive integers such that

$$
k=\left[\frac{n}{p+q}\right], p, q, k \rightarrow \infty, \quad \text { and } \quad \frac{q}{p} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Assume that one of the following conditions (i) or (ii) is satisfied:
(i) $\left(n / b_{n}\right)^{1 / 2} p^{-1} q^{-(1 / 2+\sigma / 2)}=o$ (1) and assumptions (A.1), (A.4) and (A.5) hold true;
(ii) $\left(n / b_{n}^{3}\right)^{1 / 2} p^{-1} q^{-(1+\sigma)}=o(1)$ and assumptions (A.0), (A.4) and (A.6) hold true.

Then

$$
E \exp \left(i u \sum_{j=1}^{k} U_{j}\right)-\prod_{j=1}^{k} E \exp \left(i u U_{j}\right)=o(1) \quad \text { for every real } u .
$$

Proof. Let $\varphi^{(j)}$ denote the characteristic function of $\left(U_{1}, \ldots, U_{j}\right)$ and let φ_{j} be the characteristic function of U_{j}. Then (see (2.15) in Chanda [1])

$$
\begin{align*}
\left|\varphi^{(k)}(u, \ldots, u)-\prod_{j=1}^{k} \varphi_{j}(u)\right| & \leqslant \sum_{j=2}^{k}\left|\varphi^{(i)}(u, \ldots, u)-\varphi_{j}(u) \varphi^{(i-1)}(u, \ldots, u)\right| \tag{3.13}\\
& =\sum_{j=2}^{k}\left|E N_{j} P_{j}\right|=\sum_{j=2}^{k}\left|E N_{j} P_{j}^{*}\right|
\end{align*}
$$

where

$$
\begin{gathered}
N_{j}=\exp \left(i u \sum_{r=1}^{j-1} U_{r}\right)-\varphi^{(j-1)}(u, \ldots, u), \quad P_{j}=\exp \left(i u U_{j}\right), \\
P_{j}^{*}:=P_{j}-E\left(P_{j} \mid \eta_{j}\right), \quad \eta_{j}:=\sigma\left(Z_{(j-1)(p+q)-q+1}, \ldots, Z_{j(p+q)-q}\right)
\end{gathered}
$$

for $j=2, \ldots, k$. We have

$$
\left|E N_{j} P_{j}^{*}\right| \leqslant 2 E\left|P_{j}^{*}\right| \leqslant 2 E\left|P_{j}-\xi_{j}\right|+2 E\left|\xi_{j}-E\left(P_{j} \mid \eta_{j}\right)\right|,
$$

where

$$
\xi_{j}=\exp \left\{\frac{i u}{n^{1 / 2}} \sum_{l=1}^{p}\left(c \tilde{Y}_{j-1)(p+q)+1, l}^{(x)}+d \widetilde{Y}_{(j-1)(p+q)+l, l}^{(y)}\right\}\right.
$$

and

$$
\tilde{Y}_{i, l}^{(\cdot)}=b_{n}^{-1 / 2}\left(K\left(\left(\cdot-X_{t, l+q}\right) / b_{n}\right)-E K\left(\left(\cdot-X_{t}\right) / b_{n}\right)\right) .
$$

Since ξ_{j} is an η_{j}-measurable random variable for $j=1, \ldots, k$, we obtain

$$
E\left|\xi_{j}-E\left(P_{j} \mid \eta_{j}\right)\right|=E\left|E\left(\xi_{j}-P_{j} \mid \eta_{j}\right)\right| \leqslant E\left|\xi_{j}-P_{j}\right|
$$

Moreover, since $|\exp (i a)-1| \leqslant M|a|$ for every real a, we have

$$
\begin{equation*}
\left|E N_{j} P_{j}^{*}\right| \leqslant 4 E\left|P_{j}-\xi_{j}\right| \leqslant \frac{M}{\left(n b_{n}\right)^{1 / 2}} \sum_{l=1}^{p}\left(I_{x}(l)+I_{y}(l)\right), \tag{3.14}
\end{equation*}
$$

where

$$
I_{z}(l)=E\left|K\left(\frac{z-X_{(j-1)(p+q)+l}}{b_{n}}\right)-K\left(\frac{z-X_{(j-1)(p+q)+l, l+q}}{b_{n}}\right)\right| \quad \text { for } z \in \boldsymbol{R} .
$$

