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Abstract. We consider the increasing sequence of non-intersect-
ing monotone decreasing step processes Y¥(), n=1,2,... t > 0),
whose jump points cover all the points of the homogeneous rate 1
Poisson process on the quadrant R%. We derive properties of these pro-
cesses, in particular the marginal distributions P(Y¥(t) > x), in terms
of a Toeplitz determinant of some modified Bessel functions. Our sys-
tem provides a new view of the Hammersley interacting particle sys-
‘tem discussed by Aldous and Diaconis, and the distributions we derive
are related to the distribution of the length of the longest ascending
sequence in a random permutation.
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1. LAYERING OF THE PLANAR POISSON PROCESS IN THE QUADRANT

In a previous paper [11] we have studied a stochastic process Y *(t) which
we called the Poisson hyperbolic staircase. One way to define Y*(t) is to con-
sider a homogeneous planar Poisson process in the positive quadrant, and let
Y* () be the supremum of all decreasing (we use the term in the weak sense of
non-increasing) functions which have no points of the Poisson process below
them. In fact, Y*(t) defined in this way will be a right continuous with left
limits (RCLL) decreasing step function, which passes through a two-sided in-
finite sequence of Poisson points (which are its values wherever it jumps down),
ceus (X gy ¥=1)s (o, Yob (%1, ¥1)s ..., With Xx; increasing, y; decreasing, and these
points are exactly all the points of the planar Poisson process in the quadrant
which have no other points in the rectangle between them and the origin.
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in this paper we study a sequence of processes, Yy (t), n =1, 2, ..., associated
with the same roisson process on the quadrant, which are defined inductively
as follows: We let Y¥(t) = Y*(¢), and let ¥7(¢) be the supremum of all de-
creasing functions which are above Yy, (f), with no points of the Poisson
process below them and above Y7_;(t). Again Y;(t) is an RCLL decreasing
step function which passes through a two-sided infinite sequence of Poisson
points, ordered by increasing x and decreasing y, such that these points are
exactly those points of the process for which the rectangle between them and
the origin contains only points of the lower lines Y7 (), j < n. We can think of

layers, where layer n coniains all the Poisson points (x, y) which are 9ust
above’ the previous layer. Clearly, this layering covers all the points of the
planar Poisson process in the quadrant. Following terminology from [11] we
call the process Y (f) the n-th Poisson hyperbolic staircase or, alternatively, the
n-th layer process; see Fig. 1.1,

Consider the time ¢ and the height interval (0, x), and let 0 < Y(1) < ... <
Yi(t) <x < Yi (). Then (Y5(2), ..., Y7(1)) are the locations of particles at
the time ¢, on the interval (0, x), in the Hammersley interacting particle system,
starting from empty at time 0 as defined by Aldous and Diaconis [2], [3].

In Section 2 we consider the vector Markov process (Y (1), ..., Y,(t)),
t 2 0, conditional on the starting values (¥, (0), ..., Y, (0)) = (y1, ..., yu) or,
equivalently (in terms of distribution), (Y (s+1), ..., Yx (s+2)) conditional on
(Y$(s), ..., Y¥(s) = (¥1, ..., y2). For this process we derive the conditional
probability that Y,(t) remains at the level y, until time z. This probability
satisfies a renewal type equation, and most of the section is devoted to ob-
taining its solution. The solution is expressed in terms of determinants involv-
ing modified Bessel functions.

The probability derived in Section 2 can be used to express various con-
ditional joint probabilities involving Yy (*), ..., Y,(*), ... In particular, it is the
key to obtain the distribution of Y7 (¢), the nth layer process, for which we have,
loosely speaking, the initial state Y7(0) = ... = Y7 (0) = cc. The marginal dis-
tribution of Y (f) is found in Section 3. We obtain P(YF (1) > x) as a deter-
minant of a Toeplitz matrix of modified Bessel functions, obtained from our
previous formula of Bessel determinants by substituting y; = ... = y, = X. This
formula is a special case of a formula derived by Gessel [7], through com-
binatorial methods. It appears implicitly as formula (1.6) in [9]; see also for-
mula (11) in [3].

One motivation to study the layer process Y; (t), n =1, 2, ..., is its rela-
tion to an old combinatorial problem of Ulam and Hammersley; see e.g. Ham-
mersley [8]. Let L, denote the length of the longest ascending subsequence in
a random permutation of 1, ..., k. “Random” means here that all permutations
n are equally probable with probability 1/k!; set L, = 0. Hammersley noted
that L; also equals the length of the longest ascending sequence of points
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Fig. 1.1. Layering of a Poisson point process on the quadrant; e — Poisson point

among k points uniformly and independently thrown onto reciangle
[0, t]1x [0, x]. On the other hand, P(Y} () > x) is the probability that the
longest ascending sequence of points of the planar Poisson process in the
rectangle [0, £] x [0, x] has length less than n. From this observation one
immediately obtains

(1.1) P(YE() > x) = i PLu<nm)r (‘X}k

Hammersley has conjectured that EL, ~ Eﬁ. This conjecture was
proved by using analytic methods by Vershik and Kerov [14] and Logan and
Shepp [12]. Aldous and Diaconis [2] obtained a probabilistic proof by de-
fining the Hammersley interacting particle system and deriving its asymptotics.
A different approach was used by Johansson [9], who has expressed
P(Y¥(t) > x) in terms of eigenvalues of random unitary matrices and used it in
a study of the asymptotic properties of P(L; = n). Some further results about
L, appeared in [4], [5], [2]. ‘

We return now to equation (1.1). We sec immediately that Y7 (-),
n=1,2,..., have the scaling property

P(Y¥(t)> x) = P(Y;‘ {1)> tx)
and, in particular,
E(vF ()

E (Y: (E)‘) = i
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We can also easily derive from (1.1) the distributions of the first and second
layer processes: Clearly, P(Y¥ (t) > x) = e™™, and since P(L; < 1) = 1/k!, we
get for n=2

P(Yi(t)>x) = ): gfgl = e " 5 (2./1x),

where I,(x) = Z:lﬂ [(x/2)*]/s!s! is the modified Bessel function of the first
kind, of order 0

In Section 4 we use the layer processes to study maximal ascending sub-
sequences in random permutations. Our results provide a way to calculate
P(L; = n) which is an alternative fo the method of Schensted [13] which used
Young tableaux. We also do some numerical calculations.

