
dbsmact, Let (X,,) be a squence of independent real vatued ran- 
dom variabl~s. A suitable convergk:nce condition far affine normalimned 
maxima of (XJ k @given in the seBLjstable setup, i.e. fur inmasing 
samplirdg squeaws. (kJ such that k,, 'Jk, 4 c > 1, which enabl~s us to 
abtaia a hemigoup stwcture in the h i t .  We show that such h m -  
gaups are domly related to max-semi~Ifdocampasab1e laws and that 
the nomjng sequences of the canvorgence condition ccan be choseri 
such that the &miting behaviour for arbitrary sampling sequenms can 
be fully malysed, f i i s  in turn enables us to obtain r andomid  l h i &  
as follows. Suppse that (T,) is a sequence of positive integer valued 
random variables such that %/kt& or TJs canverges ia  probability to 
some positive random vwiable D, where we do not amumt: (JC,J and 
(T,] to be indepadent. Then we& limit theorems srf r a n d o d d  cx- 
$remess where the sampling SequeacP: (Ic,) is ~eplaced by tiuldom ram- 
ple sizm (9, are presented. The prod follows cort-espondlnh: resuits on 
the rxntral limit thcnrem, mataining 'che wmcarian of an An%ornk 
condition. 

Key wards nind phrases: E x t ~ m ~ e  values, max-semistable disbihu- 
kions, hcmigoup, rna~-sc2lnisclfdecampombiIity, random ~arnpia iw, 
raadomimd Emit Zheowm, Anscornbe condition. 

Let X X , , . . . be independent, not aecegsarily identially distributed real 
valued random variables and M, = mitx(XL, . . ., X,), kssurne that for some 
h~rmsing sequence (kn) of natural numbers and n c l d n g  mnstants a, > O and 
b, E R the dfine normalized maxima a, (MR,, - $,J convcsgt: in cliistdbution ta 
some aendcgenerate limit. AS argued in [9j3 the mast general hmewsrk, 111 
w11ich sadsfgring reswlls far weak convergeam can be obtahed is: to assume 



k,+,/k,, 4 c 1 for the growth of the sampling sequence. If additionally the 
sequence (X,) of rdndam variables is ider3ti:icaIIy distributed, the cases c = 1 and 
e -s- I refer to max-stable and max-sedstabla H ~ t s ,  r~specZively; see e.g, &4] 
and CS]. For non-identically distributed random variables and k, = n tbe limit. 
is max-selliEecolmposab1e; see J31, Momover, is3 [I161 a fuijlactional limit: law 

for all t 0, where G, is a nondegeaesate probability distribution function @df) 
and convergence holds for all points of continGQ x sf G,, is wxumed to obtain 
certain seIfsimilar extremal proasses in the W t .  I-f~sler bas abtdnecl 
similar results for multivzlPiate extremes by assuming additionally an i&nite~i- 
mality condition. to avoid eases where the maxima are dominated only by some 
of the random variables. Up ta now, neither the max-semistable Fase nar the 
rnax=smise~fdeeompo$'dble one for non-identiedy distributed random wada- 
b l e~  has been considered in the literature. En the next section we preslent 
s mitable convergence candihomt, which natupdy extends (1.1) to seJnishMe situa- 
tiam, i.e. to situations where Emits of nomalizd m a x b  .can only be obt&Ex?l 
along s a q l i n g  sequences [k,,) with the growth condition $/& -+ c 1, We 
show that the structure of the Iirnits fits into a hemigroup setting with a close 
coanw~on to max-seoliselfdceomposabilify. We res l~ct  our mnsiderations to 
one-dimensional extremes. Moreover, the norming sequenas fulfil an e m M -  
ding property that enables us to dek the limitJng beha.IYiour for arbitrary 
sasnpbg sequences as well as for random sarnple sizes, The latter is under- 
stood as hllows, 

Let (TI) he a sequencx of positive integer valued random variables defmcd 
on the same probability space as (X,) and consider Tche ra~~domized maxima 
MT, = max (XI, . . ., XTR)) where we do not assme (X,J and (Ti) to tae iadevn- 
dent. Under the condition K / n  + D i s  probability, where E) > O is an arbilraw 
positive random variable with diskibutiow Q, randrjmixed limit theorems were 
obtained for domains of attraction of mmx-shble distributions; see [2], El21 
or [4J Br-i particulx, if (X,) is an i.i.d. sequerlce and 

for dl points of ccrndjnuity ?G of a noS1Clegellcrate piif G, then G is max-sbbk arid 
under the almve-menfialled aaumptions on the ra~~dom sample S~FES fQ we have 

.rS 

P (MT, 4 c ~ ,  x -t- b,) -t Gyx)  d~ (tIs 
0 

where here and ia what hllows, according to weak tapalog_y, canvergeace of 
pdfs is meant p o h ~ s e  for every pint of eont in~ty  of the limit. For more 
genera3 msrrlts on extremd processes of tritanalar m a y s  of rowwise i.i.d. varia- 
bles we refer to 11151. h eorapalrisom of our metbods and results ta those of [rq 
Is given in Sectien 4. 



We will gneralize (1.21 ta noa-identieally distributed random variablm 
and semklable situations. These randomnimd limit theorems are pxsented in 
Scc~on 3 where, unlike the proof of (1.2) in [2 ]  or [4], we follow the ideas of 
carregpanding resulls on randornkd f i ~ t s  for nsrmdized sums of indepa- 
dent random variables. A randomhed central limit theorem has been proved in 
thrm mnsaulive steps: first for random sample sizes z8 I;,.=. LrtiD_I with discrete 
random vafiable D > 0, and next far TR,h -* D in probability, ag~in  for discree 
D > 0, both by Rdtlyi [IO]; the last step far arbitrary D O was shown in- 
depende;ntlg in [?] and El?], Meretts in the finst ste;p a mixing property sufiices, 
the last two steps require an Anscornbe condition (see [U) to be fuEfled. "&'his 
condition is of independent hterest and shdl motivate our method of prod 
Note &at. if ( P;)i is a nondegeaerate max-stable extreanal process indepen- 
dent of D with correspoadhg pdfs .(G8]c,o, then the limit in (1.21 is the pdf 
of Y''. This asymptotic independence is a consequence of the mking property 
PIE: win derive far the given more gerreral situation in Proposition 3.1. 