By (3.2) and (3.3) we have

$$
I_{x}(l)=\int_{\mathbb{R}^{2}}\left|K\left(\frac{x-u-v}{b_{n}}\right)-K\left(\frac{x-u}{b_{n}}\right)\right| h(u) g(v) d u d v,
$$

where $h:=h_{l+q,(j-1)(p+q)+l}$ and $g:=g_{l+q,(j-1)(p+q)+l}$.
Put

$$
\tilde{I}_{x}(v)=\int_{-\infty}^{\infty}\left|K\left(\frac{x-u-v}{b_{n}}\right)-K\left(\frac{x-u}{b_{n}}\right)\right| h(u) d u .
$$

Ad (i). Substituting $z=(x-u-v) / b_{n}$ and applying (3.2) and (A.1) we have

$$
\tilde{I}_{x}(v)=b_{n} \int_{-\infty}^{\infty}\left|K(z)-K\left(z+\frac{v}{b_{n}}\right)\right| h\left(x-v-b_{n} z\right) d z \leqslant M|v|,
$$

and thus $I_{x}(l)$ is not greater than

$$
\begin{aligned}
& M \int_{\boldsymbol{R}}|v| g(v) d v=M E\left|\sum_{r=l+q}^{\infty} a_{r} Z_{(j-1)(p+q)+l-r}\right| \\
& \leqslant M\left(\sum_{r=l+q}^{\infty} a_{r}^{2}\right)^{1 / 2} \leqslant M(l+q)^{-(3 / 2+\sigma / 2)}
\end{aligned}
$$

This implies that the right-hand side of inequality (3.13) is not greater than

$$
M \frac{k}{\left(n b_{n}\right)^{1 / 2}} q^{-(1 / 2+\sigma / 2)} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Ad (ii). By (A.0) we have $\tilde{I}_{x}(v) \leqslant M|v| / b_{n}$ and
$I_{x}(l) \leqslant M b_{n}^{-1} E\left|\sum_{r=l+q}^{\infty} a_{r} Z_{(j-1)(p+q)+l-r}\right| \leqslant M b_{n}^{-1} \sum_{r=l+q}^{\infty}\left|a_{r}\right| \leqslant M b_{n}^{-1}(l+q)^{-(2+\sigma)}$.
This implies that the right-hand side of the inequality in (3.13) is not greater than

$$
\frac{M k}{\left(n b_{n}\right)^{1 / 2}} b_{n}^{-1} q^{-(1+\sigma)} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Write $\Omega_{u}=\sigma\left(\ldots, Z_{u-1}, Z_{u}\right), u=1,2, \ldots$, and

$$
\begin{align*}
J_{u, t}^{x}(s) & =J_{u}^{x}(s)=E\left\{\left.K\left(\frac{x-s-X_{t, t-u}}{b_{n}}\right)-K\left(\frac{x-X_{t, t-u}}{b_{n}}\right) \right\rvert\, \Omega_{u}\right\} \tag{3.15}\\
& =E\left(K\left(\frac{x-s-X_{t, t-u}}{b_{n}}\right)-K\left(\frac{x-X_{t, t-u}}{b_{n}}\right)\right), \quad u \in N, \\
& Q_{m}=P\left(\left|X_{k}-X_{k, m}\right| \geqslant c_{m}\right), \quad c_{m}=b_{n}^{-\beta}\left(\sum_{r=m}^{\infty} a_{r}^{2}\right)^{\alpha}, \tag{3.16}
\end{align*}
$$

where

$$
\alpha \in\left(\frac{1}{3+\sigma}, \frac{2+\sigma}{2(3+\sigma)}\right), \quad \beta>0 .
$$

