
Absmet. We csnsidez the hereasing sequenm af non-internget- 
irng monotone decreasing s r g  prommes Y: (F}, n = 1, 2, . . , (t  > 01, 
whose jump points mver all the points of the h~mogencous rate 1 
Poisson proam on the qmradrmt RC, We derltre p~apfties aF the* pro- 
msm, in ~rt icular  the margaal djs~butions B(T:(t) > x), in tema 
of a %cplitz, dete&aant of Borne modifid Besriel functiom Ow y a -  
tern provides a new rim of the Hamessleg intermitmg pat i~le  syr- 
tern discused by Aldaus and Disconis; md the dktributions we derive 
are relatd to tbtt distributioa of the length of the Eangmt ascending 
q u ~ n i x  in a random pmotatian. 

Key wards a d  phmses: Planar Poisson process, &kt Taym pro- 
cew, moslifid ~ s e l  function, Wammcrsley hterrrcting particle system, 
Iaagmt increahg suhequenw, U l m  problenr, sandurn pemut-ation. 

In a previous gaper [l f 'J tve. have studied a stochaslie process V* It) which 
we ailed the Poisson hype~BclEic staircase. One way to defmr: Y e @ )  is to can- 
sider a h~amogeraeoas planar Poisson p~oeezss in the positive quadrant, and Ict 
H* (t) be the 3upr~rnam of abk decreasing (we use the tern in the weak sense of 
nanincreasing) functions wEch have no paints d the P O ~ S B O ~  proems bdow 
them. Isr fact, Y*(d) defied in this way will be a right continuous with Seft 
Emits (RCLL) decreasing step func~an, which passes through a two-sided in- 
finite sequeaaa of Poisson palints ('which am its values wfierever it jump dawa), 
. . ., (x- 1, y- lh Ix,, yo). yl), . . ., with x j  eiincr~asirrg~ yj  &ereash& and them 
points are exactly all the points d the planar hisson prams-rr in rI1e quadrttnt 
which have no o&er points in the rectangle betwmas them and the origin. 

* Inutifrrtr: of Mzrthematictcs, Wroofaw Univ~miQ, Paland, Work supported by KEN mdix 
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in this pager we study a sequence of processes, Hz It), n = 1, 2 ,  , . ., associated 
with the s m e  ~oissou process on the quadmnt, which an: defined inductivejy 
as fonows: We let Vf ( l) - Y" (t), and let F$ (s) be the supremum of dl de- 
creasing functions w%ch are above 2";- (t), with no points af tXre Poisson 
process below them and above Y,"- (f), Again Yz( t )  is an RCLL decrc=;lsing 
step function which passes through a two-sided infixlite sequeace of Poisson 
points, ordered by insrerasing x and decreasing y, such that these points are 
exactly those points of the process for which the rectangie betweea them md 
the orjgin contains miy points of the lower lhes Yy (t), j .= PI. We can think of 
these step iirnctions as dividing the points of the planar Poisson process into 
layers, where layer rz contains all the Poisson points (xP y) which are " j t  
above-e previous layer. Clcasly, this layering covers aU the points of the 
planar Poisson prowss in the quadrmt, Followhg teminolom from CI 11 we 
cal the pramss rc'z (t) the IP-EEZ PL~~SOIZ hyperbolic sfaircase or, dternativdy, ths 
rs-th layer process; see Fig, 1.3. 

Consider the time t and the heigllt intewal(0, x), and let O < Y :  (t) < . . . < 
Y z  (t) - ~ e  x < r:+. (8).  Then (Yaf" lo), . . . , Y,* (t)) am the locations of particles at 
the time t, on the interval (0, x), in the Hammersley interacting particle syste~n, 
starting from empty at time 0 as defined by Atdous and Diaconis [2 ] ,  [37. 

In Section 2 we consider the vector Ma~kov promss (Y, (t), . . ., Y, (r)), 
I: 8 0, conditiond on the starting values (Ti (Ca), . . ., YR(O]) = Cyr, . . ., y,) uma; 
equivalently (in terms of distihtion), (Y: (s i- t ) ,  . . ., T: (s + t)) conclitianal an 
(YT(s], . . ., Y:(s)) - . . ., yJ. Far this process we derive the con&tlonal 
probability that IX, ( t )  remains at the level y, until t h e  t ,  This4 probabaity 
satisfies a renewal type equahon, and most of the se~tion is devatd to ob- 
taitling its solution. The solution is expressed ijn t m s  of rleteminmts invalv- 
k g  msdi5ed Bcssel  function^. 