As before, let fXJ be a swuenee of independent, not necessasily identically 
distributed real valued randam variaMes and for all Q G s < t aud n f  N de5ne 

Moreover, let .Fz3 be the gdf of he!:*. Suppose that for some Lnerelas-ing sequence 
(k,) of naturd numbers with kk,+ ,/k, -+ C. > X and normiag consants a, > O 
and b , ~ &  we have 

for aIl stquea- O g s, < 1, with s, -+ s, t, -. t, s < t, and some nnxadegenerate 
N' G*J* 

P~opos~a.lo~ 2.1. The Gwiu GBB, in (2.1) cantinuaumrly depend OR. ~hr? pa- 
~mxeters 0 G s € t with respecl to weak topulosjry, 

Proof. Let O G s, < r, with s , + s ,  8 , -  t ,  s .+r k and E > 0 be arbicmry, 
Let x E lf4 be a point of cuntbuity of GB;;,, alld choose 6 > O such that x + d i s  &o 
a point sf ctrntinuity and G,, (x + S] - C;,,, (x): .r c/B. Ckoase 0 G i5m 4 6 S U G ~  

that a: a- 8, is a point of ei)x~ikinuity of Gsmtlm and G ,,,, (x +- ad-- G,m,r,n (4 <: $3 - 

Since 

chouw a m e N  s ~ ~ h  that fbr dl a 3 ur, we have 



Without loss of generality we can choose rn I---+ n, to be strielliy increasing, Thcr.~ 
we have 

lim sup .F$;irn (tl,,, (x  + 5,) + b,,) c-G C;,,, (x -k 53 
nt -" 03 

and 

such that for all sufihently large m E N we get 

Hence kbr suficiently large r n ~  N we obtain 

which proves the continuity of C,, on the set sf parameters. s 

In view sf Propsition 2 4  quivalenly to (2.1) one may say that the dfine. 
normalized maxima (M?: -B, , )  converge: in distribution to some nernde- 
@aerate limit unifarlnly on compact subseb of {O d s < t). The followirug 
remark-ks relate this assumption, on uniformly wnrp%et convergence to weU- 
-known convergence conditions in spe&al situtions, 

Re rn ar k 2.2. To compare (2.1) with the functional h i t  Iaw (1.1) let us 
exaptionally assum k,, -- n in contrast ta the growth condition on the sam- 
pling sequence. According to Weissmr4.n [f Tj the lnoming constants in (1.1) can 
hie chosen such that for some a ER and all k B we have 

Especidly, tbr: sequence (an) can be chosen ta vary rregularfy, d thus ths: first 
cotlvergence holds urrifonnly on mmpact subsets of ( t  =- 0). amording to s$m- 
dard re;gulu variation technique; SEE e.g. C14-j. $fie same t e e G q w s  e m  be 
applied to see that also the latter wavergene halds unifomly on compact 
subwiets of (t 0). 112 view of (1,1) we obtain far every sequence t, -t s > 0 



As show11 in [I63 this is sufidcnt for (2.4) ta be fuffillcd with G5%, = Go* JGo3,, 
w h e ~  GG,, (x) is defined :dm be zero when Go-, (x) - 0 even if Go, (x) - 0. In [be 
sequel we will derive similar results on the norming sequences as above, but we 
need uraiformly mmpacl convergence to achieve the results in a more getleral 
semistable setup, 

Remark  22. Suppose (X,,) is additionally identically distributed with 
c a m o n  pdf F* Then (2.1) is alreddy fulfilled if P; belongs to the domah of 
at t rac~un of some nondegenemte max-semistable pdf G, i,e. 

In particular, for dl sequences 0 6 ss, < t,, with s,, -4 s ,  t, -+ t and s < t we haw 

Bspecidzlly we obtain G,, = G'-"for all B G s .= t. This shows that OUP results 
ma be applied to the special case of ideatically &stributed random val-iables. 
For a characterhation of the dmain  of attraction we refer ta 171. 

We lraw turn to the structure of the limits, which is determined by semi- 
stability and claselgr related ra max-semisalfdmomposab1e distributions, 

P ~ o ~ o s m s ~  2.4. Uptder the above-giuert assumptions WE haue 

for all: O G s < r ..: t and x E$ where a, P E R  are determined by 

a , +  r b,+r---b,, - --z C' and 
A, a,, 

-+ 8. 

Pro  of. Sine Fgt = P?; - $2; for aII O .zg s < 1. 4 t and suficiently large 
n & N ,  the first axsertiou, fdows  by passing to lirnuits. Furghemnre, we kave 

and on Ilrr: other hand 

XHenee the rernaitiwg assertions ~OUBW by the convergence 0%' types theorein; see 
e.g.. Proposition 0.1 in 1211. B 

~ ~ O P O S X T ~ O N  2.5. Under the? erssun~ptjo~rrs qf .t2mpo.rition 2-4 the norrnilm 
constants (aII) lalild (b,) can be chosen mrla tlmr eirker a -- 0 and & = log c or B: # 0 
and Js" = 0. 

