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Abstracr, We study thc almost sure and moment srabilily of 
a claxs of srachnstic partial diflerential t?quations and we present an 
ioFmite4imansiond vesion of a theorem proved fix stochmastic ordina- 
ry diffcrentjal equations by Arnold, Ocljeklaus aad Pardoux. We aE8o 
iowstigagate how adding a tarm with white noise innueaw the stabifity 
or a deterministic system. The ou.t.com is quite surpri&;ing, It turns out 
that regardicss whether the deteminivtie system was stable or unsta- 
ble, after d d i n g  a term with sumciently Imp noise, ir bccomm pathwise 
exponentially stable and uns%ble in the p tb  mean far p > 1 .  

Key war& sred phaees: Siochii~ti~ partial differenflal equation, 
almost sure ~t,tabifity, moment stability, d~tennjnistic: partial differen- 
tial tquatian, stabilizagon by noise, destabil~ation by aoise. 

I, X l l a t r d ~ t i ~ n ~  The prrrpost: of this wpm is  to study the almost sure and 
moment stability of a dass of stochastic partial dserential aquatfons and bow 
the white noise influeom the stability of a deterministic system. In previous 
papers we have akeady studied the problem of pathwise exponerltial stabilirza- 
tiran of deterministic systems in Hilbert spaces by noise - see r6-j and [73. 

We first need same preparation in the detemjistic s~t-up. We study the 
detet~lristic Dirichlet problem for the following equation [far a. formal setting 
see 3.ectim 2): 

au/ar = Ats, 

with the initial mndltioa f ,  where thr: operator A is as irr Section 2. The 
Lya:punov exponent of the deterministic system is defined as 

we prove that. it exists as a limit, 
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Then, in Section 3, we consider the Dirichlet problem far the fallowi~g 
stoebastic perturbarlot~ of tlie above equation: 

crda{t) = Aa(r)dt  +cru(t.)dfl(t)i, 

with the initial condjtiau jr; where ) is a one-dimensional real-valued Wiener 
process and a ?s; O is a const-ant. The dmost sure Lyslpuaov exponmt of the 
stochastic system is defined as 

we prove that is exists as a, Jlimit and is aon-random. The fdowiag fomda 
holds (see meorem 2): 

A; ( f )  - 1: If, w'J = #Idct (f') - * C f Z  EL.$. 

Next we consider the Lyapunov exponent aE She p-bh moment of the 
salzrtion to the stochastic problem. For p > 0 it is defined as: 

We prove that it exis& as a limit and the dbUowhg equality hat& (see '89heol-em 3): 

In Section 3 we also derive a modification of Theorem 2.1 from C2J - see 
Theorem 4. 

fn %ction 4 we conclude that: 

gty-)-, --a (n -, a), 

it follows that for B big enough the ~tochastis system is pathwise exgomentiUy 
stable; 

for p < l 

it drollows that far B big ee~ugk  the stsehastic sys t~m is etabk in the p t h  m a n ;  
far p = 3 

gb(l,P)=Jd5tUL), @>O, 

i t  faloUouvs tbar adding a term with white noise does not ilrffuenee? the p-th mcm 
stability: 

for p > 1 

it febXows; that for a big enough the system b unstable in the p-th mean. 
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All that holds regardhss whether the deterministie system was stable or 
unstable and it is quilc: surprising 

In Section 5 we provide an example. 
In Section 6 we consider the stochastic problem with the it8 diEerantia1 

replaced by the Strataaovich &Resesltial. In that case the almost sure Lyaptl- 
nov exponent of the s toc l r a~c  system is equal to the deterministic one, i.e. 
addkg the stochastic term does not i d u e n a  the stability. C ~ U  the other hmd, 
we have destalrl1iz;tlion in the p-th mean for any p 4 0, For g > 1 the de- 
stabilization is even faster than ia the case of the It6 differential. 

2. The determainbtk psaftsIem, Let @ be a bounded domain in Rd: a ball or 
a set that can be mapped into a ball by a regular mapping of elas  C2(@. 

