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Abstract. Adaptive control of discrete time Markov pro-
cesses with an infinite horizon risk sensitive cost {unctional is inves-
tigated. The continuity of the optimal risk sensitive cost with respect
to a parameter of the transition probability is verified. Two almost
optimal adaptive procedures that are based on the large deviations of
the cost functional and discretized maximum likelihood estimates are
given. To justify the performance of the adaptive procedure with ob-
servations of the cost, some large deviations estimates of the em-
pirical distributions of finite sequences of successive states of Markov
processes are obtained. A finite family of continuous control func-
tions, where one control function is fixed after a nonrandom time
from each of the adaptive procedures, provides an almost optimal
adaptive control.

AMS Subject Classification: 93C40, 93E12, 93E20, 60J05.

Key words and phrases: Adaptive control, risk sensitive control,
discrete time controlled Markov processes, ergodic control.

1. INTRODUCTION

Let (X,, ne N) be a controlled, E-valued Markov process on the probabili-
ty space (Q, #, P), where E is a locally compact, separable metric space and
& is the Borel o-algebra on E. The process (X,, neN) has a controlled tran-
sition probability P**~(X,, dy), where «° is an unknown parameter that takes
values in a compact metric space 4, and v, is a control at time » that is adapted
to o(X,,..., X,) and takes values in a compact metric space U.
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Let ¢: ExU — R, be a continuous bounded function. Let /, be the in-
fimum of the risk sensitive infinite horizon cost functional

n=1

(1) J3((v,, nEN)) = li%si;pélogEi fexp (3 ye(X:, v)]

o=

over the family of ¢{X,, ..., X,}-adapted U-valued controls, given value
of the parameter we A in the transition probability of the process (X,, neN)
and a positive risk factor y. The term E} in (1) is used to denote condi-
tional expectation given the initial state X, = x and the value of the param-
eter «. Under the assumptions that are imposed, it follows that the optimal
cost 4, does not depend on the initial state x. Since the transition proba-
bility measures of the Markov process depend on the unknown parame-
ter we A, an adaptive procedure is required to construct a nearly optimal
control.
In the paper the following problem is solved:

For a given & > 0 find a nonrandom time Tand an adaptive control (v,, ne N)
such rthat

n-1

(2) limsup E¥ [i log B [exp (Y ye (X, v)) | X1, ..o, XT]] € Apte,
o L i=0

where Ao is the infimum of (1) and o° € A is unknown. Thus an adaptive strategy is
sought that starting from a nonrandom time T almost minimizes the expected
value of the risk sensitive cost conditional on o(X, ..., X1).

Two approaches to adaptive control are used: the first is based on obser-
vation of the cost and the second is based on discretized maximum likelihood
estimates that are motivated by [6] and [7].

In Section 2, continuity of the solution of the Hamilton-Jacobi-Bellman
equation [2] with respect to the (unknown) parameter for the risk sensitive
control problem is verified. These continuity results are similar to those of [1]
and [7] for average cost per unit time control problems. In Section 3, some
large deviations estimates for finite sequences of successive states of the Mar-
kov process are verified. These estimates are used to construct an adaptive,
almost optimal contsol based on observation of the cost. In Section 4, an
adaptive control is constructed from a family of discretized maximum likeli-
hood estimates [6]. Similar adaptive controls are constructed in [7] for average
cost per unit time control problems. The main contribution of this paper is the
construction of an almost optimal adaptive control for risk sensitive cost func-
tionals. It seems that this is the first work on adaptive control for risk sensitive
cost functionals,
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2. RISK SENSITIVE CONTROL PROBLEMS
DEPENDING ON A PARAMETER

The transition measures for the controlled Markov process are assumed to
have densities with respect to a fixed probability measure, that is, for xeE,
aecA, velU, Beé,

3 P (x, B) = [ p(x, y, , v)n(dy),
B
where # is a fixed probability measure on E. The following assumptions are
made concerning the density p:
(A1) The density p: Ex Ex Ax U — R, is continuous and bounded and,
for each x, yeE, aeA, and veU, p(x, y, a,v) > 0.

'(A2) sup sup sup sup M

¥ iy "
wed x.x'cE yeE wow'el p‘(x » ¥s O v)

(A3) 35 < 1 such that Vx, x'eE, Yae A, Vv, v'el, VBeé,
P*{(x, B)—P* (x', By < &

and dexp(y|lcllsp) < 1, where [lclls, = supy,, ¢(x, v)—inf,. - c(x', V).

= K < 0.

