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Abstract. Let (X,) be a sequence of independent real valued ran-
dom variables. A suitable convergence condition for affine normalized
maxima of (X) is given in the semistable setup, ie. for increasing
sampling sequences (k,) such that &, 1/k, — ¢ > 1, which enables us to
obtain a hemigroup structure in the limit. We show that such hemi-
groups are closely related to max-semiselfidecomposable laws and that
the norming sequences of the convergence condition can be chosen
such that the limiting bebaviour for arbitrary sampling sequences can
be fully analysed. This in turn enables us to obtain randomized limits
as follows. Suppose that (7;) is a sequence of positive integer valued
random variables such that T./k, or T,/n converges in probability to
some positive random variable D, where we do not assume (X,) and
(T:) to be independent. Then weak limit theorems of randomized ex-
tremes, where the sampling sequence (k,) is replaced by random sam-
ple sizes (T;), are presented. The proof follows corresponding results on
the central limit theorem, containing the verification of an Anscombe
condition.
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1. INTRODUCTION

Let Xy, X,, ... be independent, not necessarily identically distributed real
valued random variables and M, = max(X,, ..., X,). Assume that for some
increasing sequence (k,) of natural numbers and norming constants a, > 0 and
b,€R the affine normalized maxima a, * (M, —b,) converge in distribution to
some nondegenerate limit. As argued in [9], the most general framework, in
which satisfying results for weak convergence can be obtained, is to assume
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ky+1/k,— ¢ = 1 for the growth of the sampling sequence. If additionally the
sequence (X,) of random variables is identically distributed, the cases ¢ = 1 and
¢ > 1 refer to max-stable and max-semistable limits, respectively; see e.g. [4]
and [5]. For non-identically distributed random variables and k, = n the limit
is max-selfdecomposable; see [9]. Moreover, in [16] a functional limit law

(11) P {M Q_n‘tjg By X+ bn} - Gt(x)

for all ¢ > 0, where G, is a nondegenerate probability distribution function (pdf)
and convergence holds for all points of continuity x of G,, is assumed to obtain
certain selfsimilar extremal processes in the limit. Hiisler [6] has obtained
similar results for multivariate extremes by assuming additionally an infinitesi-
mality condition to avoid cases where the maxima are dominated only by some
of the random variables. Up to now, neither the max-semistable case nor the
max-semiselfdecomposable one for non-identically distributed random varia-
bles has been considered in the literature. In the next section we present
a suitable convergence condition, which naturally extends (1.1) o semistable situa-
tions, i.e. to situations where limits of normalized maxima can only be obtained
along sampling sequences (k,) with the growth condition k,4,/k, = ¢ > 1. We
show that the structure of the himits fits into a hemigroup setting with a close
connection to max-semiselfdecomposability. We restrict our considerations to
one-dimensional extremes. Moreover, the norming sequences fulfil an embed-
ding property that enables us to determine the limiting behaviour for arbitrary
sampling sequences as well as for random sample sizes. The latter is under-
stood as follows.

Let (T,) be a sequence of positive integer valued random variables defined
on the same probability space as (X} and consider the randomized maxima
My, = max(X,, ..., Xy,), where we do not assume (X,) and (T,) to be indepen-
dent. Under the condition T,/n — D in probability, where D > 0 is an arbitrary
positive random variable with distribution g, randomized limit theorems were
obtained for domains of attraction of max-stable distributions; see [2], [12]
or [4]. In particular, if (X,) is an iid. sequence and

P{M, <a,x+b,} - G(x)

for all points of continuity x of a nondegenerate pdf G, then G is max-stable and
under the above-mentioned assumptions on the random sample sizes (7;) we have

(1.2) P{Msy, < ayx+b)} » | G:(x)de(d),
0

where here and in what follows, according to weak topology, convergence of
pdf’s is meant pointwise for every point of continuity of the limit. For more
general results on extremal processes of triangular arrays of rowwise i.i.d. varia-
bles we refer to [15]. A comparison of our methods and results to those of [15]
is given in Section 4.
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We will generalize (1.2) to non-identically distributed random variables
and semistable situations. These randomized limit theorems are presented in
Section 3 where, unlike the proof of (1.2) in [2] or [4], we follow the ideas of
corresponding results on randomized limits for normalized sums of indepen-
dent random variables. A randomized central limit theorem has been proved in
three consecutive steps: first for random sample sizes 7, = | nD| with discrete
random variable D > 0, and next for T,/n — D in probability, again for discrete
D > 0, both by Reényi [10]; the last step for arbitrary D > 0 was shown in-
dependently in [3] and [8]. Whereas in the first step a mixing property suffices,
the last two steps require an Anscombe condition (see [1]) to be fulfilled. This
condition is of independent interest and shall motivate our method of proof.
Note that if (¥),»0 is a nondegenerate max-stable extremal process indepen-
dent of D with corresponding pdf’s (G"),> ¢, then the limit in (1.2) is the pdf
of Y. This asymptotic independence is a consequence of the mixing property
we will derive for the given more general situation in Proposition 3.1.

2. SEMISTABLE DOMAIN OF ATTRACTION

As before, let (X,,) be a sequence of independent, not necessarily identically
distributed real valued random variables and for all 0 < s < ¢ and ne N define
Mt = max(XL,,SJH,..., XL’“J) if LHIJ>LHS_I,

" 0 elsewhere.
Moreover, let F;* be the pdf of M. Suppose that for some increasing sequence

(k,) of natural numbers with k,./k,— ¢ > 1 and norming constants a, > 0
and b,eR we have

(21) P {ﬁ‘; ! (M 152':!'. - n) } s” i (‘an X '*"bn) g Gs,c (JC)
for all sequences 0 < s, < ¢, with 8, - s, t, — t, 5 < t, and some nondegenerate
pdf Gg,.

ProrosiTioN 2.1. The limits Gy, in (2.1) continuously depend on the pa-
rameters 0 < 5 <t with respect to weak topology.

Proof Let0<s, <t, with s, > s, t,—1, s <t and & > 0 be arbitrary.
Let x € R be a point of continuity of G,, and choose é > 0 such that x4 is also
a point of continuity and G,(x+8)—G;,(x) < &6. Choose 0 < §,, < § such
that x4 4, is a point of continuity of G, and G;,_,_(x+38,)—G;,.. (%) < &/3.
Since
Firm (@, (x4 )+ by) = G, (X +0,) a8 1 00,
choose n,eN such that for all n = n, we have

|t (@, (x+ )+ Bp)— Gy, 1, (64 8,0 < /3.
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Without loss of generality we can choose m— n,, to be strictly increasing. Then
we have

hm sup Fitm (@, (X +8p) +by,,) < Gou(x+9)

and
lim inf Fim™(a,,, (x + 8,) + b,,,) 2 Gy (%)

i dval
such that for all sufficiently large meN we get

|Fimtm (g, (4 Ou) 4 bp,) — G )| < /3.
Hence for sufficiently large me N we obtain

(Gt () — Gt ()] € |Gty (X)— G (X + Ol
+|Gty (x4 B0) — Fi *m( o 6+ 8u) 4+ By )|
+|Fimtm (@, (X +80) + by, ) — Gt (¥)] <&,

which proves the continuity of G,, on the set of parameters. &

In view of Proposition 2.1, equivalently to (2.1) one may say that the affine
normalized maxima a, ' (M} —b,) converge in distribution to some nonde-
generate limit uniformly on compact subsets of {0 <s < ¢}. The following
remarks relate this assumption on uniformly compact convergence to weﬂ~
-known convergence conditions in special situations.

