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Abstract. We study the almost sure and moment stability of
a class of stochastic partial differential equations and we present an
infinite-dimensional version of a theorem proved for stochastic ordina-
ry differential equations by Arnold, Oeljeklaus and Pardoux. We also
investigate how adding a term with white noise influences the stability
of a deterministic system. The outcome is quite surprising. It turns out
that regardless whether the deterministic system was stable or unsta-
ble, after adding a term with sufficiently large noise, it becomes pathwise
exponentially stable and unstable in the p-th mean for p> 1.
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1. Introduction. The purpose of this paper is to study the almost sure and
moment stability of a class of stochastic partial differential equations and how
the white noise influences the stability of a deterministic system. In previous
papers we have already studied the problem of pathwise exponential stabiliza-
tion of deterministic systems in Hilbert spaces by noise — see [6] and [7].

We first need some preparation in the deterministic set-up. We study the
deterministic Dirichlet problem for the following equation (for a formal setting
sée Section 2):

oufot = Au,

with the initial condition f, where the operator 4 is as in Section 2. The
Lyapunov exponent of the deterministic system is defined as

A% (f) = limsup ¢~ loglu (t)|l;
i~
we prove that it exists as a limit.
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Then, in Section 3, we consider the Dirichlet problem for the following
stochastic perturbation of the above equation:

do(t) = Av(?) dt +o0(6)dB (1),

with the initial condition f, where §(-) is a one-dimensional real-valued Wiener
process and o # 0 is a constant. The almost sure Lyapunov exponent of the
stochastic system is defined as

Z2(f, w) = limsupt ™ *log|lv (¢, @)l
t-+c0

we prove that it exists as a limit and is non-random. The following formula
holds (see Theorem 2):

BN =B @) = 1 (f)—}0? as.
Next we consider the Lyapunov exponent of the p-th moment of the
solution to the stochastic problem. For p > 0 it is defined as:

0+ (p, f) = limsups™ " log Elo ¢, NI

We prove that it exists as a limit and the following equality holds (see¢ Theorem 3):
0.0, ) = i () +Ep-1) 0.

In Section 3 we also derive a modification of Theorem 2.1 from [2] — see
Theorem 4.
In Section 4, we conclude that:

AgUl)_’ -0 {gﬁ" CZC‘!),
it follows that for ¢ big enough the stochastic system is pathwise exponentially

stable;
for p<1

6, ) > ~0 (g c0),
it follows that for o big enough the stochastic system is stable in the p-th mean;
for p=1
g.(1, ) =2*(f), >0,
it follows that adding a term with white noise does not influence the p-th mean
stability;
for p>1
gﬁ’(p'l f)mqb oo {f)" - m}a
it follows that for ¢ big enough the system is unstable in the p-th mean.



Stochastic partial differential equations 407

All that holds regardless whether the deterministic system was stable or
unstable and it is quite surprising.

In Section 5 we provide an example.

In Section 6 we consider the stochastic problem with the it6 differential
replaced by the Stratonovich differential. In that case the almost sure Lyapu-
nov exponent of the stochastic system is equal to the deterministic one, ie.
adding the stochastic term does not influence the stability. On the other hand,
we have destabilization in the p-th mean for any p > 0. For p > 1 the de-
stabilization is even faster than in the case of the It6 differential.

2. The deterministic problem. Let @ be a bounded domain in R’: a ball or
a set that can be mapped into a ball by a regular mapping of class C*(0).
We will study the following parabolic equation:

(1) Oufot = Au,

where u = u(t, x), teR* (R denotes the interval [0, m)), xe®. We set the
initial condition

(2) u(0, x) = f (x)
and the Dirichlet boundary condition
(3) u(t,x) =0, xedd.

The function f in (2) takes real values. We consider only deterministic
real-valued initial conditions fe @ (A4) = H5(0)n H*(0).