Remark. The assumptions (A1) and (A2) are satisfied when E is compact
and p: ExExAxU - R, is continnous. If E = R? and
Xn+1 = f(Xm ags U,,)’%'Q(X,.) H{n
where f: R'*xAxU - R? are g: R* —» #(R% are continuous and bounded,
g ' R £ (R% and (W,,neN) is a sequence of Ré-valued independent
identically distributed standard Gaussian random variables, then (A1) and the
first part of (A3) are satisfied and, consequently, for y sufficiently small also

doexp (y llcllsp) < 1.
Let g: E— R be a Borel measurable function and define T° as

@ (T*g)(x):= inf [re (x, ) +log { & P (x, dy)].

Let C.(E) be the subspace of the space C(E) of bdunded, continuous
functions on E whose span norm |[|-||,, is bounded by L, that is, fe C,(E) if

1y = 83D f (9 ~inf £ ) < L.

The following result gives an important property of T* acting on C,(E).
Tueorem 1. If (Al) and (A2) or (A1) and (A3) are satisfied, for any L >0
the operator T*: C(E) — C(E) given by (4) is a span norm contraction. There is
a unique pair (A,, we)€ R, x CL(E) such that, for each xe E and a fixed XeE,

(5) T W, (x) = ;{m+ Wy (x)i Wy (:a = Us
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where, under (A1) and (A2), L = log K +|jcll, with K given in (A2), while under
(A1) and (A3),

L=yllellp+n[ Y (Gexp@llclp) T
i=0
Proof Note first that by (A2) there is a & < 1 such that
(6) P*(x, B)—P*' (x', By < 6

. for all ae A4, x, x’eE, v,veU and Beé. Following the proof of Proposi-
tion 2 in [2] it follows that for g,, g,e C(E)

(7} ”Tu g1 — i Qzﬂsp < ﬂgl - gzﬂsp sup sup sup (ﬂxmg'x {B)ﬂlufx'v'am (BJ);
Bsd x,x'eE v,o'sl

where

[, P x, dy)

IE ¥ pav (x, dy)

To complete the proof of the (span norm) contraction property it suffices to
show that

By (B) =

{8) sup sup sup sup sup (ﬂxwgl (B ) - Hr’m‘ya (B })‘

aed gi.g2 (1911l M, |lg2ll, €M x,x°cE v,0'ell Bed »
= (M) < 1.

Following the proof of Proposition 2 in [2] it can be shown that if (8) is
not satisfied, then (6) is not satisfied. To complete the proof use Theorem 1 of
[2] in the case of (A1) and (A2) and Proposition 2 and Theorem 1 of [3] in the
case of (A1) and (A3). =

CoroLLARY 1. If (Al) and (A2) or (A1) and (A3) are satisfied, then

lim fjw,, —w,ll = 0.

Proof By Theorem 1 of [2], under (A1) and (A2) the operator T* trans-
forms C,(E) with L given in Theorem 1 into itself. Under (A1) and (A3), by
Proposition 2 of [3] the iterations of T*0 belong to C (E) with L as in Theo-
rem 1. Using a contraction principle approximation with contraction constant
B(L) we obtain

Wa,, — Wallsp < [1Wa, = (T)" (O)lfsp + I(T*Y™ (0) — (T (O)llsp
< 2(B(L)" L+ (©) (T O)flp-
For each meN from ||(T*)"(0)—(T*"(O)|lsz = 0 as r»— co it follows that

lim wain—waﬂsp =0.

i Sac s ]
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Therefore, there is a sequence of real numbers (d,, ne N) such that

lim [[Wa, —we—d,|| = 0.

Since w, (¥) = w,(x) =0, it follows that d,—» 0 as n—> 0. =
COROLLARY 2. If (A2) and (A2) or (Al) and (A3) are satisfied, then

lim 4, = A,.

Proof. Note that
Ag, = inti; [ve (x, v)+1og [ exp(wa, () P** (x, dy)]—w,, (x).
e E

It follows from Corollary | and (Al) that A
Let u: E— U be Borel measurable and for each aeA define Y as

~ /i, 45 R— 0D, B

oy

w=1

9) A% = lim sup— ! Iog E3 [exp( Z ye(X;, v))],

-
n o D

where v; = u(X;).

The next lemma follows from Proposition 2 of [2] (under the assumptions
(A1) and (A3) using the arguments of the proof of Theorem 1 we obtain easily
an analog of Proposition 2 of {2]) and the proof of Corollary 2 of [2].