2. THE TIME TO THE FIRST JUMP OF THE »TH LINE

In this section we consider the jointly distributed vector process
(Y1), ..., Y,(), which is a continuous time Markov jump process in R%.
Each Y;(t) is a decreasing RCLL step processand Y; () < () < ... < K (0). If
Y, () = y1, ..., Y, (t) = y,, then the nearest transition of the vector process
(Y1(°), ..., Yu(*)) is with rate y, and this transition is a jump downwards of
the kth coordinate with probability (y,— y;-1)/v. (for convenience, we write
yo = 0), and the jump of ¥(*) is to a value u which is uniformly distributed
OVEr Jy—, < u < yy. Equivalently, the time to the next transition is a random
variable t ~ exp(y,), and the transition generates a random value u ~ U (0, y,),
which is the new level of ¥ (), where y,—; < u <}y, (neglecting the null
event u = ).

It is easily seen that the process (Yy (1), ..., ¥,(t)) with the initial condition
Y1 (8) = y1, ..., Yo(5) = y, can also be generated as the first n layers of a planar
Poisson process of rate 1 in the strip (s, 00) x(0, y,), which by definition is
(Y¥(s+1),..., Y¥(s+1)) conditional on (Y5 (s),..., Y (s)) = (1s--0» Yo

We use the notation Py, . . () for the probability of an event defined by
Yy (t), ..., Y,(f) with the initial condition ¥;(0)= i, ..., ¥,(0) =y, and we
denote by E,,.. ;.(*) the corresponding expectation uperamr

We wish to calculate the probability Py, ., (Y (£) = y,) that ¥,(-) is still at
the height y, by time t. If we denote by T} the time to the first downwards
jump of the nth line, this event is equivalent to {T% > t}. We denote the
probability of these equivalent events by

Folts Vivooor Yuets ¥n) = Py (Ya(®) = y) = Py, (T > 1),

2.1. An integral renewal type equation. We begin with a lemma which
shows that F,(t, y1, ..., y,) fulfills a renewal type integral equation.
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Levma 2.1. We have
(2'1} Fu(ta Yiscevs V-1, yﬂ)

A=1 3k

t
= BKP(‘—}F" t)(l +_fexp[y,,s} Z j F_n (’5‘:« Yis ooos Us Ytas ooos Va1 y,t)dvds)
4]

k=1 yr-1
Proof. Consider the processes Y;(f),..., ¥,(t) starting at time O from
V1s -+-» Yu- They will remain at those levels until the first (leftmost) Poisson
point in the strip (0, o) x (0, y,). Let (z, u) denote the coordinates of this first
point. Recall that t and u are independent, with © ~ exp(y,), u ~ U(0, y,),
that is

"

P(teds, uedy) =y, exp(»—-yws)d‘s;}mdn.
If T > ¢, then at time ¢t we will still have Y (t) = yy, ..., Y,—((t) = y,—; and
Y, (t) = yn and so {T§ >t}. If t <, and y,-; <u < y,, then Y,(7) = 4, and
certainly {TH <t} If t<t, and y—y<u<y for k=1,...,n—1, then
Y, (1) = u while Yj(z}= Y;(0), j#k and {Tj>1}. In fact, conditional on
such values of (r,u), the probability that Y,(f)=y, is the probability
that, starting with initial values yy, ..., Ya—1, U, Yes1» «++s Yn—1, Yu, at time 1,
the nth line will not drop below y, for the remaining t—t time, which is
Fn(t“'cs Y voos Yimts o Vio1s ovos Y15 yu]‘~ Hence

Fn(f, Viseves Ya—15 V)

4
= exp(—y,, t)"‘"j ynexp("yﬁ S)
4]

L N

_ 1
X Z J. Fn(t_sa Yisovos Uy Vhtno vovs Yu—1s yn);dﬁds

k=1 yp-3

Cancel y, with 1/y,, and substitute s for t—s, to obtain the renewal type
integral equation (2.1). m

Define
A={{t, %1, .0 X 0K 0<% <. S0}
and
Ar={t, X1, o0y %) 0SS T, 0< X, <... €<%, < T}

Let C(44) and C(4) be the sets of bounded and continuous functions f: 4 — R
and f: A — R, respectively. Define the mapping

@(f)(ta xls vy xn)

n—=1

: *e
=exp(— X)L+ [exp (%) 3. [ £(5, %15 0000 0, Xi 15 200 Xno 1, %) dvds).
a

E=1 xp-q
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Notice that @: C{dy) — C{4y). In C(44) we introduce the supremum metric
or(f, g) defined by

QT(fs g) = [t max Ef(ta Xisvres x,,)-g(r, Kioeens xn)l'

K pseasEn)ELA T

The space C(4y) with metric g+ is complete, and therefore we can use the
Banach fixed point theorem.

Lemma 2.2, The mapping @: C(4)— C{A) has a unigue fixed point.
Proof. We first show that @: C(4;) - C(44) is a contraction. We have
for f, geC(4q)
=1 xg

or(®(), 2(g) < max iEX?Pxnt)gexp(an)Z | er(f. g)dvds|

{1 X1yen s Xn)S k=1 Xp oy

< (1—exp(=T?)er(f, 9)-
Hence, by the Banach fixed point theorem (see e.g. Kolmogorov and Fomin
[10]), the mapping @ has a unique fixed point fr(t, x4, ..., x,) in C(44). Note
that for T< T’
(22) fT(ts Xis oy 'xn)“ = fT"{ti B2 PR xn) for (ta Kgseens xn}EC(AT)'
We now show that there exists a unique feC(4) such that &(f) = f. Let
feC(4) be defined as follows. For (¢, x4, ..., X,)€ 47 we take T = max(z, x,)
and set

f(ta R3S PP ‘xﬂ) = fT(t!- >3 FREPH xn)*

By the consistency statement (2.2), f is well defined, and it is clearly a fixed
point of @. Suppose now that there exists another fixed point g of @. Then its
restriction gy to Ay is also a fixed point of @: C(dy) — C(4y). Thus gy = fr for
all T > 0. This means that f is the unique fixed point of @. =m

From Proposition 2.2 we conclude immediately that the integral equation
(2.1) has a unique solution.