The pmbability derived in Section 2 can be used ta express various con- 
ditionali joint pra"DbiUties involving & (-), . . ., Y, ("], . . . In par~culaa, it is rhe 
key to obtain thehe distrTbutian d P",* (t), the nth layer process, for wfi& we have, 
IoaseBg speakhg the initial state I-'? (0) = . . . - Y: (0) == co, The marginal dis- 
trihulion of Y:(t) is found in Seclion 3. We obt& P(I+:(d 3 zc) as a deter- 
a n a n t  of a TsepEtz matrix ef modified Bessel fun~tiens, obtained from slur 
previous forrnrala of Bcssel deter~ahrinb by substituthg y,  - . * .  = y, =. x, This 
Pomrrla is  a special case of a farmula de ivd  by Gcssel [7], tl~rough corn- 
binataria1 metlmds. It sppems hp3icitly as hrmwla (1,lr) in [9]; see also for- 
mula (IF) ia [JJ. 

Ilne molitra~on to study the layer process Y:(t), n = 1, 2 ,  .,., is  its repa- 
tion ta an old eombinatoriaJ. p~~b le rn  of UEaen and Hamm~rsfey; see e,g, Ham- 
mertrley 181. Let Id1, desok the lengtb of the longest asmading subsequencc in 
a random pmu~al ion  of 1, . , ,, k. "Randam" me=& here that all pmuts t lons  
?F are equauy probable with probability Ilk!; set Lo = 8. Hammesdey iluted 
that L, also equals the length aaf the longest. ascending sequence sf points 
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A& 1.1. Layelsing of a Poisson poiat p r m s  on the qudran t ,  e - Faissen pokt 

among k pokts uaifomIy and independenay thrown anto reclande 
[O, $1 x KO, xj, On the other hmd, P(F; (1) > x) is the prsbabiEty that the 
longest ascending seqnenGe of points of the plan= PPoson mcess in the 
swtangle 10, a] x LO, XI has Ie-ngth less than a, From &is obsertration one 
immediately o b ~ n s  

HammefsJey has conjectured that EL, - 2+GS This conjecture was 
proved by using msrlytir: methuds by Vershk and Kerov [Id] and Lugan and 
Shepp [12]. Al$ous and Di~cceonis c2] obtzhed a prerbrtbdistic proof by de- 
fining -ehc Kammerdey interacting gartide sysysiem and deriving its asymptotimcs. 
A diRerent approach was used by Sahallsson [9], who h a  expressed 
iP (I Z": ( r )  r x) in terms of eigenvalum of random unitary matrices and used it in 
a study of the apptoric properties of Br (L,  = n). Some fu"urther resuits ahou t 
it, appeared in [4], [53, 921. 

Vrg, return now to equation (1.6). We see imediatcly that Y z ( + ) ,  
n - 1, 2, , . ., have the scaling property 

and, i~ particular, 



We can also easily &rive: from (1.13 the distributions of the first and secmd 
layer processes: Clearly, P ( Y ? ( ~ )  > x) = esf"g, and since P(Lk ,< I)  == IJk!, ave 
get fbr n =2 

where I ,  (x) = zs:, C(x/2)'Vls ?s! is the modified Besrnl firaction of the first 
kind, of order 0. 

'in Section 4 we use the layer processes to study maxhal  aswnding sub- 
sequences in random pemzutalions. Our resdts provide a way to cdcdate 
P(Lk = n) which is an alternative to the method of Schensted [I31 which used 
Young tameaux, We also do some numerical cdcnlatiom. 

In this section we consider the jointly &stributed vector process 
(P, (tf , . . ., JT, @I), which is a acan~nuous time Marksv jump process in It$. 
Each YI, (t.) is a decreasizlg RCLk step process 2md Y (0 g T2 ( t )  6 . . . G Y, (t). If 
Yl ( t )  -- y I ,  . . ., V, (t)  = y,, then the nearest trmsitian of the ~ector praC:es.s 
f Y1 (-), . . ., %Iz)) is vvith rate y, and this transition is a jump damwards of 
the &h cotl-rdinate with probability (yk- yA- l)/yn (for convenience, we write 
yo = U), and the jump of I$[.) is to a value ar which is uniformly dist~buted 
over yk- < ek < yk. Equivalendy, the time to the next Qansi~on is a random 
variable z -. exp Cy,), a d  the transition generates a sandom value u - IJ (8, yJ. 
which is  the new level 51 ), where yk-l -c ::u < yk (asgle~ti-iag the null 
evsat e~ = yk). 