Remark 2.2. To compare (2.1) with the functional limit law (1.1) let us
exceptionally assume k, = n in contrast to the growth condition on the sam-
pling sequence. According to Weissman [17] the norming constants in (1.1) can
be chosen such that for some acR and all £ >0 we have

22) Gy i a, 0 if a0.

Especially, the sequence (a,) can be chosen to vary regularly, and thus the first
convergence holds uniformly on compact subsets of {t > 0} according to stan-
dard regular variation techniques; see e.g. [14]. The same techniques can be
applied to see that also the latter convergence holds uniformly on compact
subsets of {¢f > 0}. In view of (1.1) we obtain for every sequence ¢, -t >0

P{a; ' (M|, | —bn) < x}

N @y (. blu,=b))
=P ;;"1 {F”~MW _..baﬂ nig H ‘ n, i
{HL ‘m( L fu"] - ‘M] @ ntn | <x &

P )G (7 x) if o0,
= Goul) = {61(x~—logr) if a=0.

A | C and bm)—b, . {logt if a=0,




Max-semistable hemigroups 445

As shown in [16] this is sufficient for (2.1) to be fulfilled with G,, = G, ,/Gq ;.
where G, (x) is defined to be zero when Gg,(x) = 0 even if Gy ,(x) = 0. In the
sequel we will derive similar results on the norming sequences as above, but we
need uniformly compact convergence to achieve the results in a more general
semistable setup.

Remark 2.3. Suppose (X,) is additionally identically distributed with
common pdf F. Then (2.1) is already fulfilled if F belongs to the domain of
attraction of some nondegenerate max-semistable pdf G, ie.

P {&; Ii‘Mknw fz) < JC} = Fkﬂ(amx“‘"bn) - G(X)‘
In particular, for all sequences 0 < s, < t, with 5, —» 5, £, —t and s < ¢t we have
Fintn (@ -+ by) = (F* (@, x4 b)) Uhind ~Lhosn Diny, G1=2(x).

Especially we obtain G,, = G'"° for all 0 < s < ¢. This shows that our results
can be applied to the special case of identically distributed random variables.
For a characterization of the domain of attraction we refer to [7].

We now turn to the structure of the limits, which is determined by semi-
stability and closely related to max-semiselidecomposable distributions.

ProOPOSITION 24. Under the above-given assumptions we have
Gy =Gy, G,;  and Gy (x) = Gy u(c®x+f)
Jor all 0 <s<r<t and xeR, where o, feR are determined by
Gttt 2 and basy—ba - p.
dy Ay
Proof. Since Fjf= Fy7-Fy! for all 0 < s <r <t and sufficiently large
ne N, the first assertion follows by passing to limits. Furthermore, we have
Fﬂ?;:-!- ] [an+ 1 X + bn-&* 1) - Gsﬁl(x):
and on the other hand
. (@ x+b,) = FQ;" + 1/ l)s flon & 1/l (@nx+b,) = G0 (x).

Hence the remaining assertions follow by the convergence of types theorem; see
e.g. Proposition 0.1 in [11]. =

ProOPOSITION 2.5. Under the assumptions of Proposition 2.4 the norming
constants (a,) and (b,) can be chosen such that either o« = O and f = logcor a # 0
and f=0.

Proof. Let us consider first the case o = 0. Suppose # < 0. Then we have
Go.c(xo+ ) < Go(xo) for some x,€ R, which leads to a contradiction since

Go.1 (x0) = Go,.(xo+ B) < Go(x0) = Go,1 (xp)* Gy, (X0) < Gy, 1 (%o).

13 = PAMS 212
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Suppose fi = 0. Then we have Gy ; = Go, = Go,; - Gy Choose a point of con-
tinuity x, of Go,; such that 0 < G, (xp) < 1. Hence for all me N we obtain
1 = Gy {x0) = G.-1,1 (Xp) = Gi-m-m+1(xg), Which implies

GQ 1()‘;0) = hm G —m (x(]) — hm G aic e m-&l(]:g) G:««iq,]‘ (JCQB == 1
i g o]

and contradicts Gg(xg) < 1. Hence p must be positive.
Now define ¢, = a, floge > 0 and H,,(x) = G,,(xf/logc), which is the
nondegenerate limiting pdf of

Fitn (e, x4+ by) = Fir'»(a, xfflogc+b,)

for all sequences 0 < s, <1, with s, s, t,—t, s <t Moreover, the new
norming constants fulfil

C’““;E'lilm,cam 1 and bﬂ+1—b"=lﬂgﬂbn+1‘“bw
Cy ay, Ca .3 a,
In the remaining case « # 0, define d, = b, +a, f/(1 —c*) and a nondegene-

rate limiting pdf H,, (x) = G, (x+ p/(1—c%) of Fiv'(a, x-+d,) for all sequences
0<s,<t, with s,—s, t,—t, s<t. The new nomliug constants satisfy

d"+1“—d”= bn%i-'bnh}_an*i-lﬁan : ﬁ ﬁ(l.},c ""'E]l) =},

Oy a, a, 1—¢* 1

—loge.

This completes the proof. =

DeriNITION 2.6. In view of Propositions 2.1, 2.4 and 2.5 we call the set of
pdf's # = {G,,| 0 < s < t} a continuous nandegenemte max-semistable hemi-
group in analogy to continuous convolution hemigroups for summation sche-
mes. Then the sequence (X,) or the sequence of pdf's (F,) is said to belong to
the domain of max-semistable attraction of #. Moreover, by extending the
terminology given in [9], for all t > O the elements Gq, of H# are max-semiself-
decomposable in the following sense:

Gy (x) = Goye (x)- Gifes (x) = Go(c*x+ B) Gyye o (%).

Conversely, every nondegenerate max-semiselfdecomposable pdf can be
embedded into a continuous max-semistable hemigroup as we will show in the
following

Lemma 2.7. Let G be a nondegenerate max-semiselfdecomposable pdy, i.e.
for some ¢ > 1, aeR and a nondegenerate pdf H we have

G(x)=G(*x+p)-H(x) for all xeR,

where fj' =0ifa#0and f =logcif o = 0. Without loss of generality we assume
H(x)=0 if G(x)=0. Then clearly

G{x) = G x+nf)- H,(x)
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for all ne N and some nondegenerate pdf H, with Hy = H and H,(x) =0 if
G(x) = 0. The cofactors (H,) fulfil H,(x) = G(x)if « =0 or if a < 0 and G has
no point mass at 0. Moreover, the cofactors fulfil the cocycle equation

Hypm(x) = H(c*x+nf)-H,(x) for all m, neN.