Notice that from the definition of ¥, (1), ..., Y,(f) we have

(23) Fn(tﬁ Yiseons .yn) = Pyg,yn(}:n[t) = yn} = Py;r....,;uﬂ! (Kz“) = Vn t)—

To understand the next substitution we show in the following lemma another
probabilistic representation for F,(t, y1, ..., Yu)

LemMma 2.3. We have
k4
Folty Yio ooy Va) = exp(—Ya D Ey, .y, 5D (] Yo=1(s)ds).
o

Proof. Let A be the event that the rectangle [0, £] x [0, ¥.) contains no
points apart from those belonging to layers ¥; (), ..., ¥,-4(t). The conditional
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probability of this event upon the whole realization of ¥,_; is

exp(-f((yu— Y, (s))ds).
]

Taking the expectation completes the proof. =

Define now

1
Hn(yla navy yn) = Ey;...,,y,,(expj Xi(s) ds )
o]

By Lemma 2.3 it is easy to see that F, is of the form

24 Fulty Y15 oves Ya—1s Vo) = €Xp(=Yu ) Hoey (1, -y Yo 0.
Substituting (2.4) into (2.1) we obtain an integral equation for H,:
(2.5)  Hplxgy ..o Xp)

1 m Xk
=14+[ Y [ Halxa7, oo, Xgm 1T, UT, Xgy1 Ty oonn X D) dudr.
Ok=1 xp-1

ProrosiTiON 24. Equation (2.5) has a unique solution.

Proof. The proof follows, in view of substitution (2.4), from the fact that
(2.1) has a unique solution. =

2.2. A multivariate partial differential equation related to a Bessel equation,
Before we present the solution H,,, we do some preliminary exploration which
helps us to guess the solution. Manipulation of equation (2.1) leads to a partial
differential equation for F. The identity

Fn(t; Oa wa wvey J’n-h yﬂ) = Fn*'l{t; J’zs LRRL S yn—"h! yil)

provides one initial condition for that equation, and taking derivatives with
respect to y, at y, = 0 provides another initial condition. Substitution of H for
F yields finally the following equations (we skip the details):

m amwl 32
(26) z w(xkﬁ—fﬂm(xli seey xm)
Xk

13
Y | Y 3

d ,

’iaé""'f"Hm(xJis srey xm)""Hm(xls sres xm)) = 0.
Xk

We seek solutions in the region 0 < x; <... < Xx,,, which satisfy the following

initial conditions in terms of the lower dimensional functions (here the 0-di-

mensional Hy is 1):

(2'7) Hm((}s Koy eens xm} = Hmwl(xzs “evy xm):
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and
g 0
(2 } é;:Hm{‘xli weoy xm)lxlug
m 5 ‘
= HM“J(XEs “aey xm)“ Z —me—-l(xz, vey xm).

We try to solve this by separation of variables. We look for solutions of
the form H(x1, ..., Xm) = [}, &(x), for which the equation reads:

¥ TT &5 (0 & (0 + & 06 — &x (x)) = 0.
k=1 j#k
This leads to the Bessel equation
X & () +(1—0) & () — & () = 0

whose general solution is of the form

Ee(x) = X2 Lag (£2/%0),

where %, is any linear combination of I, and K,, the modified Bessel functions
of the first and second kind, of order v.

To continue searching for the solution we should now consider linear
combinations of such special solutions. One can then see that any candidate
solution of the form

(29)  Hu(xgs.on Xw)

=Io(2y/%1) Hpey (X2, <oy X =321 2 /%0) Y aﬂm (X2, e er Xp)

k=2
+ ¥ P2 %) ¥ TT x¥2 %2 /%0)
Gy=2 B250a038mt k=2

Ba¥t ot = —8y

satisfies equation (2.6) and the initial conditions, where the first term and the
second term guarantee that the initial conditions (2.7) and (2.8), respectively,
hold true. It turns out that for m = 1, 2 the first two terms of (2.9) give the
correct solution. However, for m = 3 the first two terms give a wrong solution,
which results in F, which is not a probability distribution (it becomes nega-
tive). Thus we need more information to choose the correct linear combi-
nations %, (2./%), and the equation and initial conditions ((2.6), (2.7),
(2.8)) are not sufficient for that. Nevertheless, the candidate solutions (2.9)
do suggest a guess at the form of the general solution to (2.5), and the unique-
ness of the solution enables us to verify this guess. We do so in the following
section.
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2.3. The solution. For convenience of the notation we introduce

@ x*
O g 0=1,2, ..
5= 0 oY P 3 Ay e ény
(2.10) 15(x) def 872 I 2 \/:;) - s.x(:f-f- o)
Li=o s!(s+ )Y 0=0,-1,2,..,

where Ip(x) is the modified Bessel function of the first kind, of order 6:

1 g oo (t x?.)s
= (3x) o

5=0

With that notation, the asymptotics of 15(x) at x ~ 0 are:

2.11 X" ! =0, 1

( . ) zm(x)w;;ﬁi l“m(x)wma m=u,l,..,
and

(2.12) Xy =11 (x)y, m=...,—-1,0,1,...

We write down first the solutions of (2.5) form = 1, 2, 3 (m = 0 is written
for completeness). These can be verified by substitution in (2.5). Note that the
last two terms of Hs correspond to the third, undetermined, part of the right-
-hand side of (2.9). We have

H 0= 1:
H, (x) = 19(x),
Hj (x5, x2) = 10(x) 10 (X2)— 14 (X-L?‘ 1o (x2),
Hj(xy, X2, X3) = 19(x1) 10(X2) 1 (%3) — 70 (1) 11 (X2) 11 (x3)
=1y (%) 11 (%3) 20 (x3) 414 (%1) 13 (%2) 1- 2 (x3)

+15(0) 13 (x2) 1y (%3} — 12 (%) 10 (x2) 12 (x3).