The operator 4 is given by the formula

d du
Au = %%(a;j(x)gg) +a(x)u,

where the coefficients satisfy the following assumptions:

(C1) a;; are differentiable,

(C2) a;; = i,

(C3) p &2 < de:j &i& < &,

(C4) |9ay/ox,| < i,

(C5) lal < pa,
where y; are constants and u,>0,1=1,..., 4

It is easy to verify that the operator 4 is symmetric on the space H§ (0).

Let W% ,(0) be a subspace of H2((¢V), where the functions belonging to
C?(0) and vanishing on &0 are dense. Later on we will prove that in our case
W3,0(0) = H5(0) " H? (0).

There exists an orthonormal basis of I? (0), {¢;},j = 1, 2, ..., consisting of
the eigenvectors of the operator 4 (see [8], p. 181) such that

Ae;= A;e;, where ;N —o0 (j— )
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and

<2k,&>:=(lg—‘lﬂ25£1
where (u, u)*/? is equivalent to the norm in W3, (¢). The constant 1, is chosen
such that 4, < e, k=1, 2, ...

LemMA 1. Under our assumptions we have the following characterization of
the space W3 o(0):

Wio@ ={u= Y uje;(xelZ(0): Y uj{lo—i)* < co}.
J=1 j=1
Proof Obviously, {(1,—4) 'e;} is an orthonormal basis of W3 ,(0)
with the scalar product (-, ).
If ueI?(0), we can write

ol o0 1
u=y uje;= y (E.ow)‘;j)uj(ﬂ Aej)
j=1 =1 #o

]

and the equality follows. =

The following proposition may be known, but as we are unable to provide
a reference, we present our own proof.

ProposiTioN 1. Under our assumptions the following equality holds:
W3,0(0) = H§(0) n H*(0).

Proof Obviously, we have

(*) W3.0(0) « H*(0).
The inclusion
(%) W3,0(0) = Hy(0)

follows from the trace theorem (see [9], p. 48):
THEOREM (trace theorem). Let @ be a bounded set of class C'. There exists
a linear continuous operator yye.% (H'(0), 7 (80)) such that
o =tlse for all ueC(0).
We have

ue Wio(0)<>3{un} € C*(O), Unlog =0, un—u in H*(0).

Since 7o 4, = 0, Yo is continuous in H* (¢) and u,, — u in H* (¢), we deduce
that
Yot = Ulpe = 0.

In the case of bounded regions with smooth boundary, ue H} (¢) is equiv-
alent to the conditions ue H' (¢) and ul, = 0 (see [4], p. 122). Therefore we
conclude that ue Hi (), which proves (x#).
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The inclusions (*) and (+*) give
W3,0(0) = Hy(0) n H?(0).
Let us now take ue H} (¢) » H? (@). The operator 4 is symmetric on the
space H}(0) and therefore is closable (see [5], p. 269). We have
o o 3]
Au=Au=A Y uje;j(x)= Y u;Ae;(x) = Y u;Ae;(x)
j=1

i=1 i=1
= Z ujijEj(x:l‘EE(@)a
j=1

Note that Y7, u; 4;¢;()e 2(0) if and only if Y%, u? 47 < o0, which im-
plies Z;ilu? (Ao—A)? < c0, and by Lemma 1 it gives ue W}, (0). Hence the
inclusion

H{(O)nH*(0) =« W3,(0)
follows. m
If fel?(0), we can write

(4) f= .ifjej, where f;= {f, e;>.

It is easy to check that the unique strong solution to the problem (1}(3) is
given by the following formula:

(5) u@ =St f= fl exp(td)) fie;.
j=

The Lyapunov exponent of the above system is defined as
294 (f) = limsupt~*log |lu (2.
oo

The following theorem holds:

THEOREM 1. Let f 5 0 and let jo be the smallest integer j = 1 in the expan-
sion (4) of f such that f;, # 0. Then the Lyapunov exponent of the system (1)-3)
exists as a limit and is given by

};det(f) — Aju‘v
Therefore, the top Lyapunov exponent is equal to Ay.
Proof. On the one hand,

o

m r
tVog|| Y exp(td) fief| <t log( Y lexp (ths) £17)'? = Aj+1~ LloglIf I,
i=1

i=le
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while on the other hand
t~tlog|| Y exp(td) fiefl =t oglexp(ths,) fiol = Aj+t ™ log|fl.
i=1

