
OF KE D E N S m  ESTmATOR FOR &"1R86E$S 
ER SHORT-RmGE DEPENDENCE 

Abstract. Wc mnf;i&r the paablem of density estimation for 
m 

a one-sided linear prosees X,  = zt _ , a, Z, , with i.id square iategra- 
Me kovat ims - We prove that under weak contritions on 
(ai)&, which imply short-range dcpmdeacc of the fineax process, 
fit+&me-nsionaE distributicms of kernel density estimte are asymp- 
totically multivariate noma!. Err pafticular, the rmult holds for 
la,j - @(a-*) with. a :, 2, which is much weaker than previously 
k n o w  suK~ient conditions for asymptotic nomality. Ma cuoditians 
on baodwidths b, are assumed beside8 b, -r O and rib, + w. The p r o d  
usm CChrtadaSs 111, [2] condidoning twbiqwe as wclf as Bernsteint 
"large block-small blocP argment. 

1.lIa&olmedoa~, Let X I ,  X, , . . . , X ,  be ~t ~011~ecutive observations of a line- 

where (Z,)s -, is an imovation process co&ting of i,i.d- random ve.:ibles 
with mean zero and finite varianm. Aaume that X ,  h s  a probability density J; 
which we wish to estimab, As aa eshator af f we will  consider the sknadad 
kernel type! estimator (see e.g. Chmda El]) giv~n by 

far XEE, wher:~e bm k a aquen(3t: of po~iti'i'c nulnblers s u ~ h  that b, -. O and 
rab, -+ cm as n -+ m, and K is a bounded density fmction, 

Chanda [I], 6121 skavcred hat one-dhensiand distsibutians off;, ase wymp- 
totially nzllrmd under a geaerd cendi.eisn on (a,)K, and provided E [Zl[i < ca 
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for some E 3 0, 6,  -+ 0 but rab, --+ m, and assuptions (rh.1) and (A4) (listed in 
CO our Section 2) hold. ?he mndition on (adso is zrsi r /o,r = @ ( j-3 tor some 

8 3  1, where cx=6/2(1+6) and S ==G i f 8 9 ~ < 2  and 6 = 2  2 ~ 3 2 ,  En par; 
ticdar, if the innovations have a firxite seeond rnslgeat [E  = 21, it yields 
x:mir lnriu3 = @ ( jn@),  which is much stronger than conditions (A.5) and (A.6) 
assuaned in Section 2. En thi: case of innovations ha*g Gnite second moment, 
Hdin  and Tran [q proved asymptotic multivariate norrndity of finite-dimen- 
sionai dist-ributions sf scaled and centered S, provided thr t  assumptions (A.0) 
and (A.3) hold, the characteristic function of Z1 belongs to C (R], the emf- 
ficients of the h e a r  proass X, tend to vers in such a way that la,l .= O" (r-t4+wb) 
for some cr > O as r -+ oa a d  the bandwidth b, tends to aei-0 suEciently slowly 
sa that 

Pkbnf13+2rr)/(J+2sl (log lag PE)-' -+ a. 

The aim of the present note is to show that under assumptions on the di- 
tribution of Z ,  and K ,  which are comparable to those of Haflje ;u~d %ran [4], 
RI;litr:-dirnensiotlii1 dist~butions of f ,  are asymptoticsllly normal far a much 
wider class of &near processes. Moreover, in mntrast ta Hdin and Tran [43. 
the sole conditions hposed on the b a n d ~ d & s  are b, --+ O and ab, -+ GO, which 
are identical t s  the usud condition imposed in the &dependent case. 

2. brsmp~one aod f k  shkemeat of tk(: maim g.e$ait, 

[&.a) The kernel K satisfies the Ljpscbitz csndi.eion. 

(A. 1) Par ewty real a, f 2 j JKly S- a) - K @)I Ay 4 M Jar, where M denotes 
a. genehc constant, 

(A.2) sagport of K is compact. 

(h.3) Q 1x1 : = sup (K (y): ]yj 3 jxl) b integrable. 

(~4.4) I:, dU -=' m, W ~ P R  t$ denales the characteristic funGlioa 
of Z1, 

(A.5) z:sjd = @(j-'""') for some 0 0. 

(A.6) T" jaJ .= @ ( j "  (Z"n3 for some tr 0, 

We now state the main result of the p;iper. 