The above special cases suggest the general solution:
THEOREM 2.5. The solution to (2.5) is

10(x1) 1o1(X2) o (%)
(2.13) H, (xl, . xm) = g (JC,_) Ip (‘xZ) ver lgem (xm)

........................

“Em*l(xl) m-2(X2) ... 2o (%)

" Note that to calculate H(xy, ..., X,,) we evaluate at x; the functions y;
with indices j= —i+1,..., m—i. We can expand the determinant H, in
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(2.13) as the sum over permutations:

(2.14) Hp (X1, ...y Xp) = ) sign(n) Im[ Leqty—i (%)

i=1

We shall use the following notation:

e The summation = runs over all the m! permutations of 1,..., m.
e sign(n) is the sign of the permutation, 1 for even, —1 for odd.
e 7(i) is the ith element of the permutation w.

e n~ ! is the inverse of =, ie. k=n"t(jlenk) =].

e ' is the identity permutation.

o Let us put {(n) =Y, (n()—i) . Note that

™m m
215) YT @e-) =3 @H)-) = Y (@O-i).
i=1 i=1 i#gn= 1{m)

Note also that for all permutations except n'* we have {(n) > 0.

In the remainder of this section we prove Theorem 2.5. We need to verify
that (2.13) satisfies (2.5); in other words, we need to verify that the right-hand
side of (2.13) is a fixed point of the mapping P, related to the integral equation
(2.5), which is defined by

(216) IPM(xls ey xm}

1 m X5
CIHUY | 0Ty ooy Xem s T, UT, Xger1 T, ooy X T du)d
0 k=121

To do so we will substitute in (2.16) the determinant of the right-hand side
of (2.13).

We divide the proof of the theorem into three lemmas. In the first lemma
we perform integration with respect to u.

LemMa 2.6, We have

!ﬂ{xl.r} ll“‘ﬁ(ur) e llwm(xmt)
moxm | T o o) o aen(XeT)
(2.17) Z _[ ................................ du
Eelmeet g, (X0 7) o g1 (D) o 1o (R T)
-t (X127} on dme(@T) o (XwT)
19(x1 7) -1 (%27) .o (%R T)
1 1 (%1 7) 1(X27) o Bem(XmT) |
(2_18‘) :.; ......................... PP

Im--Z(‘xl T} Em“‘B(xzr) s l“l(xmt)
I (xl T) Lp—1 (xz T) res Iy (xm T)

| ;
(2.19) *""2;ZSlgn(n)Im“u“’(m)-!-l(xu‘l(m)r) H Legiy—1 (X 7).

i n t{m)
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Proof We rewrite (2.17) according to the expansion (2.14) and integrate
using (2.12):

At X
Z 5 ZSigﬂ (m) 1n¢k)mra(u'f)ﬂ l-r:m»i(xi 7)du
k=1xp-y = i#k
1 kit
= z ZSlgn(ﬂ) Lagry =k +1 (X — 1 T)‘n Lagy —1 (X T)
Ti=1 = itk

1k . :
+ = Z 2. Sign (70) Ly -+ 1 (x DT tay-i (1 7),
Te=1x i#k
where we use for convenience the notation x, = 0.
We consider first the negative terms, corresponding to the lower limit of the
integrals, and show that they are zero for each k =1, ..., m. For k = 1 we have

z‘ Sign (ﬂ:) bag1) (xﬂ T) Ii[l Loty ~i (J:i- T)i = ()
* i

since n(1) > 0, xo =0, and so by (2.11) we obtain 1,,(xo1) = 0.
For k=2, ..., m, we have

Z sign (r) Lnfiey— &+ 1 (x-17) H Lagy—106:7) = 0,
b ik
because if we rewrite this as a determinant, the columns k—1 and k are the
same. :
We now consider all the positive terms, corresponding to the upper limit
of the integral. The generic term (ignoring the 1/t factor) is

SIgN (1) Lngy —x+1 (X2 T) Hk Lagy—: (%: T),
i
and this is summed over all # and k = 1, ..., m. We now exclude from con-
sideration for each permutation n the term of k = n"!(m), and show that
without those excluded terms the sum of all the terms is zero.
For any permutation 7 and any k such that k £z~ (m), let j = n(k) <m
and let I ==n"'(j+1). Define another permutation, %, by

The mapping which assigns to the pair (z, k) the pair (%, [) is one-to-one
and onto (since applying it twice is the identity). Note that = and & differ
by a single transposition, and therefore have opposite parities. Hence we have
a one-to-one onto mapping from all pairs (z, k) with = even and &k # n™* (m)
to all pairs (&, ]) with # odd and [ s #~!(m). Furthermore, for such a pair
we have

En(m—&ﬂ(xk 7) H Lagiy— £ (6 T) = Ingy—k+1 (x7) i«uyz(xﬂ) H '!z;(iywa(xi‘f}
i*k i#kl
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= 1yg 1k (0 T) 141 1 061 T) ﬂ Lagiy -1 {%X; T)
itk

= iy —k (Xk T) 'R&)~:+1(x1’f) H Va1 (% T) = !ﬂnmrﬂ'{xﬂ)‘n Lty —i (% T),
i#kt i#l
and therefore the terms corresponding to (m, k) and (#, [) cancel, and
ZSigﬂ(ﬁ) Z Lngiy—k+1 (Xa T) H Lagy—i (%:7) = 0.

kEn Hm) i%k

The only remaining non-zero terms are those of the form

Sign (70) 2oy — - 1y + 1 (X~ 1) T) H Ly -1 (%: )5
i#n~ {m)

which establishes (2.19). The determinant form (2.18) is immediate. &

Our substitution of (2.13) in (2.16) has so far yielded, by Lemma 2.6, that

11w . :
Y(Hu) (X1 - X)) = 1+jj€f ZSlgn(n} n—n= v+ 1 (X 1m) T) I—[ Tey - (X: T) dT.
4] 4

i# = Ym)
In the next lemma we perform the integration with respect to .
For any =, k # n~*(m), let