We will study the folIowhg parabolic equation: 

(11 der/dt = Au, 

where ts = u ( t ,  x), t E R' (R-"- denotes the interval [a, m)), x E 0. We set the 
iraitial condition 

and the DiricInlet bnundwy condition 

The fun&ian f in (2) takes real values. We consider only &terninistic 
real-valued initial ccr nditio~s f E 3 (A)  - N & (8) n H z  (0). 

The aperator A is given. by the formula 

where the cacEcien& satis& the following assumptiaas: 
(el) a, ate BiEerentiabk, 
(C2) a, = ajip 
(C3) fi, t' G Citiaij titj < P= C2. 
CeLf) /aafjr'dxk[ ,*CL~, 

CCSE I4 d ~ 4 ,  

wberu: f ig are comfmts and pl > 0, I -- 1 ,  . . ., 4. 
It is easy to v e ~ f y  that the operator A symmetriic on the space H& (@]. 
k t  W;!, (8) be s subspace of W 2  (03, wlzerc the fundions 'beSamxgislg ta 

C2 (@) and vaaisbbg on ijO ate cZensgi Later on we will prove that in our case 
w$,,(a) =. $6; (0) n NVCB). 

There: exists an artbonormal basis of I? (@), rej), 1 - 1, 2 ,  . . . , consisting of 
tha eigenvect-tors of tile operator A C s e ~  [8], p. 181) such that 

~ o ; -  - AAjej, where hi .li -or, ( j  --, m) 



and 
( e k l  er> = V a  -&IZ a!, 

where (a, ~4) '~ '  i~ eyuivdalent to the norm En w$-, (0). The constant & b chosen 
S U G ~  that & < kIP> k" 4 ,  2 9  v . r  

&,EM= 1.  Under ow msumptitlpzs we kascxue thefolbwing c~~mactc~izatiop~ of 
t h  space Wf,o(@): 

Pro of Obviously, ((A, - A$-' ed) is an odhanomal basis of Wi50 (0) 
with the scalar product (., .). 

If 26 E I? I#), we can d t e  

and the equality fcs.Ilaws. is 
The following propasition may be hewn, but as we are unable to provide 

a reference, we present our own proof. 

mo~os~mo~  1. UtabZer our assuqtisns the following equality holds: 

Pro o& Obviausly, we have 

follows from the trace ~ e o r e m  (see [9J, g. 48): 

Tma3wsu (trace thearm), Let 0 be a bounded set of class CL. There exists 
a lineax tpcontinnuous aperator yo E Y (B"(O), I? (dB)) such that 

y,u=er(,, for all u ~ C l { @ ) ~  

We have 

Since g, u, = 0,1t, is continueus in H"@) and u, --c aa in Id' (Or, we d d u m  
that 

t8lda 0. 

In the ciksa of bounded regism with smooth boundmy, u ~ H r f  (O) is quiaf- 
dent to t-he conditions IA E hlZ I@) and ula, .-: O (see [dl, p. If 21. Therefarc we 
crmclude that u E fJ& (a), which proves (* t). 



The in~lusions (*) and I* *) give 

Let us now take u E Hi (0) r, ElJ  (@) The operator A is symmetric on the 
space H i ( @ )  and therefore is dosable (see 151, p 269). We haw 

Note that xp=, u, A, e , o  E E (0) if d only P x;= u=,uf I$ < m , which im- 
plies C z ,  u: (il,-LJ);)2 < m ,  and by Lemma 1 it gives u s  Wf,,(Oi). Hence the 
Inclusion 

follows. m 

I f f  E Lz (@)? we can write 

It i s  easy to check that the unique strong solution to the problem (1)-C3) is 
given by the ifouowing fornula: 

cO 

u (r) = 3 (t) f = exp ($AJ) jj ej .  
i " 1  

The Lyapunav exponent of the above system is defined as 

Ad"") = 'lim sup t - "log llzs (t)ll, 
?-ria 

i Tbs following theorem holds: 