f t is ea~ily seen tlbault the process (Yi (t), . . ., 1P, (t)) with tthe initial ~a81.dilisre 
Fx (8) .= yr, . . . 1. (86) = ya can dso be generated as the first n layers of a planar 
Paissan procms af sate 1 in the strip (5, a) x (0, y,), which by defir~itioa Is 
fY~js+k) ,  ..,, Y$[,T+ c)) cocsnditionixl on (IrT[s), ..., V:(s)); =fy l ,  = - - ,  yB)= 

We use the notation il",, l *  1 a )  for tbe proba&lity of an event defind by 
Yl (21, . . . , k;, (t) with the hi t id cxlndi~on Ti (0) = Yr, . . ., Y, (0) = yR and tve 
denote by Ey,, ,e=,y,, ( the conesponding expectat ion operator. 

We wish to calculate thehe probabiLity P,,j.r*,n(Y ( t )  = y,) that % (-1 is s a  at 
the height y, by time t, If we denote by T: the time to the first dawnwards 
jump of the fit11 line, this event is equivdent Is  ( T o  Gl). We denate the 
probability of t h s e  eq~vdent  events by 

2.1. An integ-8i remwaSI ~ Y ~ ) I E  epui~tian. We bqin with. a lemma which 
show's char i", {t , y ,  , . . ., y,) faIlts a mnewal type: integral equation. 
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t n - 1  yk 

=ex:xpC-~,t)CI+Jex~b(y,slC S F,+,Y,, ...,Q P Y , + , , - . . , ~ , - , , ~ ( y , l d ~ ~ ~ j ~  
0 R = 3  yk-1 

Pro of. Gorrlsider tbe processes: Y, It), , . . , & (t) stafling at time O from 
y, , . . . , y,. They wiU remain at h s e  levels until the first gefmast) Poisson 
point in the strip (6, oc) x (0, y&. Let (z, &J) denote the coordinates of this first 
paint. Recd  that s a d  u are indepndent, with z -- expiy,), u - U(O, y,)$ 
that is 

1 
P ( z ~ d s ,  u ~ d v )  = y,exp{-ylp.$)ds-dor 

jl, 

If r > t, then at time t we will. st i l l  have & ( t )  = yl, ..., Yn-L(t)I - yn-i and 
h(t) = yn2 and 80 {T; 3 t) .  U T g t, and y,-, < u < yn, then = a, and 
~e~tAnEy (T;  d $1, Jf T < t, &ad y k P l  < u < y k  f o ~  k -  I, ..., n-13 then 
& (T) = u while ?(T): = 3 (O), j f k, and {T", T), In fact, sanditional an 
such vdus of (r, ~l), the prohbility that V,  ( 8 )  = yn is the probabgity 
that5 starting with iinitiat vdues yl , . . ., yk- 2 ,  yk+ 1 . . ., yn - r ,  ynl at time r, 
the nth line d l 1  not drop below y, for the remaining r - T time, which i s  
FN(f.-z, Y I L  ~ k - 1 ,  ~ k + * i t  * - = >  ~ n - l r  ~ n ) .  

Cancel y, with IJy,, and substitute s for r - s, to obtain the renewat type 
intewl equation (2.1)- B 

Let G (A,) and 6 ( A )  tx the sets of b o m d d  m d  continuous functions8 AT =+ R 
and $ A B ItR, m~pmti~ely. Define the mapphg 



Notice that @: C(AT) 4 C{La",). In 6 ( A T ]  we intraduce the supremum metric 
QTV; 81 defmed by 

The space 63(dT) with metric Q,. is campl~te? md the~fore  we can use the 
Baorrclh f i xd  plejint theorem. 

LEMMA 2.2, The m p p i n g  @: C ( A )  -+ C (A)  has a unique $xed paint. 

Br o of- We first show that 9: G ( A T )  -+ C ( A  is a contraction. We haye 
for f ,  g ~ C C d d  

I n - I  ~k 

@ r ( @ m s @ c ~ ~ f ) ~  Inax e x ~ ( - x ~ t l l e x ~ C x ~ s )  1 QTW~ 8)dvdsl 
(tex~....,xn)eil~ 0 k - 1  x k -  i 

G (1 --exp(- T2)) g T W ;  8). 

Hence, by the B~nach fixed point atheorem (see e.g. KaImog~rav and Faimin 
&1.0]), the mapping @ has a uIxrque fixed poincf,.(t, xi, .. ., In C(AT).  Note 
that for T 4 T Y  

(2.2) f r ( t , x ~ , . = . , x & = j T ~ ( s , x ,  ,..., x,) for ( t , x  I,..., 3 t R ) ~ C ( d ~ ) .  