Observe that

$$
\begin{equation*}
J_{t-m}^{x}(s)=\int\left(K\left(\frac{x-s-w}{b_{n}}\right)-K\left(\frac{x-w}{b_{n}}\right)\right) h_{m, t}(w) d w . \tag{3.17}
\end{equation*}
$$

Lemma 3.3. Let the conditions (A.4) and (A.5) hold. Then
(3.18) $\sup _{m, t e N} E\left|K\left(\frac{x-X_{t, m}}{b_{n}}\right)-E K\left(\frac{x-X_{t}}{b_{n}}\right)\right| \leqslant M b_{n} \quad$ for every real x;
(3.19) $\left|J_{u}^{x}(s)\right| \leqslant M b_{n}$ and $\left|J_{u}^{x}(s)\right| \leqslant M b_{n}|s| \quad$ for every real s, x and $u \in N$;

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|E\left(Y_{1} Y_{j+1}\right)\right| \leqslant M b_{n}^{2 / 3} \tag{3.20}
\end{equation*}
$$

Proof. Using the triangle inequality it is enough to bound $E\left|K\left(\left(x-X_{t, m}\right) / b_{n}\right)\right|$ and $\left|E K\left(\left(x-X_{t}\right) / b_{n}\right)\right|$. Since

$$
E K\left(\frac{x-X_{t, m}}{b_{n}}\right)=b_{n} \int_{-\infty}^{\infty} K(z) h_{m, t}\left(x-b_{n} z\right) d z
$$

and

$$
E K\left(\frac{x-X_{t}}{b_{n}}\right)=b_{n} \int_{-\infty}^{\infty} K(z) f\left(x-b_{n} z\right) d z
$$

and (3.1), (3.2) hold, we see that (3.18) is satisfied.
By argument as in the proof of (3.18), $\left|J_{u}^{x}(s)\right| \leqslant M b_{n}$. On the other hand, writing

$$
J_{u}^{x}(s)=b_{n} \int_{-\infty}^{\infty} K(z) h_{t-u, t}\left(x-s-b_{n} z\right) d z-b_{n} \int_{-\infty}^{\infty} K(z) h_{t-u, t}\left(x-b_{n} z\right) d z
$$

and using (3.2) we get

$$
\left|J_{u}^{x}(s)\right| \leqslant M b_{n}|s| \int_{-\infty}^{\infty} K(z) d z \leqslant M b_{n}|s| .
$$

Thus (3.19) is satisfied.
It is clear that (3.20) is equivalent to $\sum_{j=1}^{\infty}\left|E\left(Y_{1}^{(x)} Y_{j}^{(p)}\right)\right| \leqslant M b_{n}^{2 / 3}$ for every real x, y. Of course,

$$
\begin{aligned}
\left|E\left(Y_{1}^{(x)} Y_{j+1}^{(y)}\right)\right|= & b_{n}^{-1 / 2}\left|E\left(Y_{1}^{(x)} J_{1}^{y}\left(R_{j+1, j}\right)\right)\right| \\
\leqslant & b_{n}^{-1 / 2}\left|E\left(Y_{1}^{(x)} J_{1}^{y}\left(R_{j+1, j}\right) I\left\{\left|R_{j+1, j}\right| \leqslant c_{j}\right\}\right)\right| \\
& +b_{n}^{-1 / 2}\left|E\left(Y_{1}^{(x)} J_{1}^{y}\left(R_{j+1, j}\right) I\left\{\left|R_{j+1, j}\right|>c_{j}\right\}\right)\right| \leqslant M b_{n} c_{j}+M Q_{j}
\end{aligned}
$$

by (3.16) and (3.19). Using the Chebyshev inequality we have

$$
\begin{equation*}
Q_{m} \leqslant \sum_{r=m}^{\infty} a_{r}^{2} / c_{m}^{2} \quad \text { for every } m \in N \tag{3.21}
\end{equation*}
$$