Proof I z >0, we have

1 if x>0,
G x+nf) =G x)—< GO) if x=0,
0 if x<0.

Obviously, G(0) = G(0)- H(0) such that either G(0)=0 or H(0) = 1.

Case 1: H({Q) = 1. Then H(x) = 1, and hence G(x) = G{c*x)for all x = 0.
Thus G(x) =1 for all x > 0 holds true. Choose xo < 0 with 0 < G(xp) < 1.
Then G (xg) = G{(c™ xo)- H,(xg). Since G (c" x) — 0, we must have H, (xg) — o0,
a contradiction.

Case 2: G(0) = 0. Since G(c" x) — 1 for all x > 0, we have H,(x) - G{x)
for all x > 0. Moreover, H,(x) =0 = G(x) for all x <0.

If =0, then G(¢"x+nff) = G(x+nloge)—1 for all xeR such that
Hy(x) = G (x).

If <0, then G(¢"™x+nf)=G(c " x) - G(0). As in the case a > 0,
either G(0) =0 or H(0) =1 holds.

Case 1: G(0)= 0. Choose x>0 with 0 < G(xg) < 1. Then G(xg) =
G(c™ x0)- H,(xq), and since G(c™xo) — G(0) = 0, we must have H,(xo) — o0,
a contradiction.

Case 2: H{O) = 1. Then G(x) = 1 for all x > 0 as above. Thus H,(x) » G(x)
for all xeR since G(c"x)— G(0) =1 by continuity of G in x = 0.

Since on the one hand

G(x) = G(c* ™ x -+ (n+m) f) Hym (),

and on the other hand
G(x) = G(c" x+nf) H,(x)
= G ("™ x+(n+m) f) Hy (" x+np)- H,(x),

we obtain the cocycle eguation.

Tueorem 2.8. Every nondegenerate max-semiselfdecomposable pdf G, which
has no point mass at 0 if o < 0, can be embedded into a continuous nondegenerate
max-semistable hemigroup # = {G,, |0 < s <t} with G= G, ;.

Proof. In view of the cofactors (H,) of Lemma 2.7 we define nondegene-
rate pdf’s G,, for all 0 < s < ¢ as follows. For t > Q write t = ¢™r, with n,e Z
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and r,e[l, ¢), and define L,x = ¢ ™ x—n,f. Then we have
Lyx =c"Lyx+p = La(c*x+p),
- and we further define
H Loy X)) H, oy (LX) H (LX), 0 <s<c™*1<t,
Gy (%) = < H (L, x)oselreirs) OD<s<t<ch*l,
G (L, x) H (L, x)"%", 0=s<1,
where we set Hy= 1. It is easy to verify that Gy = G.

1. We show first the hemigroup property: G, G, = G;;.
IfO0=s<v<t<c™t!, we have n, = n,, and hence

Gip(X) G (%) = G(Lyx) H Loy )5 = G (Ly x) H (L )5 = Gy, (x).
HO0=s<v<c™*' <t by Lemma 2.7 we have
Gy (%) Gy (x) = G(Lyx) H(Ley X) Hy -y + 13 (L X) H (L x)logere

= G Loy X) Hypo— gy + 1) (Ly %) H (Ly X157
= G(c(r.ﬁ{n.ﬂ, g« +(m~“ (n,+ l)) ﬁ) Hyy g1y (LX) H (L x)losere
= G(L,x) H(L,x)**" = G, ,(x).

If0<s<v<t<c™*? we have n, =n, =n, and hence

G, (x) (_‘;M (x)=H (Leo xalﬂgc("vﬁsb H(L, x}iﬂgfffef!‘s] = H (L, x)lugc«i‘rs/m = Gy, (x).

The cases 0 <s<v<c™*'<t and O<s<c™"!gv<i<c™! can be
treated similarly. We prove the remaining case 0 <s < "' Lo <™t <1t
by applying the cocycle equation of Lemma 2.7:

G0 (X) Gy (%)
= H (L x)slra B sy (Ly %) H (Lgy x)'°%"
X H (Leyx)ory Hy 1y (LX) H (L x)'08e"
= H (L x)°5r H, 1y (Ly X) H (L ) Hy - g, 4 1y (Lg X) H (L x)losere
= H (Lo )50 Hy i1y oy + 1) Lo X) ooy 4 1) (L %) H (L X105
= H(Lx) I He i ey (" VL x + (n,— (n,+ 1) B)
X Hipy (4 1) (L %) H (L Xy
= H(Lgx) 5 H, oy y (L x) H (L X" = G, (x).

2. Since ¢t = ¢"* 1y, for all >0 and L,x = L,(c*x+f), we obtain the
max-semistability G, . (c*x+f) = G,,(x) for all 0 <s <t
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3. For continuity of the hemigroup we first consider r;—¢ and r, > c.
fO0=s<t and r,— ¢, we have

Go,i(x) = G(Lyx) H(LyX) = G (LX) = G (Lo x) H (L2 X)'%% = G ones1.
fO0<s<t<c™! and r,— ¢, we have n, = n, and
Gy (x) = H (L, x)logﬁc‘:frs}
= H (L x)io8etlr H iy, 4 1y=ng 41y (Lot X) H (L2, Xyl = Gy et

All other cases can be proved similarly. Finally let us consider continuity if
s —0. Then we have n,— —o0, and thus

o0 ffa=0 or aa>0and x>0,

Lyx—<0 fa<d or >0 and x=0,
—~o  if 2>0 and x <0,

We consider these cases for
Gy (%) = H{L,s x)logetelrs) Jf me— e+ 1) (Lt X) H (L x)loBere,

From Lemma 2.7 we obtain H,, 4, 1,(Lx) = G(L,x).
Case 1: L x - oo. Then we have
Gyt (x) = G (L x) H (Lgy x)°5" = Go s (x).
Case 2: Lyx— —co. Then o > 0 and x < 0, in which case the proof of
Lemma 2.7 implies G{L,x) =0 since L,x < 0. Thus

Gy1(x) = 0= G(L,x) H (L, x)'°%" = Gy ,(x).

Case 3: Lx— 0. If o <0, we have H(0) = 1 as in the proof of Lem-
ma 2.7. Thus Gg,(x) - Gg,{x) as in the case 1.