We now show that there exis& a unique f ~ C ( d )  such that @(f 3 .= f: Let 
f E C ( A )  be defined as folIows. Far (t , x, , . . . , XJ E A we take T 3 max (E ,  x,,) 
and set 

By the consistency statement (2.21, f is well defmed, rtnd it is clearly a fixed 
point of @. Suppse now that there exists another fixed point g of @. Them its 
wstric~on gr to d is al,1~0 a fixed point of @: C ( A  ,.) -r C (A,). Thus Q, = f, far 
dl T 3 0. This means that $ is the unique fied point of @. pr 

From Proposition 2.2 sare coxlcfude imediately that tbe i n k ~ a t  aqwtian 
(2-1) has a ~ q u e  solution. 

Notice t h t  from the defmition sf (t), ..,, Y,(t] we have 

To understand the next sub~titufion we show in the following l e m a  another 
probabilistic: representaGan far Fg,;,(k, y i ,  . , , y,), 

P r a sf. L G ~  A be the event that the rostanda [Q, tl x [b, J,] wntains no 
paints apart: from those bel.sn&g la hyers: W; ($1, , , ,, Ir',-. (4, The canditional 
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probability of this event upon the whole realization of z-% is 

Taking the expecta~jion completes the proof. m 

Define now 

By Lemma 2.3 it is easy to see that & is of the form 

Substituting (2-4) Ento (2.1) we. obtain an integral quarion for H,: 

Proof The proof faUows, in view of subs~tution [2,4), f~frorn the fact that 
(2.1) has a unique solution. e 

2.2 A rndtivariate pasdal rdliBerw~ir8 quatian rePat4 ta a Basel equation. 
&fore we present the solution M,, we do some grelirnjrr~ry exploration which 
helps us to guess the solution MApttlation of equation (2.1) leads to a partid 
difleren~al equation for J7. The identity 

provides one iaifid condition far that equation, and taking derivatives with 
respaet to g, at = O prsddes mother initial eaaditiolz. Szlbstitntiou of H for 
P yields finally the following equations (we skip thc detailsj: 

We smk solutions in, the mgiun O < ;la, < . . . ZS x,, which satisfy the fullowkg 
initid rfon&tions in terns af the lower c4itnen:nsicmal functionls (here the 0-di- 
mensiaeal H o  is I f :  



We try to solve this: by separation of vmiaMes. We look far solutions of 
the fDlm H m ( x , ,  ..., XJ = Hy-., {,(xjJP for which the equafion reads: 

Tbis kads to the Basel equation 

whose general solution is of the form 

where 3, i8  any linear cwrnbiaation sf 1, and K,, the: madified Bessd functions 
of the first and second kind, af order v. 

To continue searekiiag for the solution we sho1pIB now consider Pin~ar 
combinations of such sp&d solutjions. One Fztn then see that any cadidate 
solution of the form 

satisfies quation (2.6) and the G ~ a 1  ~andit io~s,  where the first tern and the 
set;& tern warmtee that the initiFd conditions (2.7) and (2.8), resg~tively, 
hold trun It. t u r n  out that for m - l, 2 the first two terms of (2.8) give the 
w r r a  scrlu~ola. Nowever, for m = 3 the first two term give a wrong solu~atl, 
whieh resdt~ in F, wficla is not a prsbabaity dbtributisrr (it hecrmes nega- 
tive). 'Thus we nwd marc: igfo kioe to choose the correct linear cambi- 
nations l o k ( Z & h  and the cquation and inikid conditions ((2.61, (2.?), 
(2.8)): are: not auEcicnt Ibr that. Nevertheless, the canc%idate soXvtians (29) 
drr suggest a. guerzs at the form. of the generd solzkticrn to (2.51, and the uGque- 
nem oaf the selutialrx enables us to verify this guess, Ws do so in the following 
smtion. 



2.S The ~.c9llaaiolra. Fear convenience of the notation we im3troduee 

where d,(x) is the modified BesseX function of the first kind, of order 8: 

WitSa that notation, the asymptorjcs of le(x) at a: O are: 

and 

Ur, write dawn finif the salu~ons of (2.5) for tn = 1, 2 ,  3 (m = 0 is written 
for campleteness). These can Ix: ve~fied by subsdtution in (2.5). Note that the 
last two tern of Ha correspond to the third, mdetermirred, part of the right- 
-hmd side of (2,9), We have 

The above special cases suggest the general solution: 

D~OBCBM 2.5. The sohtinra to 1(2,5) is 

kSa;t;e that to cabaali%te N ( x , ,  .. ., x,) we evaluate m x, the fuslctians ij 
~ 4 t h  iradicm j = - i -t- 4 ,  . . ., m - i. We can errparltd the determinant N, in 



(2.13) as the sum over permutations: 

V"Je s h d  rase the following notation: 
B)  The smmatioa 7t suns aver all the m! wrmutations of I ,  ..., ma 
sl sEgn(~) is the siga of the permutation, 1 for even, - 1 for odd, 

nfi) is the ith element of the permutation ?c. 