T E E C I ~  2.1. Suppose assumpfions (kl], (icl.4) and (ASS) hold f m  a ~ d  
xi . . . , x, are s Bis tinct point8 1~$" EL Then 

whew Z: PS a diclgraml nrat~tx with diqoraal &mats = f '(x J jy, kc2 (tt)du 
fir i==- 1, ..., 8.. 
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% Some aaxilliary xmuEi&. Lei denote the supremum norm in the 
space under cansideratian, 

(3.1) the probability density f Is botarrded a d  eonri~auous; 
l -  a 

(3.2) the deasity h,,, qf Xl,$ : = x,,O aF Z'Ir stttisJies the Lipcha'tz con- 
dition f o ~  old 1 > O and supzsnr llkl,t]fm G M ; 

(3.3) the density gl, of RE,, : = XT, - X,, - xrr, n,Z, -, exists for all I > 0; 

(3.4) irfre joint probability de~asity ( x ,  y)  of (XI, Xi+ ,) existsfor aIL j E N ,  and 

(3.6) the joint probability density .fiVj (x, y ,  Z) qf (Kt, Xi+ 1 ,  X i+ j+  r) existsfofor 
all i,  EM, and 

Pr o of, The proof of (3.1) is straighWfoswar& and therefore will 'm omitted. 
Relation (3.21 foUaws froan (2.6) in Charrda [If. For a &xed  EN we have 

Substituhng z = a, us we get 

and thus the characteristic function crf RtZ1 belong8 to 1: (R)? and ( 33 )  fdows. 
To proate (3.4) and (3.6) it staffims tu show that far any i -: 3,2,  . . . and 

any j = 1, 2, . . , the charaskistic functirn of (XI, Xj, ,) belong to L' (RZ) 
and the ~Praractcristie hnctisn A - of (XI, Xi+ Xi+J+ ,) bdongs tn L j  (w~) ,  

'! We use thc method employed in G~r~sitis et d, [3]. Let us note first that for m ~ y  
g~ N 

(3.8) if& ( ~ 3  vll liP Cuao + aQj )  4 ( ~ ~ o l l  
andl for any e ^ , j ~ M  



w h ~ e  aj = O for j < 0 by defmition, Substi'tuting zl = un,+ oai+zGlW 
Za = uacla-l-2aj, z ,  = za,, we get 

m 

(3-10) [ I ~ c u ~ ~ + w ~ + z ~ + J ~ ~ w ~ + x G ~ ) $ I Z ~ ~ ) ~ ~ ~ U ~ ~ = I ~ ~ - ~ ~  S I ~ ~ I Z I I ~ Z ) " ,  
R" -Lo 

Now it foaows from (3.9) a d  (3.w that JFi(u,  v ,  ~ E S !  (R'), and uskg the 
Fourier inversion .fornula w obtain 

Thus (3.7) is satisfid. Simaaly we can show (3.5). 

b r  

LEMMA 3.2. Let p = p (n), q = g (n) a d  k = k (n) be seguazces of positive 
integ?gerrj such thag 

Assume that mzty of the following coditioras (i) or is satisfied: 
(i) ( ~ / b J l / ~  p- q--f112-5u12j = ~ ( l )  and mmmp~ions (A-I), (A.4) ard 

hold tsw; 

(ii) p-I  q-r"ffl = o (1) ORQ m s m p t i o n ~  (A.0)) (44.4) and CA.61 h ~ l d  
true. 

Then 

Proof. k t  pm denote the ck;asa~teristic Function of [U,, ..,, Ui) and kt 
pi be the charirckristic funcLiloa of Fi;, Then (see (2.15) in Chanda [I 3) 



where 

pf := pddE(k;I rfdr q j : =  @(Zti-~)w+t.ql-4+ 1 5  .*., Z j ( p + q ) - p )  

for j == 2, ..., k, VGFe have 

IgXrjql $2E)FT1 $ 2 ~ 1 ~ ~ - l j ~ + 2 ~ [ r j - ~ ( i P j I ~ ~ ) ~ ,  

where 

S h e  tj is an g,-mmsnrable ranclom variable far j .=; I, .. ., k, we obtain 

Moreover, since lexp (it$- PI S M la1 far every real a, we have 

Ad (i). Substituiing E. =. fx - u - v)/b, afld applying (3.2) and (8-1) we have 



and thus l',(a) is not greater than 

This irnp1i.s that the right-hand side of inequality (3.13) is not &Eater than 

Ad (ii). By (A.6) we have fv) g M lvl/bn and 

This imphes that the right-hand side sf thte inequality in f3.13) is not gr~at.er than 

where 

LBMU 3.3. Let the condilions (Pe.4) and (AS)  h i d ,  Then 

(3.19) I.?: (s)l d 1Mb, and XJ:(s)l d Mb, 1x1 f i r  eeery reaI s, x adad rr E N; 
;aa 

(S.20) [E(Y1 J;+ ,)I G ~ b ; " " .  
j =  1 



Proaf, Using the trirvlgIe hequality if is enough to bound 
E [ K  ((x - ~ , , ~ / b , ) l  and [EK ((x - x;)/$~)[, Since 

and (3.11, (3.2) bald, we see that (3.18) is satisitied. 
By argument as in the proof of (3.181, (s)i G Mbn . On the other hmd, 

writing 
03 m 

J:[s) = 6, 1 K f ~ ) h ~ - ~ , , ( ~ - s - b , z ) d z - b ,  1 K(a)h, - , , (x-b ,z )ds  
-a - m  

and using (3.2) we get 

m 

1st ($11 G Mb, lsl J K (z) dz d Mb, Is!. 
- m  

Thus (3-19) is satisfied. 
It is clear that (3.20) is equivalent to XJ?= IE (Yjl) Yn 4 Mb:IS for every 

sea1 x, y. Of course, 

by (3*16) and (3.113). Using the Ghebyshev inequality we have 

The choice of @:= 9 yields (3.19), 

LWMM 3.4 (L~B~WOV ~011Clition). If q, . . ., f7k are idpepadefit copies of 
(3.1 1) o d  

then 



P r o of. Sina ~ a r  E;=, - kEU: and (3-20) implies EU? > 02p/2n 
for swGciently large n (see Gbandir El], (2.22)), the left-hand side OF (3.221 
is equd to 