T ~ R E M  1, Let f SC; 0 and le t] ,  be fke smallest i n b g ~ r j  3 1 ira the expa@- 
sialr (4) o$f stnch that Jri, f 0. Thea the Lyapuraov gxpaprefac of ths system 6 t)-(3) 
exists as a Hnait nrad B given by 

T;im&fi3~, l f Z ~  L ~ ~ ~ P U M O U  exponent b equal to  R p .  
Pr oaf. Orr the one band, 



whle on the other hand 
rn 

t-'logll 2 exp(tLj)h;.ej ] 3 t mr l log lexp (tAj,)fj,l = lJ, 9 t - log lARl. 
j-l 

Tffie exjstmee of the limit awd the equality f~ l low,  m 

3. me: stasebasGc P P U M E ~ .  Let us new consider the folfawinp stachatic 
perturbation of the deternljnistic problem studied in Section 2:  

(6) dv ( f )  = Av (t) dt + trv (t) d B  [tf, 

where B ( - )  is a one-dimensional real-valued Wiener process md o. P O is a con- 
stant, with the initial condition 

131 v ( o , x , ~ o ~ =  J { X ) ,  XFQ, 

and the Diricl~le t boundary condition 

Conditions (7) and (8) hold for h o s t  dl ~ E Q ,  

It is easy to check that the unique strong solution to rbe stot;kastic paeob- 
Em (61-48) is given by the fallowing frrrmuh: 

where ~ ( t )  is the scllurian tor the: deterministic problem, 
The dmost sure Lyaput~ov exponent of the system (biH8f is defmed path- 

wise as 

In the stochastic w e  we Can prove that: 

m a a m  2. The Lyapunnv exponeat qf the systerlrt (#)-(83 almost surely 
exists as a limit; 8s ~ O P ~ - M P ~ ~ O Z I Z  and the fillowing ~ ~ O P ~ U I O  holcls: 

Praob Theorem 2 follows from Tbeorcm 1, the formula 19) and the fasit 
that l i ~ n ~ + ~  J(tMt = O a.s. for k = 1, 2, . . ., 3V (see El], p. 451, ria 

For stochastic systems: diflcrent kinds af stability art: investigated, Another 
crnc is the stability in tlre p-th mean ( p  = 2 = mean squam). The probbm (6HX) 
i s  stable in the p-th mem, for p 0, if there exist csnstaats M r B ztad & > 0 
such thbt 

llu4t,fIll" Mex~(-GtIllf ll" 
for each f ' ~ g ( A )  and t: 3 0. 
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The stability in [he p-th mean can dso Ire expressed in terms OF the 
L1Jtapunov exponents d the g-th mammt of the solution, The Laypunsv ex- 
ponent, of the p-th moment of the solution to {6)-f8) is defined, f ix  p > 0, as 

g,(p, f) -1imsupt--"logEjlu[t, f ) l l P ,  
t-r m 

LEMW 2. The systeuva (6H8) is stable in the p-tk rnean if and only the 
top Lywpunon exponeyet of tlze p - t t ~  rrzument of the solution is smaller tJza~~ 
zero. 

We omit the proof as it is straightfo~ward~ 

Re mar I; 1 .  FOP detm-ministic systems the sbcabiiity in the p-th znean is 
equhalent to the top classical Lyapunotl exponent being smaller than zero, More 
preciselj7, f i r  determinis tie s y s t e ~ s ,  the folk0 wing gquhality holds: 

s (P t f3 = .Padet U). 
THEOREM 3. The Lyapunov exponsrzt of the p-th prtlrment of the solution to 

the problem (6f-t:8) exists as a limit and is equal to 

P r o  of. Formula (9) gives 

We: compute 

E exp ( F G ~  (t)) = exp (4 g%z IZEljZ ($3) = exp ($ p2 rr2 1 ) .  