B 7t-I i s  the inwrsa of q ie. k = ~ - ~ ( j j + n ( k )  = j ,  
Eid 1s - the identity pem~utation. 

C 
e Let us put [(n) = zy=l(~(i)-i) . Note that 

Note also that for aitl permuta~ans except n" we have [ [ R )  T 0. 
In the remainder of this sectian we prove Theorem 2.5. We need to ver* 

that (2.1 3) sal.isfies (25); in ather words, we need to verify that the ri&t-hand 
side of (2.13) i s  a fixed poiat of the mapping P, related to the integral equation 
(2.5), which is defined by 

ITib do so we will substitute in (2.16) the deteminant rrf the right-hand side 
of (2.131, 

We divide the proof of t h ~  &earera into three lemmas. 1x1 the first lemma 
we perform intepalion l\ivith respect lo u. 



Proof. We: rewrite (2,17) aaording to the expansion (2.141 and inhgsrte 
using (2" P 2) : 

where we use for cowenience the notation xo = Q 
We consider first the negative terms, camspondkg to the lower limit of the 

integmk, arid show that they are zero for each k = I ,  . . -, m For k = 1 we have 

since n (1) > 0, xo = 0, and so by (2.1 1) we obtain t,,, (x, a) = 0, 
For k = 2, ..., m, we have 

because if we rewrite 'chis ;zs a determinant, the colul.nm k - l and k are the 
s m e .  

We now csnsicler aU the pegtiye terms, corresponding ta the upper limit 
aF tbe integral, The generic term (ignsirrg the 1Jz factor) is 

and this is s m m d  aver aU E and k = 1) . . .1  m. We now ex~ lu& from con- 
sideration for each permutation ~t the tern sf k =: ~ C - ' ( ? R ) ,  and show that 
without those excludgel terms the sum uT all the terns is zero. 

For any pernutalion 7~ and m y  k such that k f n-' [pa), Ict j == rc(Jc) < m 
and kt I -- x "j4-I). Define amther permutation, I?, by 

The mapping wlni~h shassigns to the pair (z, {cj the pair (it, E )  is one-to-one 
and onto (since: applying it twice i s  the iden~ty). Note. that n and it &fer 
by a single transposition, and therefare have opposite parities. EI-ferslce we have 
a one-ta-one ant 0 mapping from a11 pairs In, k'j wivviilrh a even aad k 8 rt - VlFn) 
to all pairs (2,  6); with 8 odd and 1 + ;rt"-l(m)n). Fwthemum, fos such a pair 
we have 



and thesrehre the terms cosxespandjrrg ta { x ,  k)  and (it", lJ cancel, and 

The only remdning non-zero brms are those of the form 

which establishes (2.193. The detehnant form (2.18) is imed_iate, arr 

Our: subsdtution of (2-13) in (2,16) bas so far fielded by Lemma 2-6, that 

Pa the next l e m a  we perfom the integration with respect to a. 
For any E, k P n-"(wl), let 

% + ~ [ k ] - " k +  1 

Is ( E ,  k) = sign ( x )  2 Xk 

S I , . . . r S ~ a ~  I s ~ I [ s ~ + ~ E ( ~ ) - P . ~ + ~ . ) ?  

L 2-7, We have 

Pro of. We perfam tlk~ integrafion fat cash pernutation E, To be able to 
inlegale with respect to z we expand each of the functions lo  as a Taylor series 
using (2.103, take the product of these smies, and ilntegrate it tern by term. Tbie 
exchange of irstegrztian md summation is justified by the f a ~ t  tbn t all the tern21 
of the series are positive. 



We stw wit21 the km comesponding to the iden~t;ly prmutlction, for which: 

S G ~  1 5 ~ -  X = I +  
1 I r > ~ z .  ,.... a,-, 3 0  '. '. t<msi!si! 

x:" s, 
= I +  C n--- 

alt...+sm>o icrtr~i!si! xiam~i 
= I +  1 n2E- n : i +  n"? -- % 

. m i  . i t  s , + ~ * ~ + , ~ > o  16,siI sf! zigMsf 
In XP Ciqrnsi 

=ng.cxa- c nG- 
i= I. s*+,..+8m,>(r I 4m z !  - ?  Zismsi 

G 
sl ,... aa,ak&1 smao 

z 
,... >o,%~I ,.... s m a D  Csk- I l f  sk! 