Lemma 1. If (Al) and (A2) or (A1) and (A3) are satisfied, then for ne N
n—1 B
(10) —L <logEx[exp (Y ye(Xs u(X))]-ntt < L,
i=0

where L is given in Theorem 1 and u is Borel measurable.

The following result proves the existence of a finite family of almost op-
timal controls.

ProrosiTion 1. If (A1) and (AZ} or {Al) and (A3) are satisfied, then for
e > 0 there is a finite family % (e) = {u;, ..., w,} of e-optimal controls, that is,
Un: E — U is Borel measurabie for m = 1, 2, ...s k and for each wc A there is an
me{l, ..., k} such that

J2 (1 (X), nEN)) < Ay +e.

Proof. By Propositions 1 of [2] and [3] and Theorems 1 of [2] and [3] for
each xe A there is an optimal control u,. Let nge N be such that L/n, < ¢/4. By
Lemma 1 for u: E — U Borel measurable and «, o € A it follows that for n > n,

| EX[exp (302 ye (X, u(
|A;-«,12[$~2£+119g [ p( ][
h o n E® [exp( ' o yc (Xi u(X) )j”

g 1
L —+—F,{o, o, x, u).
2 n
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If Fo(e, 2, x, ) » 0 as o — «, then
A{': A = R+

is continuous for all Borel measurable u: £— U. Thus the family
{o'e A: |2 — 23| <&}, for e 4 and u, Borel measurable, is an open covering
of the compact set 4. Consequently,

e |J{oed: |i—A <),
me A
where A is a finite set, so for % (g) = {u,, € A} the assertion of Proposition 1 is
satisfied.
It only remains to show that F, (2, ¢, x, u) = 0 as of — o. Initially, it is
shown that

r—1 .
{1 1) lim E;m [exp ( Z ye (Xiw H(Xi})) Do (XII)]
B o i=0

n—1
= Exfexp (3, ye(Xe u(Xd) o (X.)],

where o, — o as m— o« and (@, meN) is a family of uniformly bounded,
Borel measurable functions that converge uniformly on compact subsets of
E to a function ¢. Given ¢ > 0, for n = | choose a compact set K such that
#(K)=1—¢& and

(12) [ D Efm [, (X )] e Egn [ (X )]
< erlel jiw(v Ip(x, 9, oy w(x)—p(x, y, &, u(x))| n(dy)

< 2" Mgl lIpll e+ e gl sup [p (%, ¥, tm, v(x))—p(x, v, o, u(x))].
yekK
By (A1), the right-hand side of (12) can be made arbitrarily small. Furthermore,
it is clear that by (12)
lim &0 B3 [, (X 1)] = &0 E5 [ (X,)]
[ e o
uniformly in y from compact subsets of E. Assuming by induction that (11) is
true for n, it is verified for n+1, that is,

E[exp (X

=0

70 (X, u(X0)) @m(Xs1)]

n—-1

= Ex[exp( % ve(Xi u(X))exp e (Xo, u(X)) Ex: [on(X ]
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a1

~ E3fexp( Y ye X u(X))exp(ye(X., u(X) Ex, [0 (X )]]

= Exfexp (3 ye (i, uXD) 0 ()] 55 mos oo,

This verifies the induction hypothesis. Letting ¢, = qzx =1 we have

lim E&» [exp( };(‘(X,, u(X)))] = E [exp( Z ye(Xs u(X)))].

| Rl
whence we obtain

lim Fo(0p, o, X, ) = 0. m
By oo
CorOLLARY 3. If(A1) and (A2) or (A1) and (A3) are satisfied for each Borel
measurable function u: E — U, then the mapping 1': A — R is continuous, where
AY is given by (9).
This corollary follows immediately from the arguments used in the proof
of Proposition 1.
The main result of this section is the following result on the existence of
a finite family of continuous almost optimal controls.
TuroREM 2. If (A1) and (A2) or (Al) and (A3) are satisfied, then for each
& > 0 there is a finite family U, (e) = {u,, ..., uy} of e-optimal continuous control
functions, that is, for each we A there is an me{l, ..., k} such that

(13) 72 (un(X,), neN) < 2t
and u;: E— U for je{l, ..., k} is continuous.

Proof. Since E is locally compact, there is an increasing sequence
(K, ne N} of compact sets such that Un . K, =E. It can be assumed that
1(6K,} = 0 for all ne N. Consider a sequence of partitions ((EY, ..., Ej,), n@N)
of E with representative elements ((e],..., €} ), neN) such that eleE{,
E= U El E}nE} =@ if i # j, n(0E) = 0, the diameter of E} is not greater
than 1/n for je{l, ..., d,—1}, Ej = E\K,, (E}*', ..., E4*}) is a subpartition
of (EY, ..., E}), and {e], .. em < {ef*!, ..., ei" 1} for each neN.