Following Chmda [2 ]  we write 

From (3.1) aad (3.5) we have EI'? = Q(b;') and I = BCp), Comequently, 

-- PI pEYt-B((nb.)- ')=o(l)  and - = O  
@P E P  

From (3,IB) and (3.21) we have 

]s(vf K + I  J?+I @ i + j + r , j l ) /  

G IiSfY? ~ + j t 1 J i c + 1 ( R i i j + ~ , J ~  (IRi*j+l,jlt CII)E 
cIE(Y:X+~J;~~JRE~ j-i~~3~ZI'i+j+1,il 6 CII)~ 

t< M ~ , - ~ ~ Q , I - M C ~ ~ ~ , E I Y :  

IEJr+ (Ei .+ ja  G Mk, c, + Mb,  Q j  for every red x .  

By (3-51, b;'/'EIYf G M  and we have 
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Similasly, we can show that 

lB(K YL-1 &+j+~ll G M b s c j + M b i l  QJ= 
Choosing P:== & we get Ill = B(b,1I3). 

By (J,?), IE(Y; V;:+, Y?+j+x)l G 1Wb, and TI2 - Q(pbn). T k ~ n  

IEbY, 'X+I Y ~ + J + I  k ; + j + w + , ) l  G b,1'2(I&(q % + I  %+j+lJf+i+i (~~+jtw+~,wl)l 

+IE(& F;+I X + ~ * I J ! + ~ + I  (R i+ j+w+l ,w) ) l  

+ WCY; K-+ i %+,+dl IEJf+j+l (Ri+ j+w+~,w)l 

+IE-~"{& "11 &+j+dl ~ ~ ~ ! + j + i . ~ ~ i + j + w + ~ , w S f )  6 ~ b : e w + ~ l r , l ' ~ ~ *  

Choosing jl: = 1 we have 

using the assumption of tbe lernma. 
&fine 6 = n-1" ~'"" 

j fp+q)-q+l  
and W =  n-u2z I  t p + q , , ,  Y,. 

3.5, Let mstlmptioll~ (A.4) and (A.5) ksld m e ,  Tkn 

Mk P ' E(%T)l G -p I E ( 6  G ~ b : / ~  
i , j=  1 " j -r  

and Ef V r l ) L  cr: for every real x, In order to cr~ompleke the proof of (3.24) it is  
sut%icient te show that E(IVT) Hyl) 4 0  as rz -+ ca. ObMously, 



where 

I ,  is written as 

where z, is an abitsary red sequence such tkdt z, -+ co but z, b, -P 0, Then 

in view of (3,E) and the boundedmss .of K .  Substituting u = z+b-sc]/b, 
we have 

and (3.25) is satisfied. 

Proof af  Theorem 2'1. It is deuly sfiderai to consider the case s = 2. 
Accordjit~g to the Cramer-Wold device it sates to grove that whelaevw 
[t., d ) ~ R " j ( @ )  

(3.2f5-l (6, d)=a T,(x, y) $M(o,  c%$+d2a,"),  

when Tdeinates the vector transpositiarz aslid o thc scalar product in RZ. Can- 
slider a, padition of the set (1, . . ., n) into conslecuti\re "7axge" blocks of size 
p and "%maam blocks of size q. If we take 

thm we gee; that waditions (i) md (ii) of Lemma 3.2 hold, Thus i t  falfaws from 
Lemma 3.2 that in order to arrive at ihe aq~mptotic distribution of E : ~ ,  U, we 
can assme  that the Uj,j --- 6 ,  , . ., k, are i.i.d, random vzririnbles. It fallows now 
from Lemmas 3-4 and 3.5 that 



W emark, "Fbeorem 2.1 holds true wha .~  coxaditi~as (A.1) and (A.5) are 
replac& by (A*@) and (A,&), respectivdy, Tbis  follows f r m  the reasoning simi- 
lar to that in the proof I>E the main result. Obsezve that in this case Lem- 
mas 3.2-35 bold true ~inct: 

We omit the details;. 

Since (A.0) and (A21 igzgly [A,I), we have 
6 0 ~ 0 ~ ~ 6 9 2 ~  3.6. Assume that {A-O], (A.21, (b.l;F), alzd (A.5) hold m e .  Then 

the assertion of Theorem 2.1 remains WEM, 
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