G 
r ,..', sk ,..., §,>a sh!csk+ $11 

w! m- 2 

= n f a [ ~ d -  2 I ~ ( z ' ~ ,  k). 
e =  t &==% 

We now consider a general pernutation x f dd, Reed the de3ttlition and 
pro~rties of 5 [ ( $  in (2.15), After excludhg the identity germutatisn, tke kite- 
gral quaxs: 



$1 4 [%I33 -0 + 

x n  
r ~ k + ( r ; n f k ) - j c ) -  

r+ksi!(st+Ir(i)-il)! C,msi+T(n) ' 
We naw split the ncgatitte: term into two partis and the above equals: 
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Hence: the lemma fallows. 
To complete the proof of Theorem 2.5 we need to shaw 

Proof. We use the same f and I as; before, where the mapping 
[k, E] 4 ( E ,  2) is one-to-one- Raalll that E and .iE h v e  opposite parity, and 
( k l  = -:(I)== j ,  n " ( k ) = ~ ( I ) = j + f .  S h a g ,  kandjG", lplaysymet~icro3es~we 
can assume;, withaul loss sf genemlity, that k 1. It is easy ts see that 

We campare JI (~t, and DClt", 0, and ahow them to be qua1 except for the 
opposite siw. W4: consider the following three cases: j' < k,  k 6 j < il, Z $8, 

For j < k: 



2-4. CsLtlBaPiam of same jdat prv~~hbflibr;es. Formula (2.4) can hie USHI ter 
cdcujate s ~ m e  more complicated probabilities ~zs we do now. Far n, < . . . < aa, 
and E P O we ca11:date 

in words, none of the layers n,, . . ., n, has a downward jump over the intewd 
(0, tl. We deu~te  this by Fn ,,.+ (t, y , ,  . . . , ye- I ,  y,)= 

PROPO~TIQN 2.9. We have 

where we use f i r  convenience the notatiaa no = O and yo = 0. 

Pr o of. The proof is by induction on m, where the case nz =. 1 vvas coverd 
in (2,4). It follows that 
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31. Cfpdfarnd distdbmgala af the nt-lr Poimoss I r w b a r ~  &akam. We 
fint mlcuPate P,,, ...,, ('V, ($1 x), the ma@zld distribution, d the nth line height 
at time t cemaditiod on! the initial values of all the lines 1, . . ., rr at 2i1n~ 0, In 
the follovrainf: popasition we consider several cases, amordhg to ;the value of 
x relative ta yr, . . ., yn, 

~ ~ O P O ~ E T ~ O I M  3.1. We haue 

0s YE 6 X t  

FnEt, ~ 1 %  .*.I y n - 1 ,  ~ ) r  ~ n - 1  G x ynZ 

Fn(fr y15 yw-2,  X, x), y n - ~  6 x < ~hyn-1, 
- - 

. . . . . * % m . . * w , m .  . I . . . . . I l . *  

~1~ ..., yk-1, X, ,.-, XI, Y k - 1  X < ~ k ,  

. - m . ,  - .  w ,  * - s s s * *  

Fs(kl X, ...? O G x < y l .  

Proof. Case n: x Z y,. In this case, X ( t )  a x, so 

Ga se n - 1: yn- 1 6 x < y,. Whether k", ( t )  i s  stilk abave the level x, ar i s  
fielaw it, depllends risofy yon whether there are any Poismn paints in the: mea 
ibauzlded sa the left and rigfat by O and t, above by the h&ght x, a d  below by 
the line E - 1 (s), 0 G s C E. Hourever? the eveat that thete ap.c ~10 points in this 
redm is also exactly the event that X(t)  = x if the: initial skate was 
E(Q)==ysf . . . r  ET8-1(0)=jf,-l, Y,(O)=x, Henm 

Case: n-2: ys-2 G x < Y R - 1 .  Whether X(t) is above the bvel x, or iff 
belaw it, is d~ ed entireiy by Poisson paints in tho area bound& above 
by the height x, and below by the line K-2 (s), O 6 s < a, and the resalt then is: 

We prove this sta;eeme~t by jlldustion in discussion of the next, more pneral 
C8S(;. 