The choice of $\beta:=\frac{1}{3}$ yields (3.19).
Lemma 3.4 (Liapunov condition). If $\tilde{U}_{1}, \ldots, \tilde{U}_{k}$ are independent copies of (3.11) and

$$
\frac{p}{n^{1 / 2}} b_{n}^{1 / 2} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

then

$$
\begin{equation*}
\sum_{j=1}^{k}\left(\operatorname{Var}\left(\sum_{i=1}^{k} \tilde{U}_{i}\right)\right)^{-2} E\left|\tilde{U}_{j}\right|^{4} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{3.22}
\end{equation*}
$$

Proof. Since $\operatorname{Var}\left(\sum_{i=1}^{k} \tilde{U}_{i}\right)=k E U_{1}^{2}$ and (3.20) implies $E U_{1}^{2} \geqslant \sigma^{2} p / 2 n$ for sufficiently large n (see Chanda [1], (2.22)), the left-hand side of (3.22) is equal to

$$
\mathcal{O}\left(\frac{n}{p} E\left|\tilde{U}_{1}\right|^{4}\right)=\mathcal{O}\left(\frac{n}{p} E\left|U_{1}\right|^{4}\right)=\mathcal{O}\left(\frac{1}{n p} E\left(\sum_{t=1}^{p} Y_{t}\right)^{4}\right)
$$

Following Chanda [2] we write

$$
\begin{equation*}
E\left(\sum_{t=1}^{p} Y_{t}\right)^{4} \leqslant M\left(p E Y_{1}^{4}+p \mathrm{I}+p^{2} \mathrm{II}_{1}+p^{2} \mathrm{II}_{2}+p^{3} \mathrm{III}\right) \tag{3.23}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathrm{I}=\sum_{i=1}^{p}\left(\left|E\left(Y_{1}^{2} Y_{i+1}^{2}\right)\right|+\left|E\left(Y_{1} Y_{i+1}^{3}\right)\right|+\left|E\left(Y_{1}^{3} Y_{i+1}\right)\right|\right) \\
\mathrm{II}_{1}=\sum_{j=1}^{p}\left(\left|E\left(Y_{1}^{2} Y_{i+1} Y_{i+j+1}\right)\right|+\left|E\left(Y_{1} Y_{i+1}^{2} Y_{i+j+1}\right)\right|\right), \\
\mathrm{II}_{2}=\sum_{j=1}^{p}\left|E\left(Y_{1} Y_{i+1} Y_{i+j+1}^{2}\right)\right|, \\
\mathrm{III}=\sum_{w=1}^{p}\left|E\left(Y_{1} Y_{i+1} Y_{i+j+1} Y_{i+j+w+1}\right)\right|
\end{gathered}
$$

From (3.1) and (3.5) we have $E Y_{1}^{4}=\mathcal{O}\left(b_{n}^{-1}\right)$ and $\mathrm{I}=\mathcal{O}(p)$. Consequently,

$$
\frac{p E Y_{1}^{4}}{n p}=\mathcal{O}\left(\left(n b_{n}\right)^{-1}\right)=o(1) \quad \text { and } \quad \frac{p \mathrm{I}}{n p}=\mathcal{O}\left(\frac{p}{n}\right)=o(1)
$$

Moreover, since $Y_{1}^{2} Y_{i+1}$ is an Ω_{i+1}-measurable random variable, we obtain

$$
\begin{aligned}
& \quad\left|E\left(Y_{1}^{2} Y_{i+1} Y_{i+j+1}\right)\right| \\
& \leqslant \\
& b_{n}^{-1 / 2}\left|E\left(Y_{1}^{2} Y_{i+1} J_{i+1}^{x}\left(R_{i+j+1, j}\right)\right)\right|+b_{n}^{-1 / 2}\left|E\left(Y_{1}^{2} Y_{i+1} J_{i+1}^{y}\left(R_{i+j+1, j}\right)\right)\right| \\
& \quad+b_{n}^{-1 / 2}\left|E\left(Y_{1}^{2} Y_{i+1}\right)\right|\left|E J_{i+1}^{x}\left(R_{i+j+1, j}\right)\right|+b_{n}^{-1 / 2}\left|E\left(Y_{1}^{2} Y_{i+1}\right)\right|\left|E J_{i+1}^{y}\left(R_{i+j+1, j}\right)\right| .
\end{aligned}
$$