If @ > 0 and x = 0, we have G(0) = 0 as in the proof of Lemma 2.7. Thus
G, (0) = 0 = Gg,(0) as in the case 2. m

We now prove some results on the norming sequences (a,) and (b,) in (2.1).
Namely, these sequences can be chosen such that they can be embedded into
sequences which have properties as in (2.2). The embedding sequences in turn
lead us to fully understand the limiting behaviour; see also [7] for the ii.d. case.
The method of proof is similar to the one given for domains of attraction of
semistable laws in the scheme of summation; see [13].

THEOREM 2.9. Let the norming constants (a,) and (b,) be chosen according
to Proposition 2.5. Then there exist embedding sequences (c,) and (d,) with ¢, > 0,
Cy, = G, dy, = b, and

CLJ.I’!J N Aa_
& € 0 if a#0,

uniformly on compact subsets of {i > 0}. Especially, the sequence (a,) can be

embedded into a regularly varying sequence.

dungmd,,__}{logl if a=0,
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Proof. Write n = r,k,, with p,eN and k,, < n <k, .. Thus (r,) is rela-
tively compact in [1, ¢]. Define
by, +c,logr, if a=0,
b if @ #0.
Obviously, we have ¢, >0, ¢, =a, and d,, = b,.
Let (4,) be a positive sequence with 4, — Ae(l, c].
Case 1: Suppose p 4. < p.—2 along a subsequence (n). Then we have

Cn=rnay, and d,= {
" Pn

A =lm supm < lim sup Efﬁijﬁ!ﬁﬁi& < climsup kpo-2 ¢!
Lt n 0w Fatop, " =¥ o kj,“
in contradiction to 1> 1.
Case 2: Suppose p,. = p,—1 along a subsequence (n'). Since (r,) is
relatively compact, every subsequence of (n') contains a further subsequence
(n"") with r, —=re[l, ¢] along (n"), and thus along (n”) we have

Ian | k . Clam] Flamiby -1 (Aor)
Linn] kp, r,~ Acr  and Lim) _TL "mi e 1 = A%
nk, 4 Cy ¥ p, e

Flam] =

In the case o =0 we further obtain

diimi—dy _ bp,~1—by, , €L
= +

logr| 1,0 —l0g¥,

Cy ap., "
- —logec+log(Acr)—logr = log 1
along the subsequence (n”), and in the case o # 0 we have along (n")

dUnﬁj"‘du - bmrl mbﬁn -0

&
Cy Fy@p,

Since every subsequence of (r') contains a further subsequence (n”) with
these properties, we get the asserted convergence results along the whole sub-
sequence.

Case 3: The assumption of p|;.u| = Pu» Plam] = Pat 1 OT Pliey = Put2
along a subsequence (1) can be treated similarly to the case 2 to obtain the same
convergence results.

Case 4: Suppose p|;,.j = P»+3 along a subsequence (n'). Then we have
R

. . . k
A7 = limsup- < limsup g climsup—"2- = ¢~ 2

n raky,
n'-r oo U‘n“,j o' r[innjkp,,-én‘j oo Kpoi3

in contradiction to A< c
Now let (4,) be a positive sequence with 2, — 4 > c. Write 4 = yc? with
ye[l, ¢) and peN as well as 4, =y,c? with y,— 7. Then according to the
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above cases we have

Clann ] _ ClymePn] €lcon ] Clen] oy ePt = e

Cy C|¢Pn] Cchva,;j” Cy

and

dl_ﬁ.ﬂmj —d, - dl:wnﬁ“.mj “"“dl_-:l’n_} € ern | ... +fii_m_j *‘d;!

Cy Clern | Cp Ca
 Jlogy+ploge=1logd il a=0,
0 if «+#0.

Finally, let (4,) be a positive sequence with 4, — A¢(0, 1). Thus A™* > 1 and we

have
A
C] Apn | = (Cﬁ."!; Y | ) s (i-— 1)"‘5@ — /'L&E
Cy C| Ann

and

Aiawn)—dn _ ClLawnt diaztan) —d amy {“‘108:(}»”") =logd ifa=0,

Cq Cp Cl Agn ) lf o 5= 0.

This proves the theorem. m

THeOREM 2.10. Under the conditions of Theorem 2.9 for all 0 < s, < t, with
8y, — 8, I, =, § < I, the sequence (c,;" L(MEmin ad,.)) is stochastically compact, i.e.
the distributions are weakly relatively compact and all limit points are nondegene-
rate. Moreover, each pdf of the limit points belongs to
{xe G (A x+pa () | Ae[1, ),
where p,(A) =0 if o # 0 and py(d) = logA. In particular, if (r,) is a positive
sequence with r,-r > 0, we have
F ﬁfiﬁ,‘ j(‘clfcﬂrﬂ_ﬂx +d { burn j) -+ Gr’&.i’i (roz X+ Pa (r))r F Tri‘x'z;a"j(an x+ bu) - Grs,n (X)'.

Proof. The last assertions follow by Theorem 2.9:

.’S o,
L?tn;:nj (C kni'n _3}: + d L Foest'n, | )

= F{lkm) fkn]sm(Lknrn,.!ikn}t"(aﬂ (C' Ul Bbre) md"“)-&-bn)
A

Ck" C

- Grs,rr (ra X+ Py (ﬂ)z«
and thus

as.i::“nj (ah X + b“) - F(iknl"nj ferdsnd | Entn | e (ﬂ X hk") — G}*s - (x)




452 * P. Becker-Kern

To prove stochastic compactness, write again n =r,k, with p,e N and
ky, < n <k, +1. Thus (r,) is relatively compact in [1, c], and for every limit
point re[1, c] we get, by the previous arguments, along a subsequence (»)

Pyt (Myin—d,) < x} = Fiim, 1€ kg X 1y pn ) = Gro (1 X+ pa (7).

For r =1 and r = ¢ the limit points coincide according to Propositions 2.4
and 2.5.

3. RANDOMIZED LIMITS

In this section we present randomization results for the domain of attrac-
tion of max-semistable hemigroups including the proofs. Theorem 3.6, being
the most essential of these results, discusses the limit of the randomized sequence
(a, "(M%:, —b,)), where (T,) is a sequence of positive integer valued random
variables such that T,/k, — D in probability for some positive random variable D.
Note that we do not assume (T;) and (X,) to be independent, neither require
information on the dependence structure between the two sequences. As stated
in the Introduction, the proof follows corresponding results on the central limit
theorem. Therefore we give preparatory results relying on characteristics of
mixing sequences of random variables developed by Rényi, as well as on Ans-
combe’s condition.