Case k-1, k -  1, ..,, 12: yknl < x < y k  (for convenitme, we put 
Y, (s) = yo = 0). Consider the time at which & (s) first- drops below the l e ~ d  x. 
Apply the argument of the case n-l above te the first It lines, that is Po 
n = k, to sm that the dist~bution of T,, and the rlistsibution of the Ilne & {& 
s 2 &, i s  the same whether the initid value of &(O) is yk > x or whether h is x. 
Qearly, P(v,Q&) , x T, 3 t )  = I, Else, Fsr s .r t ,  P ( & ( t )  x I & = s) will be 
dqerrdent on the values of q(s). Let then '%ij(s) = fil j == i s  . . .> ra The distribubim 
~fYj(s),j== 1, ..., k,isthesamewbe~eryk > x m y k  .=x,andy"i<x, j =  1, ..., k 
Usiug as the: hdu6130a hypathesis tbe cases &, . . ., n, we obtain 

The last expmssion is again the same t?rbether y, > x or yk = x, and so we hawe 
shown that 

Fuflhermore, cleahrly, Fm is continuous in y, at yk = x (since the probability of 
Poisson points at the level x is a), so we r;an write 

where X- denotes the limit from tbt left as yk f x. But for x- we can me the 
induetion bypathesis sf the case k to get 

and so we haw shown, using the continuity of F again, that 

pylr...ryk-t,yc....,yR(S+nft)) = FnCt, Y I ~  .-., 4rk-1, XI  ~ 1 7  ~ k - 1  < ~ k a  

Cast 43: 0 < x X yl. For this case, by what we Rave shown, 

33. DisPriibagaa of mraoeicah Poimom hyayprljlogc ataiseas. We re- 
turn to the full. quadrantnl, and esxrsider the rith l a y ~  sf the Poissan paints En the 
plane. Wtl~a defmle 

h, (XI = Hn (x, . . ., x), 

%mom&z 3-2. We. Inme 



Proof. The Poisson jbyprlsolic staircases start very high at times dose 
tcr 0. Henm P(Y: (t) , x) is like cdcdaei9g B ( Y , ( ~ )  > x) with iinltial conditioas 
YE (0) =. . . . .= & (0) - m. The fomd argument is the fouovvlxag, 

Far any O < ro < G, 

where the swmd equality Edaws from the last rsection. R e d l  P: (to) - exp (to); 
hen=? Iettjtng to -+ 4 we see that the e n d  surnmarzd approaches 0, and the: 
first approaches Fm (t,  x, . . ., x)- We get 

Remark I,  The cdsulatie~l of Section 2 gave us 

and tlzlis uras the key quantity tu tcleomponte the m a f e d  distribu~ons of Y,(z) 
eon&tiond on mbitrapy ~alues  at time. 0, and from these we h d y  obtaind the 
mw&d dist~butiioar of (t). out that this distGbutian no 
lmga CPR:prrds an the MI mu 1, . .., %- ,) but only on the 
value of this function on itS &atgond, $Eo to be na direct way la 
reach the d v d a t e  reaultt: The probabilisk 
the k t e g d  quaticm had to be done for 
~fnsiitions away from the d i a g ~ d  (at xl = Q3 given in tern of lower d h e n s i d  
h ~ t i a n ~ ,  arrd the mllapsr: to the. didgoml was vssible only at the end. 

Remark 2. The fmctiun h, (x) a n  be w i t t ~ a  in sewerd different ways: 



T%F! fimf expression is obtained when substituting xl = . . . = x, = x in (2.33). 
The second follcsws from (2,12)!), where """denotes the lth desiv;rtiv& The third 
fallows from /2.10), and noting that the powers of x eanwl. The third farm is 
the deteminwt af a, s etric Toepf*b matrix. 

dl, Caoaecgioa Ito &e Unl"~m-H~mme~"~1ey prabkerm. tJVe have men~oned 
the connection of the Poisson hyperbok staircases ta the ran- variable 
L, which i s  the Iength of the longest ascending suhsequenm in a pennvtatic~n af 
1,. . ., n in the Taboduction. By (3.1) and (32) we have 

" XR C %P(Lk Q n) = h.&) 
k - a  

and we obtain formulas for cdeulating the distPibution and expectatian of L,: 

Far lc = 1 we have triwia3Ey P (Lk = 1) = l/k !. We now mmpute .P (Ak -- 23. 
Clearly, for k = 0, li thew probabilities are CT. Table 4.1 eanraim values for 
k = 2 4 * = q  LO. 