From (3.19) and (3.21) we have

$$
\begin{aligned}
& \left|E\left(Y_{1}^{2} Y_{i+1} J_{i+1}^{x}\left(R_{i+j+1, j}\right)\right)\right| \\
& \leqslant
\end{aligned}\left|E\left(Y_{1}^{2} Y_{i+j+1} J_{i+1}^{x}\left(R_{i+j+1, j}\right) \mathrm{I}\left\{\left|R_{i+j+1, j}\right|>c_{j}\right\}\right)\right|
$$

and
$\left|E J_{i+1}^{x}\left(R_{i+j+1, j}\right)\right| \leqslant M b_{n} c_{j}+M b_{n} Q_{j} \quad$ for every real x.
By (3.5), $b_{n}^{-1 / 2} E\left|Y_{1}^{2} Y_{i+1}\right| \leqslant M$ and we have

$$
\left|E\left(Y_{1}^{2} Y_{i+1} Y_{i+j+1}\right)\right| \leqslant M b_{n} c_{j}+M b_{n}^{-1} Q_{j}
$$

Similarly, we can show that

$$
\left|E\left(Y_{1} Y_{i+1}^{2} Y_{i+j+1}\right)\right| \leqslant M b_{n} c_{j}+M b_{n}^{-1} Q_{j}
$$

Choosing $\beta:=\frac{2}{3}$, we get $\Pi_{1}=\mathcal{O}\left(b_{n}^{1 / 3}\right)$.
By (3.7), $\left|E\left(Y_{1} Y_{i+1} Y_{i+j+1}^{2}\right)\right| \leqslant M b_{n}$ and $\Pi_{2}=\mathcal{O}\left(p b_{n}\right)$. Then

$$
\frac{p^{2} \Pi_{1}}{n p}=\mathcal{O}\left(\frac{p}{n} b_{n}^{1 / 3}\right)=o(1), \quad \frac{p^{2} \Pi_{2}}{n p}=\mathcal{O}\left(\frac{p^{2} b_{n}}{n}\right)=o(1)
$$

Finally,

$$
\begin{aligned}
& \left|E\left(Y_{1} Y_{i+1} Y_{i+j+1} Y_{i+j+w+1}\right)\right| \leqslant b_{n}^{-1 / 2}\left(\left|E\left(Y_{1} Y_{i+1} Y_{i+j+1} J_{i+j+1}^{x}\left(R_{i+j+w+1, w}\right)\right)\right|\right. \\
& \quad+\left|E\left(Y_{1} Y_{i+1} Y_{i+j+1} J_{i+j+1}^{y}\left(R_{i+j+w+1, w}\right)\right)\right| \\
& \quad+\left|E\left(Y_{1} Y_{i+1} Y_{i+j+1}\right)\right|\left|E J_{i+j+1}^{x}\left(R_{i+j+w+1, w}\right)\right| \\
& \left.\quad+\left|E\left(Y_{1} Y_{i+1} Y_{i+j+1}\right)\right|\left|E J_{i+j+1}^{y}\left(R_{i+j+w+1, w}\right)\right|\right) \leqslant M b_{n}^{2} c_{w}+M b_{n}^{-1} Q_{w} .
\end{aligned}
$$