St k) k41
Xg )

' ak — @i
Dim, k) = sign "‘L,Em (59! (s + () — ke +1)!

xg&.**‘(w{i)"l’)* 1

. | . ot ] . 5 ' k a>’k:
il;[k(si)!(si*i”gﬂ(l)“"k)!Zigmsf‘i“f:(n)“ﬂ"l nth)
. X5
D{n, k) = sign(n) :
. K g m,..%,.ao(ﬁ,»c)!(.skmn(k)+k,—l)!
x;?“ +im(iy—iy* 1
b : s (k) < k.
Eg{sf)i{siﬂn(i)mi!)!E,-é,,,SsM(n) n®)
Lemma 2.7. We have
»
1 . ;
T4+~ 8ign(m) tyen-1m+ 1 1D |1 tem-i (s 7)dr
0l'x i#x 1(m)
= Hy (%1, ooy Xu)+ 3 Z D(m, k).
7 k#nifm)

Proof We perform the integration for each permutation n. To be able to
integrate with respect to © we expand each of the functions i, as a Taylor series
using (2.10), take the product of these series, and integrate it term by term. The
exchange of integration and summation is justified by the fact that all the terms

of the series are positive.
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We start with the tsrm corresponding to the identity permutation, for which:

1+j'—~;1(xm’c) [T w(xv)de

'B<m

1 o xr*l,rr x@{ 5
=14 dt

j- z '( .}»1)!)!:[3“(5;(]3115”)

xr+1 xf! 1

=1+ i !

r20,51 20 08m-1 30T+ (P'+1) a-:msm St r+z{msl+1

X1 x5 r+1

=1+ ¥ 1 1 151

FoBiyernsBim— lzn("‘*‘“ (I‘-I-l) i<mSi- S 7+2<m3i+1
14 Xpe xf ¥

rz1,8,.. ,smmj,»mr Irl i<m$i's '?—I"'Zﬂ:m
= I+ xm Sm .

TR % +s,,,>ﬂi‘<msz Si'Zié

oy i‘f%—zn >

s1+eTsm>0i<mSi Sl e +s,..>m<msn‘!5’ s1t+. +sm>ﬁa=sm3:’5 z<mg

1o (Xi} z Zi <m S

$1°4 s >0 1%m 51! 3~~}: c<m

w1 K
1 1o{x)— Z ( E xi Sk pd )

814 20,8, = 1,.. ,SmBOSklsk wkﬂe'&'z

il
b

i
Sﬁ

0
(53

n:ja

i k=1
L] m~1 B
= 1] 10x)— ( 2 | )
zl-;]i ) k;i sl,.,.ao,skai,...,smao(Sk—'l) Sk-;#ksilsilzi%si
m—1 S+l 51
X3 x5 1
w5 ,
E e ,skz,smaask’(gk‘i'l)’:*kﬁ‘Si'z{ s,+1

u:; ﬂm;

0(35;) z D (', k).

We now consider a general permutation =  n'%. Recall the definition and
properties of {(n) in (2.15). After excluding the identity permutation, the inte-
gral equals:

11

f Un—z= 1+ 1 (K- 10m) T) H Lngiy i (X T) dt
ot £ m)

1 w x;ﬂ:ﬂ;)z“l(m)—%l,cr-é—m—m“i(m} oo x;fll-{n(i)—-i)‘* ,rs;+(rs{i)~i‘)“”

—

or=o rli(r+m—n" M)+ 1) ima-imsi=o 8! (sp+|m @) —il)!
= ) Xl

FaSLserneSip= 1)~ 187 Lim] + LowesBm 20 r! (r'l‘m““’ T t [m)' -+ 1)’?

12 — PAMS 212
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w0 1

X
i# 2 1m §;!(8; 4 7 () —if)! r+Zi$ﬁ,,;(m)s. +L(m)+1

Z x;#-m‘ )1:“ my+1
P8 1neasBig=Lim) — 1650~ Uy + Losensdim 20 (r+1}'(r+m n”l(m)-i- 1)1
o xf‘*‘“‘f’ il r+1
i#nim Sil 8+ (@) —if)l r+ Z#r,(m) s+ {(m)+1
xr-hlu(m:: Hom)

- )

rz 1.81:...,5,;9:(m|w 168~ igm) + 1rerosim= O T! (?"ﬂ'm—'n 1 (m))!

St (m{i—i)*
x Tl e — : .
pen-iom) 5! (¢ I @) —dl)! LS DI 1 S17HE ()

5 xse+H )= Su-1gm)
steiim0 i<m S (SiH @~ Y, s+ (m)

m x§i -0t i n 1o S HL ()
= Il wp~sCd— % | — 2 e '
i=1 stim>0 ism S (i@ Y, si+{(m)

xzk +{mll)—ky+

= ];[1 Ix(fg»i(xﬁ)““ Z

Kt 2 ) 51, > 0 53] (S5 + |70 (K) — k]!
, X0t g 4 (m(k)—k)”
g;s, Hsi+ m @) —il)! mes;-i—«:(n)
We now split the negative term into two paris and the above equals:

m xf‘k."‘(“(k) ~ky*
[T tp-itd— X
il:i " ' kk#Fr~ Um), st 20862 1, 8m 20 (S&;' 1}' {Sk-}-]ﬂ (k)"'k')l
nik) 2k
xR -t 1

x [T —
kSt (s+Hm@ =i Y, s+ (m)
X3+~

kks‘;-(;‘r’ L), $1peensSiererSm 2 0 S (Sk"‘ln(k) k| — )
i

X+ 1
P
i#k 81 (8;+ [m () —i)! DienSitL(m)

= li zw(ij—i(xi)m Z

xsy;f+~:t{k)~k+> 1

kA Yo 5102 03 Or3m 20 S s+ m(ky—k+1)!
ki ’
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x~¥i +{n(i—i}* 1
x ] ;
ik 51 (54| (i) — ]! YuenSitl@+1
X
R A2, 5100803 im0 5 Hsp—n(k)+k—1)!
nfk) <

x5 +(n{i)~i)* 1

s s (s @) — 1)1 Y, s+ L (@)
= H Lugy—i (68 + Z ID (z, k)|.
i=1 ksk# 0 1(m)
Hence the lemma follows. =
To complete the proof of Theorem 2.5 we need to show
Lemmva 2.8. We have