The existence of the limit and the equality follow. =

3. The stochastic problem. Let us now consider the following stochastic
perturbation of the deterministic problem studied in Section 2:

©) dv(t) = Av(t)dt+ov(t)dB (1),

where f{-)is a one-dimensional real-valued Wiener process and ¢ # 0 is a con-
stant, with the initial condition

) v(0, x,w) = f(x), xed,
and the Dirichlet boundary condition
(8) vit,x,w)=0, xedl.

Conditions (7) and (8) hold for almost all we (.

It is easy to check that the unique strong solution to the stochastic prob-
lem (6)}-(8) is given by the following formula:
©) v(t) = exp(of (B)) exp (=5 0” Yu (),

where u(t) is the solution to the deterministic problem.
The almost sure Lyapunov exponent of the system (6)8) is defined path-
wise as

B, o) = liriq‘supz“ log|lv(t, o)l

In the stochastic case we can prove that:

THEOREM 2. The Lyapunov exponent of the system (6}8) almost surely
exists as a limit, is non-random and the following formula holds:

B, ) = 1)~} 0? = A~} as.

Therefore the top Lyapunov exponent is equal to 1, —%a2.

Proof. Theorem 2 follows from Theorem 1, the formula (9) and the fact
that lim,. . f()/t =0 as. for k=1,2,..., N (see [1], p. 46). =

For stochastic systems different kinds of stability are investigated. Another
one is the stability in the p-th mean (p = 2 = mean square). The problem (6)(8)
is stable in the p-th mean, for p > 0, if there exist constants M > 0 and § > 0
such that

Ello(t, NIF < Mexp(—38)|IfII”

for each fe2(A4) and t > 0.
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The stability in the p-th mean can also be expressed in terms of the
Lyapunov exponents of the p-th moment of the solution. The Laypunov ex-
ponent of the p-th moment of the solution to (6}8) is defined, for p > 0, as

g:(p, f) =limsupt~'log Elfv (e, M.
LemMa 2. The system (6)8) is stable in the p-th mean if and only if the

top Lyapunov exponent of the p-th moment of the solution is smaller than
zero.

We omit the proof as it is straightforward.

Remark 1. For deterministic systems the stability in the p-th mean is
equivalent to the top classical Lyapunov exponent being smaller than zero. More
precisely, for deterministic systems, the following equality holds:

g, f) = pA*™(f).

TureoreMm 3. The Lyapunov exponent of the p-th moment of the solution to
the problem {6}-(8) exists as a limit and is equal to

0.0, ) = P (N +2(p~1)0? = pyy+E(p—1) .
Proof Formula (9) gives
o(t) = exp(—40® exp(af (1)) u(2),
and hence

(10) Elo @) = [u()exp (-gaz t) Eexp (pof (1),

We compute :
Eexp(paf (1)) = exp(3p* o” EF* (1)) = exp(3p* o*1).

After substituting the above quantity to (10) we obtain
2

Ep(t)f = exp [(%-—g) o t] Ju {;)fp = gXp [g(p —1)o? t] le ().

We deduce that the Lyapunov exponent of the p-th moment of the solution to
the problem (6)+8) exists as a limit and is equal to

g(p,f) = pl-"“‘(f)+§ip—~1} 0* = I"ﬂljﬁ-ﬁ-g(pwl}az_ =

Let us denote by ¥; the subspace of I7(¢) spanned by the vectors
€1, €25 - €

Vi=span[ey,...,e], i=1,2,...
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We put
H, = E’(@)\(ﬁw)\yﬂ

and
Hisy = (BONVNE (O\Vir o).

From Theorems 2 and 3 it follows that both g, (p, f) and A3 (f) are con-
stant on the subspaces H;. Let us put

Jo,i (p) = ga(p?f)i fE-H‘h

and
Api=23(f), feH.

From Theorems 2 and 3 we can also deduce that the following modifica-
tion of Theorem 2.1 from [2] holds.