% r n r~ f. Let us consider first the case -- 0, Suppose f i  -= Q, Then we have 
(xo + f l  c (x,) far some xo e R, which leads to a contradictian since 
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Suppose j3 = 0, Then we have Gotl = C,, = Carl * Choose a point sf con- 
tinuity x, of such that 0 < Go,, (x,) < 1, H e n ~ e  for & DIE N we obtain 
1 - CIS, (x0) = G,- I ,I (xO) =i Gc-m,,-rn* J (x~), v h i ~ h  implies 

arrd mntradicts GO,l(xO) < 1. Hence must be positive. 
Now define c, = a, @flog c r 0 md HS,g (x) .= Gs, (xP/jsg c), wXzjch is t l~e  

nondegenerate limiting pdf of 

for all sequences 0 g s, < t, with s, -, s, t, -s t, s < t. Moreover, the new 
naming constants fulfil 

c,,1 an,, -=- -+ c" = Z and -- -+ logc. 6,+1 -b,, - Jogc h + r - h t ,  

C?) am 6, B can 
In the remaining case o?. p 0, define d, - b, +sr, PJtl-  cy aad a nondegene- 

rate Iimi ting pdf H,*, (x) = G,,, (x + 1 - cu]) of E;;",'" (azI x + dJ for itU sequenm8 
O d s, < la with S,  --+ S, t,  -+ tl s <: t. The new n o d n g  constants satisfy 

This com$etm the proof. a 

D E P I N I T T ~  2.6. In view OE Pr~gosil i~ns 2-1, 2-4 and 2.5 we cdl the set sf  
@F"s &? = (G,,, 1 O d s < t )  a con~nuous nondcpnerate mux-semistable kemi- 
~ ~ Q " O P L ~  in malogy 9s continuous convolution hmigroups far sumat im sche- 
mes. Then thc ~~scquence (X,) or the sequence of pdfs (F,j is said to belung to 
the dotmin ~3f '  ma~-.~mistabsC? attraction of ,#. Moreover, by extendi~lg d ~ e  
temliaalogy given in [9II far all t > O the elemcurs Goor of ,&' are m~ax-.~m~'zise& 
dsea~~lposlable in the full~wing sense: 

Co~~versely, wery -blondegenerate wax-semiselfdeeo~npossrhle pdf call lac 
embedded into a \~-ontisuous max-scunistnble h e m i p u p  as we will show in the: 
followiug 

LEMMA 2.9. Let G be a nondegmerate ~ x - s i e r n i s ~ ~ d ~ c n ~ ~ p ~ ~ ~ a b i e  $5 i.e. 
*for solne c 1, EE R and a lzoradegenevme pdf' H we have 

tiphere B = 0 [ fa #= 0 sad f i  = log G ifol = 0, BYI.ihoz~t Ins8 6IJ"ge~ae~oElty we assatme 
N (x) = O if G (x) = 0. T / ~ e n  elen~i~v 



for nli!  EN and some nor-mdegenerare pdf HII with HI = N avad H,(x)  - 0 if 
G ( x )  = 0. The C D ~ Q C ~ O T S  (N,)ja@E E*, (x) -* Gfx) i j  ct 3 O or $ a  < 0 and C htrs 
no goitsit mass at 0, Moreouel; the cofactors ju&/ the C O C ~ C I L  equdion 

Obvious1 y, G (0) = G (0) - H (0) such that eiti~es G (0) - O ar H (0) = I,  
Case 1 :  &to)= 1.T11enNI(x)= 1,andhetacl:G(x)=C(~~;Y.)foraItll~30, 

Thus 6 1x1 = I for 81241 x 2 O: holds true. Choose xo < 0 with O < G [xo) < I .  
Then E (xo) = G (c'" x,) - Ift, (xu). Sii1cx: G (c""x,) 4 0, we musk have If, (x,) --+ m, 
a contradiction. 

Case 2:  G(0) = 0, Since I;fc""x)+ 1 for aU x > 0, we have N,(x) G(x)  
for aU x == 0. Mewaver, R,(x) .= 0 = G(x) for all x 4 0. 

If rsl = 0, then h;(cn"x+np) = GCxf rtlogc) 4 1 for all XER such that 
N, (x) a G (x) . 

U ot < 0, then G @"'" x -+ n m  = G (e-"lEl x) -z G (6). As in the case a 3 0, 
either 6 (0) = Zq OT. H (0) = I holds, 

Case 1: E(0)  =0, Cfaoase xo > O  with O .= G(xo) < I. Then G(x,) = 

E jcm:"" x,) H ,  (xu), aad since G (c"" x,) ---, G (0) = 4 we must have H, (xo) -j. acl , 
a contradiction. 

Case 2:  H f O )  = I ,  Then G(x) - 1 for all x 3 0 a above. %Ptus IPn(xj a G(xj 
for ail x r R  since G(ca" x) --+ G(O) = 1 by eontintlity of G Giltl x - IJ. 

Si;fgcx on the one hand 

and OH the other hand 

T I E E ~ ~ M  2.8. Eerery ~nondrgenern te rnax=.~smise~decc~fnpo~~~b!c pdf G2 ~ 1 2 i ~ ~ ' L " I z  
has PZO point ma38 at 0 $'B: < 8, can be embecid~d iintu a cu~slrf~auaus ncrtadegenerate 
max-sefizbrable hewaigmup 8 -- {G,*, I O d s < 1) with G = Go,l. 

F r o  o f, In view sf the wfa'actors (H$ of Lemma 2.7 we define noncfcgene- 
rate pdfls G,, for all O g s < a ;~ts follows, For t > O write t = cnrr, w i ~ h  11, ~2 



and F'~ E El, c), and define L, x = c-"@ x - n, ,8, Then we have 

t , x  = caL,,x+p - L,(eex+p), 

and we further define: 

where we set Ho zz l. It is easy ta verify that Go,l =. G. 
I. v\re show first the hemigoup property: G,;G,, = 6;,,t. 
If O = 5 e v G t .f: c m ~ * l ,  we have a, = n,, and hence 

If IF -= s cr. v < t < cnsf I ,  we have n, = n ,  = a,, and hence 

The Gases O < s < u i c b + ' 6 f  and ~ < s < c " ~ ' ~ < o c = t < c " ~ " '  can 'be 
treated similady. We prove the wrnainiag cast O < s < cna" ,( v .< lPw' ' G t 
by applying the cocyclr; eqlmtioa of L m m a  2.7: 

G,DW f%,* (4 
- - H (L x)""""/~r" H 

cs n,, - (me i- 1) CLu f-I r;Lw ~ 1 " ' ~ ~  
x H [LC, x)""""~~"I~ H rzr -(tall 5 I (-Zdt X )  (Let @'ogEp' 

H (1 X)1""F(c/p8j - "c.p , r , - ( n , + 1 ) C ~ u ~ ~ ~ C L c u x l P 4 , t - ~ n ~ ~  itILtxx)-I"PCtcr~I'~~ 