Let ,," (ef, ef) = P* (e’,’, E}). Consider thﬂ contmlled Markov process with
the state space {e},..., ¢} } and the transition probabilities pi® (e}, ) for
i,je{l, ..., d,}. The mapping

prle, ey AxU - R,

is continuous and under (A2) we obtain

e 8 E"S 1l
(14) supsup  sup sup M

1 JT
n aed ije(l,..ds} p,0'el pn (éﬁ H e;)
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while under (A3) we have
P (e, e)—pi(el, &) <

with the same constants K and § as in (A2) and (A3).

Proposition 1 applied to the Markov process with state space (e, ..., €} )
implies that there is a finite family (@, ..., i},) of (¢/3)-optimal control func-
tions. Now let uf(x) = &} (ef) and P;*(x, ) = P*™(¢}, -} for x€ E}, ie{l, ..., d,}
and neN. It is clear that for each fixed me N the family of piecewise constant
functions (7, ..., uj. ) is (8/3)-optimal for the Markov process (X}, ne N) with
the transition measure P¥ (x, -). For a Borel measurable function u: E — U let
Ay be given by

|

(15) 3% = limsup~ L og Ex [exp ( Z ye (X7, u (X))
=0

From Lemma 1 it follows that for nelN
(16) ~L < log E% [pr(z ye (X7, u(XM))]—-n2t,, < L.

’ Therefore,

(1 7) sup sup W; m 'J*;i
zed o
< 2L s supaup g ZLP iz 8. XD
o ged u Ez[exp (3. ; e (Xo (X)) I’
where the supremum over u is over the family of Borel measurable functions
u: E— U,
Since

(18) * lim sup sup [P (x, ) — P e = 0,

M ged el

where the convergence is uniform in x from compact sets and ||*],,, denotes the
variation norm. Choosing n sufficiently large in (17) and using (18), for m = m,
we obtain

sup sup |4y, — A4 < &/3.

xed w© )
Thus the family of piecewise constant functions (u7, ..., ur. } is (2¢/3)-optimal
for the Markov process (X,, neN) with the transition measure P*(x, -).

It only remains to show that each ue{u¥, ..., uf,} can be approximated

by a sequence (u;, le N) of continuous control functions such that

(19) lim sup |44 — 24 =0

P=r e g
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Given a ue {u}, ..., u }, choose a sequence (y;, [e N) of continuous U-valued
functions on E such that

lim 5 (u; 5 u) = 0
i~ oy
Thus,
lim (z: p{z, v, o, u(2z))  p(z, y, @, u(z)) for some veA, yeE) =0
It '

and

llmn(z sup ||P) (z, -}— P“““)‘(z Nhae > 0) = 0.

acd

Hence for each u
E [exp (Z 0 ye (X, w(X) )]
E‘“‘[exp( --«0 yc Xi, u(Xl))]

By Lemma 1 it follows that for neN

Ex" [exp (Z?""J ve (X, w (X))

Exfexp (Y], yc (X: wX))] I

So choosing #n and ! sufficiently large it follows by (20) that
sup |4y — Ay < /3.

aad

(20) lim sup

’i‘"’“ﬂ asd
L o

1Dg

{ 0y ae

2L
sup |Af — Ay € —+sup

med asd

log

Thus there is a finite family of continuous s-optimal control Tunctions. =

To end this section a continuity result for the invariant measures of the
Markov process with respect to parameters is given.

Lemma 2. If (A1) and (A2) or (A1) and (A3) are satisfied and u: E — U is
continuous, then the mapping

' A - P (E)

is continuous in the variation norm, where i is the unigue invariant measure for
the transition operator P™(x, -).

Proof. By (6) and (A3) using Lemma 3.3 of [8] we see that for each Borel
measurable u: E — U there i8 a unique invariant measure n% and for xe E

HEP™)" (x, -)— mellvae < 26" for e A

Since & < 1 does not depend on u and e, the family of invariant measures
(my, ae A} is tight.

Let now u: E — U be continuous. If o, — « as n — oo, then there is a sub-
sequence, denoted as the whole sequence for notational simplicity, such that




502 T. E. Duncan et al.

my, = jt, where p is a probability measure on E. If f: E — R is continuous and
bounded, then, taking into account that = (P*"f) = =y (f), we have

(P f)—p (N < (P f)— g, (P)]
+ i, (P f ) — 7, (P ) + |75, () — ().