THeOREM 4. Under the assumptions from Sections 2 and 3 we have:

() 9o (p, f) = lim,. oo~ Iog E llo &, IP;

(i) go(p,f) = goi(p) for feH;, i=1,2,..3

(iil) g,:(p)eR for all peR and g,;: R— R is convex and analytic,
i=1,2,...;

(iv) go.:(p)/p is increasing, g,:(0) =0 and g;;(0) = A,

4. Stabilization and destabilization by noise. It follows from Theorem 2 that
the stochastic system (6}-(8) is stable, in terms of the almost sure Lyapunov
exponents, for ¢ such that

A —%0? < 0.
We even infer that for each initial value f
2 (f)»> - (o 0)
It means that every deterministic system given by the parabolic problem (1)-(3)
can be stabilized pathwise exponentially by noise.

As for the p-th mean stability it follows from Theorem 3 that it depends on
the parameter p. Precisely, we can conclude from Theorem 3 that

CoROLLARY 1. For p<1
Ga(p, f) = ~0 (0= ),
it follows that for o big enough the system is stable in the p-th mean.
For p=1
g(L, f) = 2*(),

it follows that adding a term with white noise does not influence the p-th mean
stability.
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For p>1
9. (P, 1= +0 (6 0),
it follows that for o big enough the system is unstable in the p-th mean.

These conclusions are quite surprising. In fact, regardless whether the
deterministic system was stable or unstable, after adding a stochastic term with
o big enough, it becomes pathwise exponentially stable and unstable in the p-th
mean for p > 1.

Even more,

Aa(f)—= —o0 (o o0},
while
gop, f} = +0 (> 0), p>1.

On the other hand, from Theorem 3 we can also conclude

COROLLARY 2. Let us fix an arbitrary ¢ > 0. Then

galp, )= +0  (p— ),

which means that for each o there exists a py such that, for p = po, the sto-
chastic system is unstable in the p-th mean.

5. An example. Let us take
O ={(a,b), where a<b,
and
A=A+eld, where 2 is a constant.

Then the eigenvalues and the eigenfunctions of the operator 4 can be
computed explicitly and are equal to, respectively:

P o 2 NP (jn(x—a)
o = (b~a}2+m’ ej(x)—(b_f_a) sin b—a )

j=1,2,..; see [3], Example 1.2.3, p. 10.
We deduce that the Lyapunov exponents of the deterministic system and
the stochastic system are equal to, respectively:
52 e d L) 1
sty = — 208 Lo ()= 0 g2
(f) b_ap e Az () (b_a)gw 0%

and

2,02
. LA JR
gd'(pi f)“" {b__a)z +p“£+z(p 1)0 .

14— PAMS 212
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We conclude that the stochastic system is pathwise exponentially stable if
and only if
,nl

1 2
-—W+mm§o’ < G,

while it is stable in the p-th mean for p and o satisfying

fg{f_d.)..z.n}»pgg{—g[p—*l)ffz <0.

6. Remarks on the Stratonovich differential. Let us now consider equation
(6) with the Itd differential replaced by the Stratonovich differential:

(11) b (6) = AB() dt +05(t) 0 dB (1),

with the initial condition (7) and the Dirichlet boundary condition (8). The
unique strong solution to the problem (11), (7), (8) is given by the following
formula:

(t) = exp(af (1) u(r),

where u(t) is the solution to the deterministic problem (1}-(3).
Then the almost sure Lyapunov exponent of the stochastic system is equal
. to the deterministic one, ie. for all o:

B, o) = 2%(f) as,

i.e. adding the stochastic term does not influence the stability of the determinis-
tic system.
The Lyapunov exponent of the p-th moment of the solution is equal to

2
(12 G0, ) = P2 (N 4502,
which implies that in the Stratonovich case

{13) gﬂ(p!fJAw (JM’OD);\ P>O—

It means that we have destabilization in the p-th mean for any p > 0. Also
formula (12) implies that for p > 1 the destabilization is faster than in the case
of the It6 differential.
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