Ff (LC# ~ ) ' " c ~ ' " '  Hot, + 1, - cs, + 11 (kc, XI JJn, - (n. + I (Lt (L 
= ~r (Em X)~~'C'"""L"~ Q , + ~ I  - ( ~ . - I - I I ( ~ - ' " ' " + ~ ' I , X + ( E ~ - ( ~ ~ + ~ I ) P )  

x H,, - ( ,vV c 11 ILt H C L r  x)'""~" 

H QLcs H,, - (,, +. 1, (L, X) H (LC, x)"'~'" GS,,, (x) 

2. Since c~f .  = cwr" rt for all t r O and L,x -. L,, (8 x + B), we obtain the 
max-semistability G,,, (c" x c @ =  GK,, (x) for d O G s 4 r, 



3. For contkuity of the hemigroup we first consider r, -t c and r, -+ c. 
TE 0 - s < t and rt -+r, we have 

Gas, (x) .-+ G (A, X )  B (LC, x;) = G (45, X) G (La X) N fLczt x ) ' ~ ~ '  =r: Goocat* i 

lf 0 < s < t r cop+ h a d  Y, -+ C, we have fiS = n, an$ 

G,, ( x )  -, H (L, x)""sccctrst 
- - [L  .&)108~k!%) 

CS Rt,, -5 1, - (,, * 1 ) (Let x) (6.c21 x?lOfil - - G8,PC - t 
PIU. other eases can be proved similarly. Finally let us comider continuity if 

s -+ 0. Then we have la, i. - oo, a d  thus 

co if a - 0  or L X > O  and x > 8 ,  

L , x - - { O  if c & < O  or a , ~  and X = O ,  

[-KJ Y a > O  and x<O. 

We consider these cases for 

G,,E (XI = H fL, x ) " % ~ ~ ~ ~ ~ '  H nt-fn,+ i f  (Lt~lH(Lct  x)iowt* 

From Lemma 2.7 we obtain H,,-( ,,,, fL,x) -+ G(L,x) .  
Case 1:  E,,x-+m. Then we: have 

G,, (x) -+ G (S, x'j H ((E, x)""- Ga,i (4- 
Case 2: L,x+ -m. Then a ,  O and x < 0, in which case the proof of 

Lemma 2.7 impties G (L, x) - O since LL, x < O. Thus 

c;,, ( X I  -. a = G (L, X) N CL, ~ ) ~ ~ g ~  = G ~ , ,  EX). 

Case 3: L,,x-+O. If M ( 8 ,  we have HI01 = 1 as in the praof of k r n -  
ma 2.7. Thus G,,, (4 4 GO,t ($I as in lhe C B S ~  1. 

If ol r O and x ;=: 0, we have G (0) = 0 as in the proof: of Lemma 2.7. Thus 
G,,, -+ 0 = Go,, (0) as in the case 2. ira 

We now prove some results on the tfsrmi~lg sequences (a,) a d  (b,) in (2.1). 
Namely, the* sewences can be chosen s u ~ h  that t b y  can be embcddd into 
sequences which have properties as in @2), The embedding sequences in turn 
lead us to fully understmd the bmiting hhaviow; see aIsa C7J far the i,i.d. ease, 
'Fke method of proof is similar to the one given fox domains of attraction of 
semistable laws in the scheme af summatian; see [13f. 

MM 2.9. Let Ehe normifig Goastanks (a?,) and {bJ be ch#ssn aecu~dirzg 
la  Pmol~osition 2.5, Tken rhere exist embeddl~g sequersces (c,) and (d3 with c, > 8, 
Cb., = an, d k l s  bar @nd 

~lnformly on compact sabsef~; 01 { A  w8>. Especially, the segueace (a,) eari be 
embedded info a regularly ltaryiprg sequence. 



Proof. Write F Z = =  r,kw3 withp,~RF and k,,G n < k,,,r, Thus(r,)issel;ia- 
ejvely cen1pdc.t in [I, CJ Define 

Obviously, we have c,, > 0, ek,, I;: an and dkJ3 = b,. 
Let (;I,) be a positive sequence wit12 A, -+ ;1~[1 ,  c]. 

dl a s e I : Suppose p L 1,,,1 6 pn - 2 along a subsequence In"). Then wc have 

in consadictiou to X 2 1. 
C as;e 2 :  S~lppose pl,,, = p,, - 1 along a subsequence (rr'l). Since (r,) is 

rdativdy campa~t, every subsequence of (ar t )  contajns a further subsequence 
(sal'")with r, -+ T E [I C ]  along (E'')), and thus along (n"') we have 

In the case e! =: 0 we further obtain 

along the subsequence (n"), and in the case a + O we have dong (?tl'") 

%rice every sr_lbs~q:h~"cnee of (n" ant- a fufrarrl~er subsequence (lz") with 
these prugcrf;jes, wc get the assert& convergenGe results dong 4ke whole sab- 
sequence. 

Case 3: = p , , J P ~ ~ , n j  =p,-i-l QrpLn,,r--&+Z 
dong a subsequence (53 can be tredted sidarly ta the =e 2 to obtain %he m e  
cclrivcrgence results. 

Case 4: Suppose p C J , , ~  3 fil + 3 along at subseque;mm ( ~ 7 %  Then we have 

in canbadictioa 50 I +f c. 