Table 4.1. Value3 of P(& = 2) 

Proof. We have 
a ..R 



" 1 em k - l  f = i x c -  - -- 
I 

.=o .=o $1 S! ( k - ~ ) !  ( k - ~ ) !  FI * zo S! @+ I)! ( k - ~ - l ) l ( k - ~ !  

an&, by equ%.tjng terns and $ (L, = 0 u L, = 1) = I/%!, haye (kt,4), rn 

18.2 Eva4aa.mlaica;n of tlee nth stali~c6ase di5tdba~dom. We now give some nu- 
merical examples of calculations, In addition t~ the variabks Y: (I) ave define 
It, to be the length of the side sf tbe largest square &law the layer Y,(*), Then 

Calclliation, Q.f expcted values follow8 by htegratioas. of P(Pz(1) x), 
$(Re r), aithkh we mrtied ant numeicaUy. Table 4.2 gives same values 
R, obtariad for the. expectation of Vz (I). Figure 4.1 plats chese valrres. By the 
asymptotim af 4 -+ 2& we would expect that E(RJ - 4 2 .  Figure 4.2 plots 
same of the &st-Abutians. 

Fig. 4.1, Bxpctalians of line heights K(1) and square srdes R, 



Fig. 4.2. T'slil disnrib~fiom of heights XI1) md q m w  sidm R,, 
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Table 4-2. Exptatians of line height at rime I and of side of the supportiag square 

= P(the longest ascendhg sequence of points in r x r square is  r: n) 
a -2k 

We can easily check: &at ibis is consistent with our results for ra = I ,  2: 
ao - Z k  

lategrating (4.7) from 0 to a> we have 

(see [I]. formula 7.4.39, 
For cxmple, for k = l. we have 

(Zk-I)!! 
" '=A r-a 2kk-lC! 



4 0  B. Leviksan et al. 

[I] M dbramawitz and 1. A. Stegun, Nandbuok ofMuthemntkal Fumtirsns, Dover d t i on ,  
7th p&ting 1968, Dover Plrblica~a~s Ilnc,, New York 1964. 

[2] D. A Id a us and P. D iaco n i s, ff mmepsEtly'8 kterslcriw pnrtkle pmcess an$ towcst incwtas- 
irtg ~ub~oquences, Probab. Theory Rdatd fields 103 (1995), pp. 199-21 3. 

[3] B. Al d a us md P. DDi aco a j s, Lawest i~~measing subs~quences: F m m  pmthnce surt i~g te t h  
Buik-Dm~-IoItaasson theor- Bull. h e r .  Math. Sac. 36 (i19991, pp. 413-432. 

E4] $5, Boll o bas and S. S ae  s on, On itlzg feng;tk of the bngest i~creasieg subsequence in a rmdwm 
permutation, in: Combinuia&s Geometry and Probdiliqi B, bllobrrs (Ed.), Camb~dge Uni- 
versity Press, 1996, pp, 121-128. 

{s] J. D. Deu s ~h el aud 0. Zei t o u n i, On increasiq subsequences of i f . &  mmples* Combin. 
Probrtb, C@mput. 8 (1999), pp. 247-263. 
R. Dorret, Brobizbility: Theory and Exai~lplq Wadsworth t Brauks, Pa~.ifil: G ~ v G ,  1991. 
I. M. Glessel, SymtricJumfionr and P-retursiwesls, J .  Combin. Theory, Ser. A 53 {199D], 
pp, 257-285. 

f8J J. M. Hamraersle y, A few seedlings of research, Roc 6th &rkeley Symp., Val, E (19m 
pp. 345-394 

[9] K. Jo hasss on, 5% l q e s r  increming slrbsquence in n padom pmutation and a uni-y 
ran& matrix m&& Math. RES. Lett. 5 (199@, pp. 63-82, 

flO] A, N. Kelmogorov md 9. V. Fomiia, Inmdluctory Red Analysis, F~entice Ma%, New 
Jersey, 1970. 

f ll] B. Leviksan, T. Relskj  and G. .W e i s q  On n Poisson hypwbo&c icstaimse, Probability in the 
Engneering a d  bfomariond Sciences 13 (1999), pp. 11-31. 

[I 21 8. F, Logan and E, A, S bepp, A wrjatlonal problem for rmdom Yaung tableaux, Adir h 
Mrath, 26 (19771, ppS 206-222 

ff3] C.  Schenxted, Longest imcreasw atd decreasing subse~eace, Canad. I Math. 13 (I 96J), 
pp. 179-191. 

[t4] A, M. V e rs bik and S. V. K ero v, Asympt~lics of the PlarrchmeF measwra uj" .the syme&ic  
grmp and the limiting fmn 4 Young; tables, Soviet Math, Bokl. 18 (197q3 pp. 524-5-31, 
{Tramleutiern of DoM. Akad  Hank SSSR 231, pp. 102&1627.] 