ProrosiTioN 3.1. Under the conditions and with the notation of Theorem
2.10 for every A >0 and 0 < s <t the sequence (a; * (M{i,1,—bs)) is a mixing
sequence of random variables in the sense of Rényi, ie. for any event A with
positive probability we have

P(a;:l (M?;snﬁ.j“bn) £X I A) s GZS,AZ (JC)

Proof. Let A, = {M}},.,< a,x+b,}. Then by Lemma 6.2.1 of [4] it is
sufficient to prove for every fixed meN
(3}“} P(An n Am) -+ P(Am) Gﬁ.s.lt (JC),

Case 1: s> 0. Hence |[k,A]s| > | |kmd|t] for sufficiently large
neN, and thus (3.1) holds true since then A4, and A, are independent events.
Case 2: s = 0. Since

P(A,,) —_ P{M&EH}MM!H"H)«( anx+bn} .P{Mﬁﬁgjjliknﬁj}m < ﬂnx'*“bn} \.

and both P(A4,) and the latter probability on the right-hand side converge to
G, (x) for continuity points, we have

P {Mfffnl‘;ﬁ’“””*””]‘ < Qyx+byp—1
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if Go(x)> 0. Thus
P(Ay Ay) = P{M SR Y < g x4 by} o Ay
x P{M (R}t < g, x4 by} = P(A4,)" Go (%),
Hence (3.1) is fulfilled. =

Lemma 3.2. Let (Y,) and (Z,) be sequences of positive integer valued ran-
dom variables with Y, — oo and Y,/Z, — L in probability for some positive ran-
dom variable L. Then under the conditions and with the notation of Theorems 2.9
and 2.10 we have

T and A=z, —p.(L) in probability.
'CZ,, ﬂ‘z“

Proof Every subsequence (n') contains a further subsequence (n") such
that the event I' = {Y,/Z, — L and ¥, — co along (»")} has probability one. For
wel let us write Y,(w) = 4,(w) Z,(w) = | 4(0)Z,(w) ], and thus we obtain
An(w) — L(w) and Z,(w)— oo along (n”). Hence for all weI" it follows by
Theorem 2.9 that

Y olo dy, ) — Az 1o ;
St _, L(wy and Yolew) ~ Gz, }w_}pm(ﬁ (@)
Czniw) Czniw)
along (n"). Since I' has probability one, the assertions hold true.
THEOREM 3.3. Under the conditions and with the notation of Theorem 2.10
for all 0 < s <t the following Anscombe condition is fulfilled:

limlimsupP{ max |c; (M5 —M$Y)| >¢e} =0 for any £> 0.

al® mn—o lm=n| <an

Proof. Choose a;e(0, 1) with (1+a;)s <(1—a;)t such that for all
0 < a < a; and |m—n| < an we have Mt a0 =a < pst < pll-asl+a)t and
thus we obtain

(3.2) limsupP{‘ max |, H{MS — M| > &}

m~—nj<an

< lim sup P {C;I" 1 max (]Mj(mz —a)s,{1 +a)r_M:;,t|, EM‘r[rl +u}.-:.(1~u}z___Mﬁ,tl) -~ E}

[l 4]

< limsup P {¢, 1 (M~ Ha— pah) > g}

A% 0

+limsup P {c; } (M35 — MG Hastt-an) 5 g1

R=+a

< limsup P {c, "max (M{ ~%5, MEU+9) > g4 et M3}
Aot
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+limsup P {c, " max (M3 *95, M0 > gpop L ML ma)

| 4]

< limsup P {e ) MY~ > g4 67 M)

H* 0

+limsup P {¢; ' M5 > g et MY}

ne s

+1im SupP {,c;.l Mf;=“ +a)s ~, &+ (.‘,: 1 Mf,l +a]s,(l”a)t}

o

4 11]11 sup P {Cn— 1 M&l — )t > £+ L.;—l M,E,l +als, {1 ""}l}

W

< Zlim supP {C;I JME‘ —a)s 1l +ajs - £:+c’;~1 ME +a)z,{1 ~am}

et

+2hm sup P {C: 1 MSul =a)t, (1 +aj > g+ L‘; 1 MLI +ayxdl -a}t} .

) A= 4]

Let us now consider the first expression of the last inequality on the
right-hand side of (3.2). Define probability measures gy -asaq+as and
Hagt +ays, a1 —ay DY

Ha1 =ms, a1 +asl— 90, x] = Gm —a)s, A1 +a)s (@E X+ Pe (3)),

Bt +ays, it —ap(— 00, X] = G4 +ads, A1 —a) (}Fx+pa UJ‘)%
respectively. Hence it follows by Theorem 2.10 that the distributions of the
random vectors (¢, ' (M~ FA gy, e LM s _ g )) are stochastic-
ally compact and every weak limit point is contained in

{Ma1 ~ays.ac1 +a)$@ﬂx(1 +as.at-ap | A€[1, €]},

Consequently, by the portmanteau theorem we obtain
(3_3) hﬂl supP {C;l MS} ~as(1+a)s = g+c,:1 ME} Jd)ﬂ}:i.(l,“ﬁ}t}
F Sl

< Him sup P {C,TI (qul ~a)s,{1 t+ajs ”dn) > 6+C:1 (M},l +a)s,{1 ma)!___dﬂ)‘}

| v al

< sup j Apas - ays. a1 +a)s@ agt +ays, a1 —ax (%, ¥)

Aellel penp 4y b

= E dﬂxg(‘x —aps.hol1 +a)s & Mag(1 +a)s, dp(1 ~a)t (x. )
=4y}

for some Ao€[1, c], since A= s - ays, 201 +as® Hagt +ays, i1 —ay 18 CONtinuous on
the positive half line. For a —»0 we have

G;m{l —a)s,doll —akt (ﬁ% X+ Pq (/10)) d G%&,ﬁ;gi (A‘g X+ P, (’:0))
Giot1 +ays, do(1 —a) ('1%} X+ Do (/{0)) = G 6,201 (-‘1% X+ Pq (A'G))-
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Observe that for all yeR
Gﬁ-ﬂ(l ~@)sAoll —ay (y) = Gﬂ.@(l =~ a}s, Ao(1 +a)s (y) " ch(! +a)s,doll —ak (;V)

so that for every point of continuity A§x+p,(lo) of Gy With
G ros. it (A5 X+ Pal(do)) > 0 we obtain

Giagt —aysaoll +a)s (;L% X+ Py U»u)) - 1.

Let yo =inf{x€R | G, 10 (A5 x +p.(do)) > O} eR U {—o00}.
Case 1: yp > —o0. Choose a,€(0, a,] such that for all 0 < a < a, we have

Hio(1 +ays.ao(t —ay {— 90, Yo —&/4] < /8.