Maw let (2,J Itx: a positive sequeacr: with A,, -+ .I u. Wnite R == yc-th 
qr r [I, c) and p E N  as welE ax; A,, =: y, c P  with y, -+ y. Then amordi~lg to t11e 



above eases we have 

and 

Rndly, let (A,) be a positive sequence with 4, -+ AE@, 1)- n u s  2-I > I and we 
haw 

and 

This proves the theorem. m 

T H ~ R B M  2.10. U ~ d e r  the co-rsditicms of Tffeorenz 2 9  fafor all 0 G ss, < t, with 
S, --, S, t ,  4 t , s -+= t ,  the seqtreme (6,  (MF" - 4,)) is stuchastict.rl6j.l eompct", i . ~ .  
the dissriblgtians are weakly relatively cornpat and all limit P ( P ~ ' P I ~ S  are nnodegene- 
rrmbe. Moreover, each pdf of the limit poirats beloags ro 

where pa,[;l) = O $ ct f O and = logcZ, In parFirrtfcrr., if [r,) is a pagnsitiae 
.qgqesetxce with r, -* r > 0, we herrlir 

Proof,  The last assertiom ~ ~ U O ' V I I  by Theorem 2,9: 
j p n r t r 7  

i k,,r;,j 4 ~ i a ~ r , ~ ~ + d ~ a , , r ~ 1 b  

--% G,,"*, (r=" x S- ls, (1'$)9 

and thus 



To prove stocl~astic compaetl~~s, *rife again a = r.,k,, with P,EN and 
k,, G rz < K, , , ,  . Thus (r,) is relatively comptrct in [I, 4, and far every limit. 
point r E [I, c] we get, by the previous arguments, along a subsequence ( P S I )  

For r - 1 and r ==- c the limit points coincide aaording to Propasitions 2.4 
and 2.5. ~a 

In this section we present randomimtion raults for the domain of attrac- 
lion of max-semistable hemigroups imludiag the proofs. Theorem 3.6, being 
the most essential of these results, hscusses the limit of the ran 
(a, l (M?",, - b,)), where (TI) is a squence: of positive integer valued randam 
varPrIaMea such that T,jk, -1. D in probability far some positive random variable D. 
Note that xre do not assume (T,) and (X,) to be independent, neither reqwisc 
informadion. on the dependen= strtructu~e between the two sequences, As s l a td  
in the Introduction, the proof follows conespoading results on the ~earrd limit 
theorem. Therefore we give preparatory results relyling an eharacterie;rics of 
mixing sequences of mndorn variables deveEoped by Rtrryi, as well as on Am- 
mmbe's condition, 

Prto~osr~ro~. 3.1. U~zder the c~1ditio1as art$ with the natation o j  Theorem 
2.10 for every A 0 and O < s r t the sequence (a, ' (n/f'y:RAl - b,)) is ts mixing 
seqtrence of random ocariahks iua the sePtse of Rknyi, i.e. fur any evenr A with 
pasitiue probability we have 

P (C ~ ~ : : l ~ d  - b.1 .X I A) -+ Ga8,a.r IxIe 

P 1-0 of. Let A, = (&fria,d < cr, x s h,). Then by Lemma 6.2.1 rrf [44 it is 
suficiel~t to prove for euerqr faxed m ~ P 4  

Case t : 5. r 0. Hence L b k, AJ s j  3 L [kBb A )  Z] for sufficiently large 
 EN, and thus (3.1) holds true since then A, aad A,, are indcpnrdent evellfs. 

Case 2: s = 0. Since 

and hotb P(A,J and the latter prohitbdity om the kl'ght-hand side cullverge to 
Gtjnl, (XI for continuity points, we have 



LEMMA 3.2, Let and ('2,) be sequences of positive integer valued ran- 
dom wriables with --, CC. a d  Y,/Zn -+ L in prababil'iv for. sof~te p~ t s i t i~e  rrzla- 
d m  oariable L. Thmz urude~ the cofzditiom and with the tzuttrticln of 'Theorems 2.9 
and 2.10 we have 

CY,, ----+I? and 4, - dzn -+ p, (E.1 i~ probability, 
Czm czn 

Proof. Every subsequence (n3 contains a fwrher subseque;nce (a") such 
that the event I" = { Y,J& -, L and Y, -+ ou alavg In'");) bas probability one. For 
of T Iet :t write %(a) = A, i(m)Z,(w) .= 2 ,  (~)Z,(~il)f , and thus we obtain 
An (a) --, L @) and 2, {mj -+ m 3~~lang (a'')). Hence Tor dl o s r it follows by 
Theorem 2-9 that 

eym'w' 4 L (w)" and P Y ~ I U ~  - d z n ~ ~  + PO! (L (4) 
+%m ~ ~ j  czn(m) 

along (n"'). Since s bas probabdity one, the assertions hold true. aa 

T H ~ R ~  3.3. Urtder the storzditi~as aPld with the notasion of Theorem 2.10 
for all O G s r b the *followirzg Anscornbe canditi~n is fuEylilled: 

PPOOE Choose al E(O,  f )  with (2 + a d )  s .= (1 -al) r s u ~ h  that far all 
-= a 6 a, and Irri -nt $ a" we h;lvc jl-$ii4 a f S 8 ( s - a ~ r  < M S y f  < ME1--a@*(x and --. n i ' -  n 

thus we obtain 

(32) lim sup P { ma;x Ic,' {MZi - M:')[ >E) 
n-m i m ~ - n \ C m ~  

6 lim ssrzp P {e, max (MiJ -d )S3X t s  MtvfZ I-')? 3 e + c$ ' M:'] 
Lt b b a  
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Let us now consider the first expression of the last inequality an tbe 
sight-ha~d side of (3.2). Define probability measures &A(I -ab ,~(  I and 
P ~ ( I  i-aja,~4i -up 

respectively, Hence i t  foUsws by Theorern 2.10 that the distributions af the 
random vectors ( e l  (Mi: - ")"a(1 '"1"- dJY c; (M," ca)a,lz -*lt - $1) are stochastic- 
ally compact and every weak limit point is cantahed i~ 

Causequet~tly, by the portmanteau theorem we obtain 

6 Iinr sup f t  (Ic, -ubJ(' "ah _- dPI) 3 .+ cn- I (~i? "")"(I a "If - 
a-m 

o> 

t'Or some it, E [I, c], siace AM -a)s,;r(l +ajs@pdll +a13tlf7 is continuous oa 
the podtive half h e .  For a - 0 we have 



Observe that For nU y E R  

so that for every paint of ecl.nti!l~iir A$x+h),(LO) of CJ,os,dor with 
Gnas,x,r (As -I- p, (?Lo)) 2 0 obtairi 

Let y , = i & f x ~ R  1 GGn,,sA,l(AQu~+p,(R,))r 0 ) ~ R u { - m ) .  
Case I r y, > - a. Choose a, ~ ( 0 ~  a,] such that for all O < a < a, we have 