> Y D@ k=0

n kik#n= 1m)
Proof We use the same # and ! as before, where the mapping
(k, m) — (I, 7) is one-to-one. Recall that = and % have opposite parity, and
n(k) = &) =j, A(k) = =(l) = j+ 1. Since =, k and #, I play symmetric roles, we
can assume, without loss of generality, that k <[ It is easy to see that

(), j<korl<j,
C(ﬁ)"{ﬁ(n}%—l, k<j<l

We compare D(xn, k) and D(#, ), and show them to be equal except for the
opposite sign. We consider the following three cases: j <k, k<j<I, 1<
For j<k:

D= .. ¥ al
T T e sl e—f k=D gl (54 I— G+ D)1
g+ {mfi)— i)+
x J] — —
ikt il (si+m @) =i} Y- s+ (m)
= |D(#, I)].
For I <j: '
xsx;'*u k+1 xsn+j+1-~l
D (z, k)| = ‘
ID{m, kN = 8320 Z o Sk (Se+j—k+ D s!(s+ji+1-D!
xig:ﬂnﬁl i+ 1

x 1
t#i 8! {8+ () —i])! Zﬁlsl«l—i(n)«s_l
= |D(&, l)f.
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For k<j<Ul
x5k+.i ~k+ 1 x?‘[
Dx, k)| =
Dt k) = 3;0 sznsk!(sh'f“f k+Ds (s +1—j—1)!

o — i)+
X+ (w0 =)

X [‘I X ne I
i#et s (s + @ —il)! Y, si+L(m)+1
= |D(#, }).
This completes the proof. =

2.4. Calculation of some joint probabilities. Formula (2.4) can be used to
calculate some more complicated probabilities as we do now. Forn; < ... <n,
and ¢t > 0 we calculate

P{}L(t) = Vnys n=os Ksm{t) = Vitm 1 Yi(“) = Vis veea X:m ((-n = ‘Jv'nm)é

in words, none of the layers n,, ..., n, has a downward jump over the interval
(0, £). We denote this by F,,, .. (¢ Yis-es Yae1 Vi)

ProrosiTiON 2.9. We have

Fnl,...,nm(t: y!_: cery Yu—1s yﬁ)

= exp(wy,,mt) H1 Hﬂk“‘"k—i“‘l((yhk-v1+l“yﬂk~i)t sy (yﬂk 1 V- ,)E‘)
. i=

where we use for convenience the notation ng =0 and y, = 0,

Proof. The proofis by induction on m, where the case m = 1 was covered
in (24). It follows that

P (&5 V15 ooes Vo)
=P (Y%, ) = Yuis -+ os Yo & = Y | 1@ = y1, ..., %, (0) = 1)
=P(Y,,® = Yn, | L(0) =1, ..., %, 0) = y,,,
Yo () = Vs s Yoo\ () = V)
X P(Y, () = Yays o5 Yoot 0 = Yooy | 2 (0) = y1, .., X, (0) = 3,)
=P(%,,0) = Vn | Yoae O = Y5 oo X0 0) = i Yo, () = Y, )
X P(Yy () = Ynys o+0s Yoy (0 = Voo | i@ =y1, .0, Y, (O =, )
=P(Y—tm s ) = Ya— Vi | Y1 O) = Yy 41 Vg1
coos Yo (0) = Yaa = Vi)
P(%, 0= Yuss s Yo s ) = Yot | O =315 o Yo, (O) = i, )
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= Frpmtm=1 (E Vo141 Vim-s5 +++3 Yim™ Yam-) Frsyeocitm s (& Y15 o105 Vo)

= exP(“’(J’u.,."J’nm%) ) H,, 1 (P-4 1= Vo= s w05 W 1= Vi) t)
X Fay,.ottm s (B V15 vees Yoo o)

and we now use the induction hypothesis. =

3. DISTRIBUTION OF THE nTH POISSON HYPERBOLIC STAIRCASE
3.1. Conditional distribution of the nth Peisson hyperbolic staircase. We
first calculate Py,,....y,(¥a(f) > x), the marginal distribution of the nth line height
at time ¢ conditional on the initial values of all the lines 1, ..., n at time 0. In
the following proposition we consider several cases, according to the value of
x relative to yi, ..., Vn.

ProrosiTioN 3.1. We have
{3.1) Pm,.,m,y,,v—hy,, (E:{t) > x)

#

ﬂ: yuf-';., X,
Fult, y1, 0y Yn-1, %), Va1 € X < Vn,
F"{ta Vigeues Ya—2, X, x)ﬂ Vo-2 S X < Ya-1,

--------------------------

................

Proof. Case n: x = ys. In this case, Y.(f) < x, so
Pmm-,ym-:.yn(m(f) > x) =0, X2

Case n—1: yn-1 € x < ya. Whether ¥ () is still above the level x, or is
below it, depends only on whether there are any Poisson points in the area
bounded on the left and right by 0 and ¢, above by the height x, and below by
the line Ya-1(s), 0 < s < t. However, the event that there are no points in this
region is also exactly the event that Y,(f) = x if the initial state was
Y1(0)=y1, ..., Ya=1(0) = yn-1, ¥u(0) = x. Hence

Pynu-.yn—wn(zi(t) > x) = Falt, V1o V=1, %),  Yu-1<X < Yn.

Case n—2: yn-2 € x < yn-1. Whether Y,(z} is above the level x, or is
below it, is determined entirely by Poisson points in the area bounded above
by the height x, and below by the line Ya-2(s), 0 < 5 < ¢, and the result then is:

P}'l;---a)‘n—‘hl’m(y;‘(t) > x) = Fn{t, Viscees V-2, X%, X}, Yu-2KX < Yn—-1.