Further choose y; €(yg, yo+¢/4) such that 4§ y; + p,(4o) is a point of continuity
of Gjpsae- Then there exists a;€(0, a,] such that

Giro1 ~ays.iott +as (A6 ¥1 +Pa(Ao)) = 1—-8/8  for all 0 <a < as.
By (3.3) we obtain for all 0 <a < a;

limsup P {6;1 Ms’i —a)s {1l +als > g+ C,:j Mgll w‘.va).s.ﬂ«a]:}

L i~ S I

< _f dﬂzﬂu ~a)s, dofl %a}s@#ﬂuﬂ +ajs Aol ~ajt (x, »
{x=g/2+y)

= j j Lies o243 Alhaoet ~ass.o(1 +ars () Wlhagis +ays, 2001 —ay (V)
= j 1= G010 - ey agit +ays (5«‘5 (v +¢/2)+p, (:’#0)} LT +a)s,doll —ak 4y
£ {5/8 + J' 1~ GAD(I —a)s,Ap(1 +a)s (A% (,y + 5/2) +Da (‘10)) d;uﬁa(l +a)s,dn(l —ait (y}

{r>ypo—sefd)
< 8/8+ 1= Go01 - ays ot +ays (46 Y1+ Palho)) < 9/4.
Case 2: yo = —0. Since ({1 +as.201 ~ap)o<asa, 18 uniformly tight,

choose y,eR such that
it +ays.ant —ay (— 00, ¥;) < /8  for all 0<a<ay.

Further choose y, e(y,, y; +&/2] such that A3 y; + p.{4o) is a point of continui-
ty of G, Then there exists a;€(0, a4] such that

G ot —aps.aott +as (A5 V2 + P (A0)) = 1—-5/8  for all 0 <a < a;

as in the case 1. By (3.3) we obtain for all 0 < a < a;, as in the case I,

limsup P {c; 1 MU~ ¥ 0w 5 g4 n 1 pitFas-an

haed+ 41

< 68+ _f 1—Go1 - ays ot +ass (A5 (Y +6/2)+ pg Ho)) Atio01 +ays, 2001 —aye (V)

{¥>31}

< 8/84 1= G gt —as ot +ays (A5 Y2 + P (Ao)) < /4.
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Finally, in both cases, for all 0 < a < a; we obtain

(3.4) limsup P {c, ' M 050+ » gpe 1 M Fos0 7000 £ §/4,
Analogously we can see that for the latter expression on the right-hand side of
(3.2) there exists aye(0, a,] such that for all 0 < a < a, we have

lim sup P{C;l Mﬁ,l —a)t {1 -+ah > £+C;l M’cml-‘«a}.s.(l ma}t}: < 51/‘4,

Ao
which together with (3.2) and (3.4) gives the asserted result. =

The following lemma is proved in [3] and will be helpful for further
results. The proof given in [3] is based on arguments of Hilbert space tech-
niques.

LemMA 3.4. Let (Y,) be a sequence of independent random variables and (k,),
(m,) be two sampling sequences with k, < m,, k, — oo. If A, is an event depending
only on Yy, ..., Y., then for any event A we have
limsup P(4, | 4) = limsup P(4,),

= o ne¥on

where we set P(A, | A)= P(A,) if P(4)=0.

The next lemma is crucial for the proof of randomized limit theorems.
Recall the three steps of proof for the randomized central limit theorem given
at the end of the Introduction. Whereas in the first step T, = |nD| mixing
properties are sufficient, in the last two steps approximations of T, by |nD|
with discrete D, and of arbitrary D > 0 by discrete random variables are
applied, respectively. Anscombe’s condition defines the quality of these ap-
proximations for randomized maxima as follows: )

Lemma 3.5, Under the conditions and with the notation of Theorem 2.10 let
(U,) be a sequence of positive integer valued random variables with U fan - U in
probability for some positive vandom variable U.

(@) If U is discrete, for all 0 <5<t we have
(3.5) Clny | (M. —MPiy ) = O in probability.

(b) For meN define positive discrete random variables V,, by

Va=k2"" if(k—1)2""<U<k-27™,
Further, for m, ne N let U, , be positive integer valued random variables

given by U,,, = U, + | n(V,,—~U) |. Then for every ¢ > 0 and 0 < s < t we have

(3.6) lim limsup P {le[;,., (M, ~ M, )l > e} =0,

o AT

(3.7 lim limsup P {IC;}%rm_g (M%,, .~ MY, )| > &} =0.

M=+ R
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Proof. (a) Let () be a (countable) sequence with py = P {U =1} > 0
and ), p, = 1. For 6 > 0 choose Ne N such that ), _  p, < /2. Forany a > 0

we have
— 1l > g o= 0,
Ln UJ , }

limsup P{|U,~ | nU]| > a| nU]} = lxmsupP{
Thus with the events E,; = {{U,— | ny || < a| ny |} we obtain

lunsupP{]cL,,w o )l > &}
i}msupp{!cww (MY, — Mg )l > e, IU — | nU]| € a|nU]j}

+limsup P {|{U,— | nU || > a| nU [}

<82+ ), pklmlsupP({Echj My — M, ) > et N Eyy | U= )

k<N -+

<82+ ¥ limsupP{  max  lc[m)(Mu'~Mf, )l > e}

RSN BO® = | mune || <al o §
Now choose ae(0, 1) such that, by Theorem 3.3, for all k < N we have
limsup P { max ¢ g (Mo — M, )l > &} <
n-roo ot~ g )| € al nug |

Hence we obtain

]
li S0 N =
im supP {leTuy ) (ME,— M) > e} < N 2

which proves (3.5) since £¢> 0 and § > 0 are arbitrary.

(b) We have 0 < V,,—U < 2™ Thus V,, — U in probability. Further, for
any fixed me N we obtain

E’fﬁﬂm—, U" LH(% - Uu—— — ¥, in probability.
n n n

Choose mye N with P{U > my} < §/3 and m, > m, such that for all m > m,
we have P{U < m-27"} < §/3. By Theorem 3.3 further choose m, > m, such
that for all m = m, we have

(3.8) limsupP{ max |c; '(M{P—M3) > e} < §/3.

R H=nlEm™ in
Let py(n) = | nk-27™ | and define events
Ey={(k=1)27" < U <k-27™) = [V = k-2,
Gk,gu = {IUnﬁpk(n)! = ﬂ’znm}a ﬁk,n = {IUH”"”PR:(H)I = m—‘l‘pk (ﬂ)},

s max G".m_' lwxiz__MS,, ’ ‘ > gl
{ = pilnf sm Sgk(.;)[ ‘p"[")( ! Endn))] }
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By Lemma 3.4 and (3.8), for all ke N and s> 0 we have
(3.9) lim sup P (A, | E) < 6/3.

n- oo

Further, for sufficiently large ne N and k > m+1 we obtain

w2 "

1 -
< <m”ip),

and hence G, is contained in G,,. Using the relation

limsup P{U,— | n¥p | > n- 2"} S P{IU~-V,| 227"} =0
o=

we imply (3.6) in the case s> 0 by (3.9), since for m > m, we have

limsup P {lc[v,.; (M, —MTip, )l > &}

n—+om

< limsup P{c Tty | (M3, — M., ) > & [Up— Ln¥p )| < n:277)

+limsup P{|U,— | n¥, || >n-27"}
mq‘Z"‘
glimsup Y P({lepin (MY, — Myl > 6 0 Gan E K