Further choose y ,  E (yo, p, + 44) S U G ~  that A$ yl -I- p,: (AO) is a poiat of continuity 
of 6 ,,,* E-o,, Then these exists a, ~(0, a,] such that 

By (3.3) we obtain for all 0 < a ,< a3 

C a s e 2 :  yo = - m. Since (pAolI + n).s, ln(l  - i~ u n i f ~ d y  tight, 
chcrose yl E R  s ~ c h  that 

Further choose y2  ~ f y ~ ,  yk+8/2] such that Ah, y ,  +p,(Ao) Ss a paint of contimi- 
ty of GxOhsxaf. Then there exists a3 E (0, all such that 

Gn,,cl -alx.norl i (A; ya -I- pa (A,)) 3 1 -618 far a11 0 < a 6 a, 

as in the case I. By (3.3) we s b t ~ a  for all I1 < a 6 a,, as io the case 1, 



456 P. Becker-Kern 

Enafly, i~ both cases, for all 0 r. a g a, we obtain. 

Andogonsly we can see that. for the latter expsesrsion on the right-hand side d' 
(3.2) there exists ( ~ , E ( Q ,  swh tfiar for all O < a < a. we have 

which tsgether with (3.2) and (3.4) gives; the asserted resuft, aa 

The IoUowing lemma is proved in [3] and wil be helpful for further 
results. The proof given in C33 is based on argunxents of Hilbert sgaee tech- 
niques. 

LEMMA 3.4. Let &V,) be a sequence ofindependent random variables and (k,), 
[mJJ be two sampling sequences with JF, .g na,, k, --, co. If  A, is  an menr depencffitsg 
only on I$,&, . , ., YmVz, then for ar~y e~efat  A we have 

lim sup P (A, 1 A) = lim sups P (A,), 
n - a  rz-m 

where we sr;f P (A,  I A) = P (A,) if P (A) = 0. 
The next bmma is crucial for the proof of r~ndomize-d limit theorems. 

Recall the three steps of proof for the randomized rsentral lirnit llleorem given 
at the end af the Iz~ttztsoductian, Whereas in the first step 7;; = Lrar>_l  xin nip; 
properties are suffi~ient, in the last two steps approxi-matiom of T, by ~ R D J  
with discrete DD, and of arbitrary I) 3 0 by discrete rasdam variables are 
applied, respectively. Anscorn be's condition defines the qlmalali ty of these ap- 
proximations for randomized maxima as faHowsr 

LEMMA 3.5. Under tbze enaditicrvas and with rEle notation of/Ikit?~~ern 2.10 let 
(U,) be a seguelace ofpos i~ve  integcfi. eaalued rnrsdt,t;~t variables wish U,/n -+ U in 
probabablliry fbr so~ne positive ranl9om ncrrx'able U, 

(a) i)f U is Bhtscrere, .for+ all Q 6 s < r we harrc 

(b) Far rn E M rt~fivne positive dis.cl.ete mndom nauiabtes Fn fry 

&?lnarhe~, for m,  EN let Umt, he po,f.r'tiue integer ualued random uariabhs 
gt'am by U,,, =. U, + I n  (rS, - U ) $  . Thrz-for every G r 0 and O G s < r we ham 

(3.51 h lim sup P ([c TiL-, j IM41- ikf $v, 111 3 E )  = 0, 
m - - 4 ~  n-rm 



Proof. (a) Let (uk) be a [countable) sequence with pk ;-- P ( E P  = M&) > 0 
and C , p k  = I. For d > 0 cljoase N E N sUGh that xkZNfi g iSJZ. For any a a O 
we have: 

Tkus with the events .En,& == - b H U ~ J  G a nu, _/I we obtain 

lim sup P ( ]~ iT,~ j  (Ma> MrAal)[ > E) 
I$-* oJ 

< 6/2+ 1 lim sup P ( max ~ ~ ~ * - ~ ~ ~ w k ~ ~ l  2 GI- 
~ G N  fif a! Im--lrrst*JISnLnuk f 

Now choose ~ E ( O ,  1) such that, by Theorem 3.3, for all k 6 N we have 
6 

limsupP{ a l ~ ~ I k k l I ~ $ , ; ' - J M ~ ~ , , I ) . I > ~ ) ~ - .  
n . 4 ~  E s t - ~ v u ~ J 1 G a i m ~ * j  2N 

Hence we obtain 

lim sup P {re Lt?l:uj (JM%a - 
Il'rb 

which prows (3.5) since E r 0 and 6 2 0 are arbitrary. 
(h) We have 0 d Kz- iU < 2 -". Thm f~;t, -+ U in prabability. Further, for 

any fixed  EN we obtain 

Choose r n ~  E N with P f U r mu) d 6/3 and >, mU such that fer .dl pn 3 knit 
we have P (U g pus-2-") ) $613. By nearem 3.3 fwther ehaose *I, 3 rral such 
that f ~ r  all w l >  1nz we have 

Let pk (a) = 1 usk - 2-" 1 iWLd de:frne events 

Ek = {(Ck-f)2-Ffi < U <  k-2-"1 -. {V,, - k ~ 2 - ~ ' ] ,  

G I , , = ( ~ U , - P L ~ P ~ ~ I $ P ~ = ~ - " ~ ) ,  ckaE=(IUtr-~~Cn)l$m-'pk(fi)]l  



By Lemma 3.4 and f3,8), for all ICE N and s r O we have 

lira sup P (Aks ,  1 Ek) G 15,13. 
11-10 

Fureher, far sufficiel~tly large n E N and k 3 m + 1 we obtain 

and hence Gksn is contained in Gk,,. Using the irelatioms 

we imply (3.6) in the case s > O by (3,9), since for m 3 m, WE: have 

In the case s = O we furlher I~ave to ~ ~ S G U S S  the application of Lemma 3.4 
in (3.9). As in the proof of R~eurem 3 3 ,  analogously to (3.2) we get 

3im sup 1" ( max IC,{,~ (MP+' - Mi$rlJ)l ) 8 )  
I-bw Il-p*tn)l<m "8ttn) 