We prove this statement by induction in discussion of the next, more general
case.
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Case k—1, k=1,..,n y-; £x<y (for convenience, we put
Yo (8) = yo = 0). Consider the time T; at which Y, (s) first drops below the level x.
Apply the argument of the case n—1 above to the first k lines, that is to
n = k, to see that the distribution of T}, and the distribution of the line ¥,(s),
s = T, is the same whether the initial value of ¥, (0)is y; > x or whether it is x.
Clearly, P(Y,(1)> x| T, = t) = 1. Else, for s <t, P(Y,(t) > x| T, = s) will be
dependent on the values of Yj(s). Let then Y;(s) = y},j = 1, ..., n. The distribution
of Y;(s),j = 1, ..., k. is the same whether y, > xory, = x,and y;<x,j=1,..., k
Using as the induction hypothesis the cases k, ..., n, we obtain

PY,®)>x|T=s Y& =ypi=1,..,n)

uuuuu

The last expression is again the same whether y, > x or y, = x, and so we have
shown that

Pyl’--u}'i‘tﬂ-|n)’k1}“k*lw~v3’n(n(t) > x) = Fn(t: Vs eves V=15 X3 Vit 15 +ovs Vds
Ve-1 S X< B

Furthermore, clearly, F, is continuous in y, at y, = x (since the probability of
Poisson points at the level x is 0), so we can write

Pyn«---'}*k— % 50 TR PR (Y;l (l) > 'JC)

= P}’i-«-‘é:}’k"hx“d'k-l-im-u.]’n(x“(t) > x)a Ye—1 <X < Vs

where x — denotes the limit from the left as y, 7 x. But for x— we can use the
induction hypothesis of the case k to get ‘

Py,....vie-re e 1y Ya 8) > )
=Fu(t, Vis ooy Vim1s X1 Xy a0 Xy X— <X < Ypo
and so we have shown, using the continuity of F again, that
Py....oe ey (Y& > X) = Fo(t, Y10 oy Yem15 %5 -5 X)y Yim1 <X < Yo
Case 0: 0 < x < y,. For this case, by what we have shown,
Py GO >x)=F,(t,%x,...,%), 0<x<y,. =»
3.2. Distribution of the canonical nth Poisson hyperbolic staircase. We re-

turn to the full quadrant, and consider the nth layer of the Poisson points in the
plane. We define "

hy(x) = H,(x, ..., x).
Turorem 3.2. We have
P(Y3(t) > x) = e ™ h,_y (tx).
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Proof. The Poisson hyperbolic staircases start very high at times close
to 0. Hence P (Y5 (£) > x) is like calculating P(Y,(t) > x) with initial conditions
Y;(0) =...= Y,(0) = co. The formal argument is the following.

For any 0 <1y < ¢,

P(YX(t)>x)=P(Yi(to) > x)P(YF () > x| Y{(to) > x)
+P(Yi(t) S X)P(YE@®) > x| YE(to) < X)
+P(Yi(t) S x)P(YF () > x| YE(to) < x),

where the second equality follows from the last section. Recall YT (ty) ~ exp(to);
hence, letting ¢, — 0, we see that the second summand approaches 0, and the
first approaches F,(t, x, ..., x). We get

P(Y;(t)>x)=P, (L@®>x)=F,(t,x,....,x)=e *H,_y(tx, ..., tx). m

Remark 1. The calculation of Section 2 gave us
Fﬂ{ts xl; sevy xn) = Bxp(—txu]Hﬂ(‘xla ceny Xp— 1)5

and this was the key quantity to compute the marginal distributions of ¥,()
conditional on arbitrary values at time 0, and from those we finally obtained the
marginal distribution of Y7 (t). While doing so it turns out that this distribution no
longer depends on the full multivariate function H,(x, ..., X,- ) but only on the
value of this function on its diagonal. However, there seems to be no direct way to
reach the univariate result: The probabilistic arguments as well as the solution of
the integral equation had to be done for the multivariate case, starting from initial
conditions away from the diagonal (at x; = 0), given in terms of lower dimensional
functions, and the collapse to the diagonal was possible only at the end.

Remark 2. The function h,,(x) can be written in several different ways:
() 1-1(x) 11-m(X)

h (X)ﬁ ; 1y (x) 19(x) 'L,;ix) 12_,,,,(3:) ‘

............................

-1 (X) -2 (%) ree 13 (x) 10(x)
= Wronskian (1,—; (x), 1511 (x), ..., 1 (x))
L2y%  LERY%  LEeYX . L@y

LRY®  LEeY®  LEJY% ... 1,,,;2(2\/123
= | LEVY LRV LYY . L2y

-----------------------------------------
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The first expression is obtained when substituting x; = ... = x, = x in (2.13).
The second follows from (2.12), where ® denotes the Ith derivative. The third
follows from (2.10), and noting that the powers of x cancel. The third form is
the determinant of a symmetric Toeplitz matrix.

4. SOME APPLICATIONS AND EXAMPLES

4.1. Connection to the Ulam—Hammersley problem. We have mentioned
the connection of the Poisson hyperbolic staircases to the random variable
L, which is the length of the longest ascending subsequence in a permutation of
1,...,n in the Introduction. By (1.1) and (3.2) we have

P(Yr(l)>x)=e*h,_,(x) = Z xke‘“P(L,‘c«::n)
K=o k

Hence

Z P(L,‘ < n) = h,(x)

kmﬂ

4.1) P(Ly<n)= ih (x) ,
“.2) P(Ly=mn)= (hn (o) —hu—y (x}) ]
k
“3) E(L)=Y nP(Ly=n)= —s 2 )
n=1 =0

For k = 1 we have trivially P(L, = 1) = 1/k!. We now compute P (L, = 2).
Clearly, for k =0, 1 these probabilities are 0. Table 4.1 contains values for
k=2,...,10

Table 4.1. Values of P(L, =2)

k 2 3 4 5 6 7 8 9 10
P,=2) |5 .66667 .54167 34167 .18194 084921 035441 013396 0046283