B h=ggd

+P{U>me}+P{U<m-27"}

2 mg2™
-+hmsup Y P({lepby (MY — M3 > 6} 0 Gy Ey)
A g
26 mol” 2" 5 mg- 21
<=+ Y P(Fh}llmsupP(A“EFk) Y P(E)<
"3 =i 3p=me1

In the case s = O we further have to discuss the application of Lemma 3.4
n (3.9). As in the proof of Theorem 3.3, analogously to (3.2) we get

limsup P { max [ty (M — M)l > €}
n a0 [1= prm Sm ™~ pul)
< 2lim sup P (o Mgy 145 > e My ™ )
21"“ S“PP {Condey Mg ™ DAL H07 00 g e Gy MG 500
Since the distributions of the random variables

O 1 ~m= 1y _ welny ™ AR (L — e
Cpntmy (M gy dpy)  80d cpty (MBEG ¥t m)
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have the same weak limiting behaviour, we further obtain as in the proof
of Theorem 3.3, analogously to (3.4),

hm supP{cmn, Mo D Amhe o g o b MBI < 56

for arbitrary ¢ > 0, 6 > 0 and sufficiently large m > m,. The advantage of the
new situation is that now the events

I=m= il +m= 1) -1 prlm) = U2 (1 ~m— 1)
= {Cpuly MG’ > £+ Cplm MBS }

depend only on X ,mu2p s X| it +m-1e) Such that Lemma 3.4 can be
applied and we get also (3.9) in the case s = 0 since

lim sup P(A,,,| Ey) < 2limsup P (B, | Ey).

This proves (3.6) and analogously we get (3.7) since for all meN
lim sup P {{Up— |1V || > m™* [ 0¥, |} =0

i B

Moreover, with the events H,, = {{U,,—p ()| < m™ ! p,(n)} we obtain for
m = m,, as before,

Iii;fljgp P{lelay,. (M, — My, )| > &

_2 my 2
__?T +limsup 3. P{{lepin (M, . — M) > &} N Hio 0 Ey)
B0 =gy
25 mOlzm ) 25 5 fmig- 3
<Z+ Y P(ElmsupP(dy, | E) < Y P(E)<
3= n= o 3 31; Bt 1

This completes the proof. &

THEOREM 3.6. Under the conditions and with the notation of Theorem 2.10
let (T,) be a sequence of positive integer valued random variables such that
T,/k, — D in probability for some positive random variable D with distribution g.
Then for all 0<s <t we have the randomized limit

P{a; ' (M¥,—b,) < x} = [ Gy n(x)do ().
L]

It is easy to see that the limiting integral mixture of pdf’s is again a pdf. As
described in the Introduction, the proof of the theorem is divided into three
consecutive steps. The first two steps are formulated separately by the following
lemmas:

Lemma 3.7. Theorem 3.6 holds in the special case of T, = k,D | with
discrete D > 0.
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Proof. Let (d,) be a (countable) sequence with p, = P{D =d,} > 0 and
Y. pe = 1. For 6 > 0 choose N eN such that }’, _ . p, < /4. Since the sequence
(ay* (M$%,4,)— ba) is mixing by Proposition 3.1, for every k < N and sufficient-
ly large neN in view of Theorem 2.10 we have

1P (ar " (M3 g b < x| D= di)—Gays i {X)E < 6/2

for each (fixed) point of continuity. Consequently,

P {a; (M, —b,) < x}— | Gron(x)do ()]
0

= ﬂz P (4‘1; ' (Mf?z,,ak j"“bn) €x|[D= dk)"’z P Cayes, iz (x)|
k

Qa

5 Z P iP a, " (M} Ckndic ] ™ b)y<x| D= dk)—Gaks,dm(x)‘l % “‘+ Z b <

2 K<N kfi N
Since 6 > 0 is arbitrary, this proves the lemma. =

LemMa 3.8. Theorem 3.6 holds in the special case of T,fk, — D in probabili-
ty with discrete D > 0.

Proof. Let us write
j"ﬁf'i _b" — Mi.linﬂ,l B b” + EU‘*«”J MST‘:‘I o Msf;anJ .

dy ay Ch ikt

Since by Lemma 3.2 we have ¢, p ¢, = D* in probability, and by Lemma 3.7
we obtain

{o (MYip—b x}qjﬁw(!ﬁ)d@()
in view of Cramer’s theorem it is sufficient to prove for any ¢ >0
(3.10) hm P{]Cikuﬂj (M, — ML)l > h; =0.
Let us write n = o,k,, with p,eN, k, <n<k,+, and define U, = o, T,,.
Then U, = T, and U,/n— D in probability. It follows by Lemma 3.5 (a) that
lim P{lc[p (MY, —~Mwp ) > e} =0 for any &> 0.

i S ¢
In particular, we get (3.10) along the subsequence (k,). =
Proof of Theorem 3.6. For meN assume that random variables
D,, with distributions g, are determined as
D=k 2™ if (k—1)2""<D<k2""™
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D,, is positive and discrete and 0 < D,,—D <27 Thus D,,— D in proba-
bility. Further, let us define positive integer valued random variables
Dyn=T,+ | k(D,—D)|. Then for fixed me N we have

Dm.n 7:1 Lkn(Dm""D)J

=4 - D, i ility.
k. k. + . - D, in probability

For all 0 <5 <t let us write

%‘iwb,,MM,;,mn by , CLknDin] M3 — M3

mn

ay ay Cp,, ClknDyy |

Since by Lemma 3.2 we have c|,p,,] ci.! = D% — D* subsequently as n— 0
and m — oo, and by Lemma 3.8 we obtain

P{ay (M, ~b) < X} = | Gyt (6)dom(r) = | Grse (x) do 0),
(4] 0

again subsequently as n — oo and m — o0, in view of the extension of Cramer’s
theorem for doubly indexed sequences (see Lemma 2 in [3]) it is sufficient to
prove for all £> 0

(3.11) lim limsup P {le[iip,, (M¥,— M3, ) > &} = 0.
i ouad = 51 H=¥ 00

For (3.11) it is sufficient to prove for all ¢ > 0 and m — oo the following conver-
gences:

(3.12) lim sup P {|¢{,,, (M¥,— MTip, ) > 6} =0,
(3.13) lim sup P {lc{i4p,, (M3,,,,— Mk, )| > 6} = 0.

Let us write n = a, k,, with p,eN, k, <n <k, +, and define U, =a,T,,.

Then Uy, = T, and U,/n — D in probability. By (3.6) we obtain for any ¢ > 0
lim tim P {lc{ap,, (MY, — M%op,, ) > &} = 0,

e en g oD

which in particular gives (3.12) along the subsequence (k,).
Let U, =U,+ | n(D,—D)|. Then U,,, = T,+ | k,(D,—D)| =D,
so that for all ¢ > 0 in view of (3.7) we have

lim hm ‘“JPP {lcTab (MY, ,— M¥,p,, )| > &} = 0.