< 2 linr sup P (e;,let ~ ~ ~ ~ j " - ' " " . ' l + * ~ - ' "  - L M ~ M O . ( ~  -nr "1)") 

rs-'rn 
) E + C F k ( ~ )  ~kca l  

Sinee the ddisiributics~ts of the random variables 



have the same weak limiting behaviour, we further obtain as in the proof 
of Thcurem 3-3, malogously to (3.41, 

for arbitrary E > O, S > O and sufPreientIy large ma 2 1 ~ 1 ~ .  Tlze advantage of the 
new fjitl~ation is that now the events 

depend only on Xlpkcrsvi"P ...) X1fi(,,(ism-~,ri such that Lemma 3.4 can be 
applied and we get also (3.93 ill the case s = O since 

lim sup P (A,  , ,  1 Ek) 6 2 lim sup P (B,,, ] Ek). 
n-+m I I + W  

This proves (3.5) and anaSogously we get ( 3 . 3  since fur all r n ~ N  

Moreover, with the events Hks, - {I Urn, -pk In)[ G m- ' pk (n)) we obtdn far 
m ), I F - I ~  as before, 

This completes the proof. E 

TEIE~RKM 3-6. Under thtp ecrrditions and with the nosnrtoitm of ? 'heorem 2.1 0 
let CTf) be a sequence cc?p positive integer wlt~ed rattdoua uariables sucEz that 
T,/kZ, 4 dP in probability fir some pasitiur rapldom umiable D witla, di,stribkcfinn g, 
Then jbirirr all 0 d s .cr t we haue the mudomixed l h i r  

it is easy to see that the limiting integral mixture of pdfs is again a pdf. As 
described in the Introduction, the proof of the theorem is divided into three 
mrrssutive step. The Grs t two steps are f ~ m d a t a d  separately by the follu~~ixlg 
lemmata: 

E m a z ~  3.7. Theorem 3.6 holds in tlxe special wse B.f Tt = I k , D l  with 
disc~ete  D r R. 



Proa t  Let (dk] be a (countable) sequence with pk  = P ( D  I= dk) ) O and 
C, p, - I. For S z O ehame N E N such that zk, p, G d/4. Since the sequcnou. 
( a ,  (M"iaadkJ - Ir,)) i s  ~ x i n g  by Proposition 3.1, for 'orevery k G N and suficient- 
Iy large r z ~ l z i F  in view; of Theorem 2.10 we have 

for each (fixed] point of con~nuity. Consequently, 

Sin% 6 r 0 is wbilsary, this proves the lemma. ar? 

L E ~ I A  3,8. mearm 3.6 holds in the special case of '3;,/Iczg -* D in prpmbcrbili- 
fy with discrete D > 0. 

Proof, k t  us write 

Since by k m m a  3.2 we have e l k n , ~  ck,l -+ Dm in probability, an$ by h m m a  3.7 
we obtaain 

rn 

P (a; (h$TSzLn 1 - 63 d x) -, f G,,,, f.1 de Ir.1- 
0 

in view of Cramer's stbeorern it is suffi~ienl to prove for any a > O 

Let us write n = a,, k,* with p. E N, k,! 6 n < k,+ and define U,, - xal T,#. 
Then Elkr, =r: Tt and U,/n --r ;D in probabdity, It lollotvs by Lemma 3.5 (a) that 

Jim P { I C I _ ~ & , ( W ~ ~ - - M ~ ~ ) J  3 4 = O f o r  any E r 0. 
a i - , a )  

Ira p a ~ i ~ u f a r ,  we get (3.10) along the rsub,scqnence /k,J. m 

Proof  of T h e o r e m  3.6. Fnr  M E N  assme that randam evariabrea 
DM with distributions q, are detemhed as 

D, = It-2"" if ( k -  l>2-m < D < 



D ,  is positive and discrete and "O d m - D  .r 2-"', Thus 63, -, D in proba- 
bility, Furfihar, let us define: positive integer valued random variables 
Dm,, = T, -f- elt,,(D,--D)j. Then far fixed n s ~  N we have 

For all O < s < .t let us write 

Since by L e m a  3.2 we have cikna,~ ck," DE, -+ DB ~ljb~equentlly as n -+m 
and m -a m, and by Lemma 3.8 we obtain 

again subsequently as fz -+ oa and rn a, in view of the exrtnsian of Cramer's 
t-heo~rn far doubly indexed sequenses (sm Lemma 2 in la]) it is sufficient to 
prove for all E > O 

(3.1 1) &m lim sup P ( / c [ ~ ~ ~ , ~ ( M ~ ~ -  M%L,,$l > G) = 0. 
n ~ - m  n+m 

For (3.1 1) it is sufFicient to prove for all 8 > O; and na -, oa the toI1.owing conver- 
gnces : 

(3.13) lint SUP P { / @ F ~ , D ~ ~ ( M ~ : ~ , , ,  - MtL,~,,~31 > 6) -* O- 
II-b £0 

Let uts write n = CX, ,~~,  with &,EN lcp, < ~1 -=z IcpwS1 a116 defim Urn - m, ;r$,. 
Then Zikn = )7;; and U d n  -* D in probability. By (3.6) we obtain for any r: > O 

which in pasricuPas gives (3.62) ahng the subsequence (Ic,). 
b t  Us,,, .r+. utz -6. I (Dm - BlJ . ~~~~n " T, + Z_ kn ( D m  - Dnqn 

so that far all e =. (3 in view of (3.3) we have 

In particular, we get (3.13) dong thc subsequence (k,), ril 

The stuchas.l_ie cafnpactness irf lhcomm 2.10 enables us to obsene the 
fofe3llowing Ir'mitr'ag behaviour of r w ~ d o m i ~ d  maxima if the random sampling 



sequence gropartionaUy ta n instead of the sampling sequence k,  canvergs 
in probability to a positive random varkble: 