Since

|, (P [} —mg,, (P )] < sup [P™f (x)— P f ()} + 2|1 f| 7, (K7)

xek

and, for &£ > 0, =y (K) < /21| for all neN for a suitable compact set K, it
follows that p(P™f) = u(f) for all bounded continuous functions f. Thus p is
an invariant measure and, by uniqueness, u = 7% and the mapping

¥ A — P(E)

is continuous in the weak® topology.
For Be & and a sequence (a,, ne N) such that o, — o as n— oo it follows

that
(7 (B)—t, (B < , (K)-+5up [P (x, B)— P (x, B)
ek
+ I‘[{ [p(x, v, 2 u()n (@) (a9~ (dx))]-
Since

H I p(x, ¥, @ u(x))n (dy) (72 (dx)— =z, (dx)|

< [If plx, v, o, u(x)(m (dx)— =, (d))] 1 (dy)
EE

and the right-hand side tends to zero as n — oo by the weak® convergence of

(my., ne N) to =i, continuity of u, it follows that (a}, , ne N) converges to =y in

the variation norm. =

3, ADAPTIVE CONTROL WITH OBSERVATION OF THE COST

Initially some results on the large deviations of .empirical distributions of
finite sequences of the states of the Markov process are given. These results are
used for the adaptive controls. '

In this section (X, neN) is a Markov process with the transition proba-
bility measure P*(x, -) depending on a parameter « e 4. The following assump-
tion is used:
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(B1) For each feC(E), the mapping
Ax Es(o, x)— P*f(x) = Sf(y)P“(x, dy)
E

is continuous.

Fix NeN and for Be #(E") and neN define the empirical distribution
SN as

-1
(2” Sﬁ(B = - Z IB(XJNM? XJN PETIEET X§]+1)H)'

J"*""O
Some asymptotic properties of the measure
(22) QNI = Py {SYel'}
for I'e B(P(EY)) are given.

Let % = (Xy,..., xy) and = (1, ..., yw) be two vectors in EV. Let & be
given as

@ = {f e C(E"): there is a > 0 such that f(X)>a for all XeE"}
and for le #(E") let I* be given as
( f(yl! veas }’N)
E;NU(XIE sy XN)]

I® is related to logQ in the following result.

TuroreM 3. If (Bl) is satisfied, then for compact sets C < P(EY) and
A, = A and a positive integer N

(23) I =sup [ log
fed EX

)f(dh, coes dyn).

(24) lim supi sup sup log QF:**(C) < — inf inf I*(C).

H~ o nasm xeE gedy leC

Proof For d>0 let
O, = {fed: sup f(X)<d mf WAUIE

HeEN

Following the proof of Theorem 1 in [5] it can be shown that for fed,

f(XN 19 ven X(j-g-l},v} )]
E%| ex log 4 < d,
[ p(jz‘ﬂ (jv!-ijNU(.Xl’”" XN):]

and therefore for I'e & (2 (EY))

oX (N < dexp[—w ninf § log = {}‘:}h = fhgf,‘,)] Hdyy, ..., dJ’N}:,-

The remaining part of the proof follows as in Theorems 1 and 4 in [7]. =
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To obtain a stronger version of Theorem 3 for closed sets C an analogue
of the assumption (B4) of [7] is used.

(B2) There is a continuous function ¢: 4 x EY¥ —+ R such that ¥ («, ) > 1
for e A, ¥eE", and the mapping

SUPE?[I‘Z’(W, Xj:“, ruey XN)] E—R
wed

is bounded on ctbmp}ict subsets of E and for any m > 0 the set K,, given by

V, . W (o, Yo v YN) }
K, = ooy Y EN: inf ; <m
{U‘ R I e @ X1, Xl

is compact in E.

An analysis of the proofs of Lemmas 4 and 5 and Theorem 5 of [7] shows
that the following analogue of Theorem 5 of [7] is satisfied.

THeoREM 4. If (B1) and (B2) are satisfied for closed sets C = P(ENy and
Ay < A, then for any compact subset W < E
(25) limsup n~ ! sup sup log 0N (C) < — inf inf I*(C).

Lt aedy xeW azdy leC

Following the proof of Lemma 4.2 in [5] an analogue of Lemma 6 of [7] is
obtained. “

Lemma 3. If (B1) and (B2) are satisfied, then for m >0 the set
Co = {le?(E"): injf“ ()< m}

is compact.