Choosing $\beta:=1$ we have

$$
\mathrm{III}=\mathcal{O}\left(b_{n}\right), \quad \frac{p^{3} \mathrm{III}}{n p}=\mathcal{O}\left(\frac{p^{2} b_{n}}{n}\right)=o(1)
$$

using the assumption of the lemma.
Define $V_{j}=n^{-1 / 2} \sum_{j(p+q)-q+1}^{j(p+q)} Y_{t}$ and $W=n^{-1 / 2} \sum_{k(p+q)+1}^{n} Y_{t}$.
Lemma 3.5. Let assumptions (A.4) and (A.5) hold true. Then

$$
\begin{align*}
k(n) \operatorname{Var} U_{1} \rightarrow & c^{2} \sigma_{x}^{2}+d^{2} \sigma_{y}^{2} \quad \text { as } n \rightarrow \infty, \tag{3.24}\\
& \sum_{j=1}^{k} V_{j}+W \xrightarrow{\mathscr{G}} 0 . \tag{3.25}
\end{align*}
$$

Proof. Clearly,

$$
k \operatorname{Var} U_{1}=\frac{k}{n} E\left(\sum_{t=1}^{p} Y_{t}\right)^{2}=\frac{k}{n} \sum_{i, j=1}^{p} E\left(Y_{i} Y_{j}\right)+\frac{k}{n} p E Y_{1}^{2}
$$

and, by (3.21),

$$
\left|\frac{k}{n} \sum_{i, j=1}^{p} E\left(Y_{i} Y_{j}\right)\right| \leqslant \frac{M k}{n} p \sum_{j=1}^{p}\left|E\left(Y_{1} Y_{j+1}\right)\right| \leqslant M b_{n}^{2 / 3}
$$

since $k p / n \rightarrow 1$. Moreover,

$$
E Y_{1}^{2}=c^{2} E\left(Y_{1}^{(x)}\right)^{2}+d^{2} E\left(Y_{1}^{(y)}\right)^{2}+2 c d E\left(Y_{1}^{(x)} Y_{1}^{(y)}\right)
$$

and $E\left(Y_{1}^{(x)}\right)^{2} \rightarrow \sigma_{x}^{2}$ for every real x. In order to complete the proof of (3.24) it is sufficient to show that $E\left(Y_{1}^{(x)} Y_{1}^{(y)}\right) \rightarrow 0$ as $n \rightarrow \infty$. Obviously,
$\left|E Y_{1}^{(x)} Y_{1}^{(y)}\right|$
$\leqslant b_{n}^{-1} E K\left(\frac{x-X_{1}}{b_{n}}\right) K\left(\frac{y-X_{1}}{b_{n}}\right)+b_{n}^{-1} E K\left(\frac{x-X_{1}}{b_{n}}\right) E K\left(\frac{y-X_{1}}{b_{n}}\right) \leqslant M b_{n}+I_{n}$,
where

$$
I_{n}:=b_{n}^{-1} \int_{-\infty}^{\infty} K\left(\frac{x-s}{b_{n}}\right) K\left(\frac{y-s}{b_{n}}\right) f(s) d s
$$

I_{n} is written as

$$
\int_{-\infty}^{\infty} K(z) K\left(z+\frac{y-x}{b_{n}}\right) f\left(x-b_{n} z\right) d z=\int_{|z| \leqslant z_{n}} \ldots d z+\int_{|z|>z_{n}} \ldots d z,
$$

where z_{n} is an arbitrary real sequence such that $z_{n} \rightarrow \infty$ but $z_{n} b_{n} \rightarrow 0$. Then

$$
\int_{|z| \leqslant z_{n}} \ldots d z \leqslant M \int_{|z| \leqslant z_{n}} K\left(z+\frac{y-x}{b_{n}}\right) d z
$$

in view of (3.1) and the boundedness of K. Substituting $u=z+(y-x) / b_{n}$ we have

$$
\begin{aligned}
& \int_{|z| \leqslant z_{n}} K\left(z+\frac{y-x}{b_{n}}\right) d z \leqslant \int_{|u| \geqslant M b_{n}^{-1}} K(u) d u=o(1), \\
& \int_{|z|>z_{n}} \ldots d z=\mathcal{O}\left(\int_{|z|>z_{n}} K(z) d z\right)=o(1) \quad \text { and } \quad I_{n} \rightarrow 0 .
\end{aligned}
$$