T H ~ R B M  3.Q9, Under the condiriom of IFheorem 3.6 let. (U,) be a seqzaerace QJ 

positius integer valued mPzdaim uauictble'es such that, U,Jn + t! in probrtbiliry for 
some positive randonz variable U with di8tribatio~ a. Then the sequence 
(c, "M$:-d,,)) is sioefaast-icalijr cornpact and euery weak limit point uJ ' th~  dis- 
tributions lzas explicitly a pdf which fir some A E [ ~ ,  c) can be wricten as 

cO 

5 Gar,.+wi (Jz + P, (4) $q Cp)- 
a 

Proof. Let us write n = A,k, with  EN and knn $ n < Thw(&) 
is relatively campact in f I ,  cJ. Let (n') be a slaksequen~ such that A, -, A. along 
(rtx), where I E [ ~ ,  GI is an arbitrary 1 s t .  paint. Let us put 

RecaM from the proof of Theorem 2.9 that the embedding sequences fufil 
cn = At ap, and 11', = b, -t- a,, p, (A&, Sisl~e LA, SJbc,,_l /lip,, 4 AU irr pr~bability~ 
from Theorem 3.6 we obtain 

Since t A ,  Ukp, In = LAI UR 1 /AH kp, + W in probability, we further infer kom 
h m m a  32 that c ~ . v ~ , ~ ~  cn7 -+ Ue in probability. Henec in view of Cramerqs 
theorem it is suffj~iei~t to prove 

(3,14) c i_iRrlkpiiJIM3h - M>n~k,,,j) -+ 0 in probability, 

We have the! followii~g convergence in probability: 

sulase~ent9y a8 n --F m and rra 4 a, and hence by k m a  3 2  we obtain 
- 

--3 (Ym/U)" -+ 1 in pobabillry, Ci ~ V P L ~  ' ~ k r r ~ r , ,  J 

Further, for every c O it, felIiowa by (3-6) that 



and since A, Ukpa Q ,In -+ U iu probabiljty, we obtain again by (3,6) 

lirn lim sup P {~e~~vn , i (M~~,IUkPnj  - M7fivml)l 6)  = 0 .  
m+Ea n + m  

Hsnw (3.14) EoIIows by Cramer's theorern. 
FrinaUy, observe that the pdPs of limit paints for 1 = 1 and X = e croincide 

since Propasitions 2.4 aad 2.5 imp1 y GCmv,, (ca x -i- pG (c)) = GFEvrt {XI a 

The convergnce: condition (2. I )  together with the m'ixing propeay ol Pro- 
position 3.1 imp& convergence of the joint distributions of 

to the product mea8113-e pasSl,@@ for every 1 > O and 0 4 s c t, whcrr 
pls,nr { - a, x] = En;,,l, (XI a d  Q is the distribution of D. This fofiows smdo- 
gously to E e m a  2 in [I51 where the special case of i.i.d. random variables is 
proved. Convergence of the joint distributions in turn leads us te rmdamizd 
Iimlts as Silvestrov and TeugeIs show in Theorem I OF 61 SJ for more g~neral 
extsermaf processes. fil fact, Theorern 3.6 ofthe present paper is identical to the 
statement of meorem I in [I51 for: the special case of max-st4rUistable hemi- 
goups. The same is true for n~e;o;rena 3-9 if we apply the stochastic ampact- 
mss result of Theorem 2.10 together with an aypropriEzte dxing property and 
consider 'Sheorem 1 of [IS] along certain subsequences. Bur the concrete form 
of the limits in botb Theorem 3.6 and 39 can only be obtained by the results 
of Section 2 of the present paper. 

As staled before, the rmults d [15] even hold for more generd sitnations 
than the present bemigroup sttin& and convergence of randodzed exttemai 
proasses is alsalss considered i~ the Skorokhnd topology, But note that the 
methods of proof are different. Whereas thc proofs in S w ~ o a  3 of the present 
piper follow correspon&ng results on the tandomimd central limit theorem, 
coxrtainh~g the verification of an Anu~ombe mndition, the proofs of cornpara- 
Me results in [15]  itvoid Anscornbe% condition and make use of mnnotonicity 
arguments instead. We think that hscorabe% seor?&tion is of independent 
intowst and gives raisan B'Stre ta the methods of Section 3'in addition to the 
res~lttj of $itvestrav a d  Teugels. 

We emphasize that the methods of the: lasf section appIy also for nor- 
m maxima where the: normirag constmts are also randonti=$. Namely, 
under tire conditions and with the notation of'Pheorcms 3,h and 2,10 we have 
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alld the sequence 3je;i;ll (M$fi-dw,)$ is stoclzasticaIly compact, where every ~igeak 
limit point belongs to a pdf 

cC, 

J G ,,*,,, ((XI-)O~ x + giZ (AT)) dtl ( r )  far some jl E [I, c). 
0 

Far the proof d these wserlians one has to observe that h lxJ )~  
is a mixing zquence sf randam variables far each A 3 0, as in the proof of 
Proposition 3.1. Applications of Lemma 3-5, where, as in the praofs .crf Lem- 
ma 3.8 and Theorems 3.6 and 3.9, (c;~: (M.;:, - dtl,,)) and (c;," (M$:fi -drj,)$ haye 
to be suitably decomposed, Iead us then ta the desired results. The details art: 
left to the reader. 

Moreover, rmsn$o&siions af the Iast section apply far sampling *qlamces 
k,, = n, i.e. in statbb situaiims. Suppose (1.1) lrolds for dI r > 0. As argued in 
Remark 2.2 the convergence condition of Section 2 is fuEfilled. Since in this case 
we have c = 1, embedding is supesffuous, and henee en = a, and d, = b, in 
terms of Section 2. ?%us Theorem 2 3  is fuElled by (2-2) and one lobser~es easily 
the following stability equation by convergence of types: 

for dl 0 G s < t and P 3 0, where p, {r) is as in Theorem 2.10. Since the proofs 
af Section 3 do not necessarily depend on sernistabdity, we: gt rax~domized 
fixnit theorems by Theorem 3.6 and the above remark also in the stable case. In 
particular, under the condiGons and with the notation of Theorem 3.6 we have 
for all 0 z$ s r t 

The fast linxlt caitiecidel; with G,=, (x) in view of the above-gven stability equatican. 
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