The following property of I* is useful.

LeMMA 4. For e A and leP(EY), I*() =0 if and only if for each
B‘Eﬁ(ﬁ'f)

1(B) = [ EX[15(Xs, ... Xp)] my (),
£ -
where Ty is an invariant measure for the Markov process (X;y, i€ N} with the
transition operator (P*)" (x, -).

Proof. Following the proof of Lemma 2.5 in [4] it suffices to show that
I*(l) = 0 is equivalent to

LI 01 o I@Dss i) = [ESLS (X, .o XWTI(EY 1, d¥)
N E

for fed. m
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An adaptive control procedure is described for a given & > 0 and an initial
state xe E such that in a nonrandom time T the inequality (2) is satisfied.

The procedure consists of the following five steps:

1. Determine the finite family %, (¢/4) = {uy, ..., #,} of continuous (¢/4)-
-optimal control functions as given in Theorem 2.

2. Determine a positive integer N such that for x' € E, ae 4, and ue %_(g/4)

e 1 kil B
(26) -5 < ﬁlog st [exp (Y ye (X, u(X))]—24 < 5
‘ i=1
3. Determine a positive integer n such that for X' € E, ae 4, and ue ¥ (s/4)
I " . 1 j+ iuN
27 Pi’f[ =Y exp( Y ye(Xe u(X)))
Bicp i=jN+1

N .
— £ E=[exp (_; e (X, u(X)))]ma(@y)

e €
o<,
Sil 4|icl| k

where 7; is an invariant measure of the Markov process with transition operator
P*{(x, ). If E is only locally compact, choose a compact set W < E such that
(28 infinf inf P¥[XyeW]z1l——,
(28) infinf Inf Px[XxeW] 8y el &

and then find a positive integer n such that for x'e W, ae 4, ue#, (¢/4)

[1n-1 U+ DN _
(29) Pf:[-z exp( Y, ve(Xi u(X)
=0 i=jN+1 }

€ €
Zo | S —
8] 8yliclik
4. For the first nN units of time let the control function be u, e ¥, (z/4),

then use u, e %, (¢/4) for the next nlN units of time, and continue by induction
until all of the controls in %,(¢/4) are used for nN units of time. Let

1B [exp (X ye(Xs, u (X))} (@)

i

. o oa-1 (p+jN ,
Cplup) = Y exp| Y ye(Xy, u,(X))) for p=1,2,..,k
j=0 i=((p— 1)+ HN+1
Let g be such that
(30) C,(u)) = min C,(u,).
ol B OO

5. At time T = knN choose the control function u,, and for i > T use the
control §; = u,(X;).

It is shown that the procedure described by steps 1-5 is feasible and that
the control in step 5 is almost optimal. In the case when the state space E is
noncompact and (A1), (A3) are satisfied, we shall need the following additional
assumption:
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(Ad4) For any &> 0 there is a compact set W < E such that

inf inf inf P¥[X,eW]>1—e.
x'ek ged ugE~U
ProposITioN 2. If (A1) and (A2) or (A1) and (A3) together with (A4} are
satisfied, then steps 1-5 in the above procedure are feasible.

Proof. The feasibility of step 1 follows from Theorem 2. By Lemma 1
a positive integer N can be chosen such that L/N < ¢/8 and that step 2 is
feasible. By (A2) and (A3) the inequality (6) is satisfied, and consequently (e.g.,
[8]) for each ue %, (g/4) there is a unique invariant measure 7; for the transition
operator P*}(x, -). Since by (Al) an embedded Markov chain (X, ieN)
with transition operator (P™)" is aperiodic, =} is also the unique invariant
measure for (X, ie N).

For le Z(EN) let

Ji(l) = sup | log

Jed EN

( f.{;)}ls- reey ya\")

By (A1) and the continuity of the control function u, the mapping

)3 (@yy, ..., dyw)-

(31) Ji(): AxP(EN) - R

is lower semicontinuous. Moreover, by Lemma 4 the functional Jj () attains its
infimum, that is O, uniquely at the measure [ that is given by

[.(B) = [ E¥[15(Xy, ..., X\)]mz(dx)  for Be B (Ey).
E

Furthermore, by Lemma 2 the mapping
' A - P(EY)
is continuous in the variation norm. Therefore, for each ¢ € C (E") the mapping
[(p): A—R

is continuous.
The set of measures

(32 |
r,= {lé.@(EN): U Cx s -e e yﬂjgl{dyh ey dy,,)wf(dlﬁ, v Lf}’w}}l 2 S},
] ‘

where
N

CN(}’L; sy J;l‘l’) = exp(z ?c(yia “U’i)));

f=1
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is closed in the weak* topology on #(E™). If E is compact, then £ (E) and
I', are compact in the weak® topology and
(33) a, = inf inf J%(l) > 0.