ProrosiTion 4.1. We have
"“"i(k) Zs—k+1 W21 fet(k—2s—1)
(

@ PLe=2= 2\ )eiDidg~ 2 G+DPE—9

5=0

Proof, We have
4.5) z P'u:k < 2) = 10 (¥) 10 (X)— 13 (x) 11 (x)
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M0 s o W ‘(8“‘13‘ xt
=2 X L L e DD
o k 1 1 b ) X 1 1
= k ¥ ket 1)
D e T s Ve e ey g
kEoq 1 1

o STsl (fe—s)! (k—3)! ,;1 Zs’(s-f-l)'(k Zs— 1)l (k—3)!
2L K )=ty ]
- Eﬂxk [k!k! +g§0 sics+1)s(k—s)z(k-s):]

© xtP1 R E\ 2s—k+1
- ,Eo Kl [E + SZ%, (s) G+1)! (k—s)?i]

and, by equating terms and recalling P (L, = 0 u Ly = 1) = 1/k!, we have (4.4). =

=
il

L]
I

4.2. Evaluation of the nth staircase distribution. We now give some nu-
merical examples of calculations. In addition to the variables Y7 (1) we define
R, to be the length of the side of the largest square below the layer Y,(-). Then

(46) PR,>r)=P(Y¥()>r)=exp(—r)h,_,(r?

I,2n  I;i20) Lo ... L_,(2)
I;20 L@2n L@) ... L2
=exp(—r}) | I,(2r) I, (20 In2r) ... L_.(29|

I,-2(2) L3(2r) I,.4(2n) ... I(n)

Calculation of expected values follows by integmtion_of P(Y¥(1) > x),
P(R, > r), which we carried out numerically. Table 4.2 gives some values
R, obtained for the expectation of Y (1). Figure 4.1 plots these values. By the

asymptotics of L, — Zf we would expect that E(R,) ~ n/2. Figure 4.2 plots
some of the distributions.

275}
25
225}

1.75
1.5 b
1.25
i * n
1.5 2 25 3 3.5 4 1.5 2 25 3 35 4
Expectation of Y,(1) Expectation of R,

R o L e -
N

Fig. 4.1. Expectations of line heights Y,(1) and square sides R,
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5 10 15 20 1 2 3
Fig. 4.2. Tail distributions of heights ¥,(1) and square sides R,

4
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Table 4.2. Expectations of line height at time 1 and of side of the supporting square

n 1 2 3 4 5
E{Y,(1) 1 2718281828 5.00067872% 8.086508585
E(R) 0.8862269255 1.55389935 2.172009063 2766453430 3.346552361
n 6 1 8 9 10
E(R)) 31916841038 4,479911245 5037401684 3.500422030 6139767236

We now notice that
47 PR,>71)

= P(the longest ascending sequence of points in rxr square is < n)
= Z exp{ —1)P (L, <n).

We can easily check that this is consistent with our results for n=1, 2:

o a2k

PR, > =Y %—!-exp(—rz)P(Lk < 1) = exp(—r?),
k=0
o k w0 rzk
PRy>n= ) ——exp(—r)P(Ly=0ULy=1)= } exp (—).
RN RN

Integrating (4.7) from 0 fo oc we have

2k~
\/' z (2k+1” P(Ly<n)

because

[t exp(=rtar = /5 2

(see [1], formula 7.4.3).
For example, for k=1 we have

ER; = ﬁ’.
For k = 2 we obtain
—

ERI—\/‘Z Zi‘k*k'

and for k=3

a (2k—1)1t "k 2s—k+1 7]
ER; = |/ Z 2*K! [k'+z(s)m7-‘

g=0



440 B. Levikson et al.

REFERENCES

[1] M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions, Dover edition,
7th printing 1968, Dover Publications Inc, New York 1964,

[2] D. Aldous and P. Diaconis, Hammersley's interacting particle process and longest increas-
ing subsequences, Probab. Theory Related Fields 103 (1995), pp. 199-213.

[3] D. Aldous and P. Diaconis, Longest increasing subsequences: From patience sorting to the
Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc. 36 (1999), pp. 413-432.

[4] B.Bollobas and S. Janson, On the length of the longest increasing subseguence in a random
permutation, in: Combinatorics Geometry and Probability, B. Bollobas (Ed.), Cambridge Uni-
versity Press, 1996, pp. 121-128.

[51 J. D. Deuschel and O. Zeitouni, On increasing subseguences of iid. samples, Combin.
Probab. Comput. 8 (1999}, pp. 247-263.

[6] R. Durret, Probability: Theory and Examples, Wadsworth & Brooks, Pacific Grove, 1991,

[7]1 L. M. Gessel, Symmetric functions and P-recursipeness, J. Combin. Theory, Ser. A 53 {1990),
pp. 257-285.

[8] J. M. Hammersley, 4 few seedlings of research, Proc. 6th Berkeley Symp., Vol. 1 {1970),
pp- 345-394,

[9] K. Johansson, The longest increasing subsequence in a random permutation and a unitary
random mairix model, Math. Res. Lett. 5 (1998), pp. 63-82.

[10] A. N. Keolmogorov and 8. V. Fomin, Intreductory Real Analysis, Prentice Hall, New
Jersey, 1970.

[11} B.Levikson, T. Rolskiand G. Weiss, On a Poisson hyperbolic staircase, Probability in the
Engineering and Informational Sciences 13 (1999}, pp. 11-31.

[12] B. F. Logan and L. A. Shepp, 4 variational problem for random Young tableaux, Adv. in
Math. 26 (1977, pp. 206-222.

[13] C. Schensted, Longest increasing and decreasing subsequence, Canad. J. Math, 13 (1961),
pp. 179-191.

[14] A. M. Vershik and 8. V. Kerov, Asymptotics of the Plancherel measure of the symmetric
group and the limiting form of Young tables, Soviet Math. Dokl. 18 (1977), pp. 527-531.
[Translation of Dokl Akad. WNauk SSSR 233, pp. 1024-1027.]

Benny Levikson and Gideon Weiss Tomasz Rolski
Department of Statistics Institute of Mathematics
Haifa University Wroclaw University
Israel Poland

Received on 13.6.2001