Next, by (3.20),

$$
E\left(\sum_{j=1}^{k} V_{j}+W\right)^{2} \leqslant M \frac{k q+n-k(p+q)}{n}\left(E Y_{1}^{2}+\sum_{j=1}^{\infty}\left|E\left(Y_{1} Y_{j+1}\right)\right|\right)=\mathcal{O}\left(\frac{q}{p}\right)=o(1)
$$

and (3.25) is satisfied.
Proof of Theorem 2.1. It is clearly sufficient to consider the case $s=2$. According to the Cramer-Wold device it suffices to prove that whenever $(c, d) \in \boldsymbol{R}^{2} \backslash\{\mathbf{0}\}$

$$
\begin{equation*}
(c, d)^{T} \circ T_{n}(x, y) \xrightarrow{\mathscr{T}} N\left(0, c^{2} \sigma_{x}^{2}+d^{2} \sigma_{y}^{2}\right) \tag{3.26}
\end{equation*}
$$

where \boldsymbol{T} denotes the vector transposition and o the scalar product in $\boldsymbol{R}^{\mathbf{2}}$. Consider a partition of the set $\{1, \ldots, n\}$ into consecutive "large" blocks of size p and "small" blocks of size q. If we take

$$
p \sim n^{1 / 2} b_{n}^{-\alpha}, \quad \alpha:=\frac{1}{2}-\frac{\sigma}{4}, \quad q \sim n^{1 / 2} b_{n}^{-\delta}, \quad \delta:=\frac{1}{2}-\frac{\sigma}{2(\sigma+1)},
$$

then we see that conditions (i) and (ii) of Lemma 3.2 hold. Thus it follows from Lemma 3.2 that in order to arrive at the asymptotic distribution of $\sum_{j=1}^{k} U_{j}$ we can assume that the $U_{j}, j=1, \ldots, k$, are i.i.d. random variables. It follows now from Lemmas 3.4 and 3.5 that

$$
(c, d)^{T} \circ T_{n}(x, y)=\sum_{j=1}^{k}\left(U_{j}+V_{j}\right)+W \xrightarrow{\mathscr{O}} N\left(0, c^{2} \sigma_{x}^{2}+d^{2} \sigma_{y}^{2}\right) .
$$

Remark. Theorem 2.1 holds true when conditions (A.1) and (A.5) are replaced by (A.0) and (A.6), respectively. This follows from the reasoning similar to that in the proof of the main result. Observe that in this case Lemmas $3.2-3.5$ hold true since

$$
\sum_{r=j}^{\infty} a_{r}^{2} \leqslant\left(\sum_{r=j}^{\infty}\left|a_{r}\right|\right)^{2}=\mathcal{O}\left(j^{-(4+2 \sigma)}\right) .
$$

We omit the details.
Since (A.0) and (A.2) imply (A.1), we have
Corollary 3.6. Assume that (A.0), (A.2), (A.4), and (A.5) hold true. Then the assertion of Theorem 2.1 remains valid.

Acknowledgement. I would like to thank Jan Mielniczuk for his help.

REFERENCES

[1] K. C. Chanda, Density estimation for linear processes, Ann. Inst. Statist. Math. 35 (1983), pp. 439-446.
[2] K. C. Chanda, Corrigendum to "Density estimation for linear processes", unpublished note.
[3] L. Giraitis, H. L. Koul and D. Surgailis, Asymptotic normality of regression estimators with long memory errors, Statist. Probab. Lett. 29, No 4 (1996), pp. 317-335.
[4] M. Hallin and L. T. Tran, Kernel density estimation for linear processes: asymptotic normality and optimal bandwidth derivation, Ann. Inst. Statist. Math. 48 (1996), pp. 429-449.

Institute of Applied Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: konfurm@mimuw.edu.pl
1

[^0]: * Institute of Applied Mathematics, Warsaw University. The work was supported by KBN grant 2 P03A 01611.