In particular, we get (3.13) along the subsequence (k,). =
The stochastic compactness in Theorem 2.10 enables us to observe the
following limiting behaviour of randomized maxima if the random sampling

14 - PAMS 212
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sequence proportionally to n instead of the sampling sequence k, converges
in probability to a positive random variable:

TueorREM 3.9. Under the conditions of Theorem 3.6 let (U,) be a sequence of
positive integer valued random variables such that U,/n— U in probability for
some positive random variable U with distribution n. Then the sequence
(ca * (M¥,—d,) is stochastically compact and every weak limit point of the dis-
tributions has explicitly a pdf which for some Ae[l, c) can be written as

§ Garsuaee (2 X+ po (D)) d (7).
0

Proof. Let us write n = 4,k,, with p,eN and k,, <n <k, +1. Thus (4,)
is relatively compact in [1, ¢]. Let () be a subsequence such that 4, — 1 along
(n'), where Ae[1, ¢] is an arbitrary limit point. Let us put

St - 88 AASE
¥—dn M, —d +‘3unvum My, —M%u,,;

==

CN C?I Cy c LA,,U,(I,NJ

Recall from the proof of Theorem 2.9 that the embedding sequences fulfil
¢, = Miap, and d, = b, +a,, p,(4,). Since [ 4,U,, ]/ky, — AU in probability,
from Theorem 3.6 we obtain

P ey (MY, =) < x} = P{d 2, (Mi30,, 1~ By =, Pal) < 3}
= P{a;! (M}, 1= bp) < Bax+Da(A0)} = | Gars,arn (4 x+ pa () dn (7).
0

Since | 4, Uy, |/n= |2, Uy, |/4,k,, — U in probability, we further infer from

Lemma 3.2 that ¢| s,u,,, | ¢ = — U* in probability. Hence in view of Cramer’s
theorem it is sufficient to prove

(3.14) Ly, (MU, — M3% 1, ) — 0 in probability.
Let ¥, be defined as in Lemma 3.5 and write
M%"i“M’[i“mh I Ol [M%in?f:,vm | MM?E»%U%.. | —Miw,, _|:|
1

C| inlip, | €| 2nTi, CLu¥m ] ClaVm)
We have the following convergence in probability:
LnVa _ Ln¥,l Ak,  Va

L 4a Us,, | n L 4n Uk,u...J U
subsequently as n— oo and m — oo, and hence by Lemma 3.2 we obtain
€LV | €1 inlip, ) = (Pu/UY* = 1 in probability.

-1

Further, for every & > 0 it follows by (3.6) that

lim limsup P{jcTy, (M3, — My, ) > &} =0,

m—ror  peven
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and since | 4,Uy, |/n— U in probability, we obtain again by (3.6)
lim limsup P {lc[y,. (MTS,0s,, ;= M, )| > & = 0.

Hence (3.14) follows by Cramer’s theorem.
Finally, observe that the pdf’s of limit points for 4 = 1 and 1 = ¢ coincide
since Propositions 2.4 and 2.5 imply G en(c*x+pu(c)) = Grsp(x). ®

4. CONCLUDING REMARKS

The convergence condition (2.1) together with the mixing property of Pro-
position 3.1 imply convergence of the joint distributions of

(ﬂ; t (M ?al&nﬁ. 1= bn)s T;I/ kﬂ)

to the product measure pu, ;®p for every A>0 and 0<s<t, where
Basa(—00, X] = Gy 1, (x) and g is the distribution of D. This follows analo-
gously to Lemma 2 in [15] where the special case of ii.d. random variables is
proved. Convergence of the joint distributions in turn leads us to randomized
limits as Silvestrov and Teugels show in Theorem 1 of [15] for more general
extremal processes. In fact, Theorem 3.6 of the present paper is identical to the
statement of Theorem 1 in [15] for the special case of max-semistable hemi-
groups. The same is true for Theorem 3.9 if we apply the stochastic compact-
ness result of Theorem 2.10 together with an appropriate mixing property and
consider Theorem 1 of [15] along certain subsequences. But the concrete form
of the limits in both Theorems 3.6 and 3.9 can only be obtained by the results
of Section 2 of the present paper.

As stated before, the results of [15] even hold for more general situations
than the present hemigroup setting, and convergence of randomized extremal
processes is also considered in the Skorokhod topology. But note that the
methods of proof are different. Whereas the proofs in Section 3 of the present
paper follow corresponding results on the randomized central limit theorem,
containing the verification of an Anscombe condition, the proofs of compara-
ble results in [15] avoid Anscombe’s condition and make use of monotonicity
arguments instead. We think that Anscombe’s condition is of independent
interest and gives raison d’étre to the methods of Section 3 in addition to the
results of Silvestrov and Teugels.

We emphasize that the methods of the last section apply also for nor-
malized maxima where the norming constants are also randomized. Namely,
under the conditions and with the notation of Theorems 3.6 and 2.10 we have

Plert (ME —dr,) < x} = [ Gpupn (* %+ o) do )
0
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and the sequence (cp,! (M3, —dy,)) is stochastically compact, where every weak
limit point belongs to a pdf

? G s, int (Y x+ p (Ar))dn (r)  for some Ae[1, ¢).
[¢]

For the proof of these assertions one has to observe that (e[}, (MTha)—d k1))
is a mixing sequence of random variables for each A > 0, as in the proof of
Proposition 3.1. Applications of Lemma 3.5, where, as in the proofs of Lem-
ma 3.8 and Theorems 3.6 and 3.9, (c7,! (M¥ —dy,)) and (cp,! (M3 —dy,)) have
to be suitably decomposed, lead us then to the desired results. The details are
left to the reader.

Moreover, randomizations of the last section apply for sampling sequences
k, = n, i.e. in stable situations. Suppose (1.1) holds for all ¢ > 0. As argued in
Remark 2.2 the convergence condition of Section 2 is fulfilled. Since in this case
we have ¢ = 1, embedding is superfluous, and hence ¢, = @, and d, = b, in
terms of Section 2. Thus Theorem 2.9 is fulfilled by (2.2) and one observes easily
the following stability equation by convergence of types:

Gq,z {x) = Gy (T': X+ Py (r ))

for all 0 < s < t and r > 0, where p,(r) is as in Theorem 2.10. Since the proofs
of Section 3 do not necessarily depend on semistability, we get randomized
limit theorems by Theorem 3.6 and the above remark also in the stable case. In
particular, under the conditions and with the notation of Theorem 3.6 we have
for al 0<s <t

P a7 (M) <) = ] Grun (e (0
and
Plar} (M, ~br,) 'x}u-éjG,.-s,,;,(?“x+pa(r))dg(r)_
4]

The last limit coincides with G, (x) in view of the above-given stability equation.
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