aed lely;
The inequality (33) is satisfied because otherwise by the compactness of 4 and
I', and the lower semicontinuity of the map (31) we have J%(I) = 0 for some
de A and Te I'z. By Lemma 3 this implies that [ = [e I';, which contradicts the
definition of I'z. Proceeding now as in the proof of Theorem 3 of [7], we see
that for a y,€(0, a,) there is a positive n, such that if n = n,, then

(34) sup sup P¥[S)el’.] < exp(—ny,),
agAd x'gE

where SY is given by (21). Since the family %, (¢/4) is finite, there is a positive
integer n such that (29) is satisfied. This completes the proof for E compact.

If E is not compact but only locally compact, then step 3 of the procedure
requires additional discussion. Initially it is shown that if (A1) and (A2) are
satisfied and if E is locally compact for each ue, (¢/4), the assumption (B2)
is satisfied. Let (K,, neN) be a sequence of compact sets such that K, is

contained in the interior of K, , for each neN and (), K, = E and for
a fixed ek
, 1
supsup | p (X, y, o, )p(dy) € —— fori=1,..., N,
seh vell E[g 1 (n+1)°

Whﬁ[ﬂ p*m(z, v, &, 13} = ﬂ(zs Vs Oy U) ﬂnd
PR, y, o u) = [Pz, p, o, V)P (E, 2, 0, v)n(dz).
E

Now construct a continuous function ¢@: E — R such that for ye K,\K, -4
n< oy <n+l,

where Ko = @. Let y: EY - R be given by

(35) YWy oon )=o)+ +o ().

It follows easily that

2 K+K*+...+K"

supsupEX[ (X4, ..., Xyl £
oD Sp EX [ (X, - X1 < 3 =7

(n+1) < oo,

so for y given by (35) the assumption (B2) is satisfied. By a similar construction
one can show that under (A1) and (A4) the assumption (B2) is also satisfied.

The inequality (29) can be obtained as in the compact state space case
by using for ue#.(e/4) Theorem 4 and following the proof of Theorem 3
in [7]. =
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Now it is shown that the adaptive procedure of steps 1-5 gives an almost
optimal adaptive control.

THEOREM 5. If (A1) and (A2) or (A1) and (A3) together with (A4) are satis-
fied, then the adaptive procedure of steps 1-5 defines an e-optimal control in the
sense that for' T = knN the inequality (2) is satisfied.

Proof. For pe{l,..., k} let B, < Q be given by
Bf{ Cplup)—~ IE“""”[%P(Z ye (X, up (X)) w8 dy)l }
It is clear that if E is compact, then
k
36 PL(() B) 21—t
If E is not compact but only locally compact, then for p> 1

PE(BY) = EZ (B2 [PS, (B | X1, o1y Xg-2n]]

Emn [1 w (X(,P" 1)””‘) X(p 1IN (B )] +

i1 &
By llell kS 4yl

so (36) is satisfied.
For g defined by (30) and we ﬂ , By the following ineqnuality is satisfied
for p={1,..., k}:

jE" “a [ exp ( Z ye(X o ug (X)) 7l (dy)

i=1
+jE°‘0"P [exp(Z ye (X, up (X)) 732 @y).
i=1
From (26) it follows that

k
24 < efdte/d+ A =4et A for pefl,... k} and we [ B,.
=1

Thus

o 1 , gt . ]
lim sup ES l:; log E¥ [exp (Y yelX, GA | R D ST ¢ r:]
] i=0 |

A=

. ol 1 S . |
< limsup E¥ {1 M. Bp 108 EY [exp (Y ye(Xs, U:’+T]}]:|
nveo £ i=0
1 ;
+EY [11;;‘: 7 7, logexp (ny tlcm]
] | 3 0 k’ 1
<EL [y _ e, A81+7 10l PE(U BY) <

pe=l

—e+ mf ”"“+ L Apote
2 pelt,...
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4. ADAPTIVE CONTROL WITH ESTIMATION

Let u: E— U be continuous and o, x’'e A and let K: UxAxA4A—R be
given by

(B7  K'( )= iﬂogp(x, v, o, u(x) p(x, y, o, u(x))n (dy)ns(dx).
!