After substituting the above quantity to (16) we obtgn 

We deduce that %he Lyagunov exponent of the p-bb moment of tile solution to 
the prrrblecn (6)--(8) exisis as a limit and is equal fa 

Let us dexlute by the subspace of @(a spanned by the vectors 
CII, ezr  si: 

&==spaa[el,,.,,eJ, i = d , 2 , . m r  



and 
Hi+ j = (L2 (@I\F)\(G [@I\&* 2 ) ,  

From Theorems 2 and 3 it fdlows that both g,@, f 'J and A: (f) are can- 
stant on the subspace8 Hi. Let us put 

and 

From Thearems 2 and 3 we can also dedw that the folloming modificn- 
tion of Theorem 2.1 Erom [2] halds. 

T E ~ R B M  4. U d e r  tlae usstlfnptians )om Sections 2 and 3 we hawe: 
01 d ~ , f l -  lim,-+,t-' logEIl~(t,S)ltR; 

(ii) S~IP,.~) = ~ e , i f P l  Sot. f ~ H i ,  i = 1, 2,  .-.; 
(iii) Cp) e R for &%I p E R cad $it -a R is convex and ambtic, 

i = Is 2$ *,.; 
[iv) g,,i @ ) / p  is increasing, gerr (0) = O and gb*, (0) = A:,$. 

4. Stabalha~oa aed de6;Xabi8izatia by sake* It follows from Theorem 2 that 
the stochastic system (6)-(8) is stable, ia terns of the dmast sure Lyapunov 
exponents3 far a such that 

We even infer that for each iPitial value 1 

It moans thd every dctcrministic system given by the paraboEe problem ( I j (3 )  
can be shbilizd pathwise axplonentidy by noise. 

As for the p-th mean stability it fallow from Th~f~rem 3 that it depe~ds on 
the parameter p. Ptecisdy, w can conclude: from Theorem 3 that 

COROLLARY 1. For p .; I 

it foTEows tkzt for cr big emugh t k ~  systrrna is stable ivr the p-rh ~~t?m. 
PRT p =. 1 



Stackmtic partial d@erentinl equations 413 

ii fallow that f i r  o big e7nowh the system is unstable ilz the p-tk rlzem. 

These con~lrasiaazs am quite surprising. In fact, regardess whether the 
deterruinistic system was stable ar unstable, after adding a stochastic tern with 
s big eatow&, it becomes pathwise exponentially stable and unstable in the p-th 
Islean for p > 1, 

Even mare, 

Ou the ather hand, from Theorem 3 we can also conclude 

COROLLARY 2. Let us fix an arbitrary s > 0. Tlaeu~ 

which mea.Larzs that for each rr shere exists a p, such that, for p 3 p,, the sro- 
chastic 3q"sfem is zanstahb in the p-th meran, 

5 i,dk nxampk. Let us take 

6 = (a, b), where a < b, 

md 
A = $+aid, where ot is a caustant 

Then the dgenvalues and the eigenfunctions sf the operaitor A can be 
camput& explicitly and are equd to, respcc;tivcly: 

j = 1 2,  . . .; see Example 1.23, p. 10. 
We deduce that the kyagmav exponenQ of the deterministic system and 

tile stochastic system are equal tto, respec~eely: 

I !  - MMS 21.2 



We conclude that the stochastic system is: pafiwisie axpon~ntially stable if 
and only if 

while: it is stable in the p-th nrean for p and a satisfying 

& Remarks om the S&a~onwfch dtfferential, Let uus now consider eqraticsn 
(6) with the It6 differential replaced by the Stratanovich diEerential: 

with the initial condition (7) and the Dirichlet boun&ry condition (8). The 
unique strong sailation to the problem (11), (71, (8) is given by the following 
formula: 

where u(t)  is the solutian, to the deterministic probl~m (1)-(3). 
Then the almost sure Lyapunov exponent of tfie stochastic system is  equal 

to the deterministk one, i.e. for all CF: 

i,e, adding the stochastic term does nor influence th-bc stability of the dereminis- 
tie system, 

3316 Lyapunsv exponent of the p-th moment sf the sdudion is equd to 

which implies that in the Stratanvvish ease 

It means that we have deswbiLizatioaz in tbc p-bh mean for any p ,8. Also 
formula (412) irnplics that for p 3 1 the d~stabilization is faster than in the lesilse: 

of ths 116 differential. 
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