The function K'(-, ) has the following continuity property:
Lemma 5. If (Al) and (A2) or (A1) and (A3) are satisfied and u: E— U is
continyous, then
K 4xA-R
is continuous. Furthermore, if K*(a, o)—K"(x, ') = 0, then for xesupp(y),
P¥(x, ) = P¥"(x,").

Proof. The continunity of K*(-, -) follows from (Al), (A2) and Lemma 2.
To verify the second claim in the lemma, we infer from Jensen’s inequality that

px, v, o, u(x)\
i log(p-‘ﬂ“ﬂ»—w(x’ o (x})>p(x, ys o, u(x))n(dy) = 0.

¥ K*(=, o)— K* (2, o'y = 0, then
p(x, y, o, u(x))\

(38) IOE(W p(x, y, o, u(x))n{dy) =0

1108\ o, y, 2, w)) P )
for =% almost all x, and thus for 4 almost all x and, by the continuity of the
transition densities, for all x € supp (). Since log(-) is a strictly convex function,
(38) is satisfied only if

p(x, y, o, u(x)) = plx, y, &, u(x)) for all x, yesupp(n).

Therefore, P*(x, -} = P*%(x, -) for all xesupp(y). &

The estimation procedure that is used subsequently is based on the fol-
lowing lemma: ”

Lemma 6. If (A1) and (A2) or (A1) and (A3) are satisfied, then for each
contimious ucE — R and £> 0 there is a 6 > 0 such that

(39) if K'(a, 0)—K*(ex, &'} < & for some a, o' € A, then |i5—A%| < &.

Proof Assume that there is an & > 0 such that for no 8 > 0 the relation
(39} is satisfied, so there are two sequences (x,, neN) and («,, neN) that
converge to o and o, respectively, such that
lim (K*(oty, 06) — K* (g, o)) = 0

B o

17 -~ PAMS 21.2
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and |2, — 2| = ¢ for all n. By the continuity of K" from Lemma 5 we obtain
K*(o, a)— K“(a:, o) = 0 so that P*(x, *) = P**(x, ) for xesupp (i), and con-
sequently A% = A%. By Corollary 3 there is a contradiction. =

Now an adaptive procedure with estimation is described. Given ¢ > 0 and
an initial state xeE, the following steps are used:

1. Determine the finite family %.(¢/4) = {u4, ..., 14} of continuous (g/4)-
-optimal control functions by Theorem 2.

2. Determine a 6 > 0 such that for ue%,.(¢/4) and o, ¥’ A

(40) if K*(a, o)—K*(a, o) < 8, then |A"—2%| < &/8.

3. Determine a finite family A; = {0, ..., %} = 4 and a finite cover 4,
i=1,...,k, of A such that w;e4; for ie{l,...,k'} and for e A there is
aje{l,..., k'} with aeA; and for each ue%,(ef4)

(41) K" (o, o)— K*(, o)) < /2

and

(42) sup |[K* («;, @)— K" (o, &) < 6/16
acAd

4. For ued (g/4) define the estimator ¢* as

n1
G = “{%‘EAJ: H P(Xh Xivr, u(Xy), ij)
=0
n—1

= max [] p(X; Xiq, u(X)), 2,)}.

peflonen, k} i=0
If E is compact, then find a positive integer N such that for ue (¢/4)
& 5
43) sup s P“"(lﬂ" — Ayl = )<
vk sk 7)) 20l
If E is only locally compact, choose a compact set W < E such that
44 infinf mf PR{X,eWl =21 .
(44) x'ell aed usd(8/4) * { ! } 4 icll k
Then choose an NeN such that for ue.(¢/4)
KB
45 sup sup P2 |4y — A

agd xeW

5. Use each of the control functmns ue%’c.(x-,M} for N successive units of
time. For p=1, ..., k define

Ng-1
g, ={aedys [ p(Xiy Xiws, u,(X), )
i=Ng— 1) No-1

= max H (Xu Xis1, up(Xy), ﬁ)},
Eedy je =Nig—1)
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where ties are settled by choosing «e A4, with the smallest index. Choose
ge{l, 2, ..., k} such that

A= min A
T e 2k T
6. At time T = kN choose the control function u, and for i > kN use the
control #; = u,(X;).

It is shown that this adaptive procedure is feasible.

ProrosiTiON 3. If (A1) and (A2) or (A1) and (A3) together with (A4) are
satisfied, then steps 1-6 in the above adaptive estimation and the control proce-
dure are feasible.

Proof. Step 1 follows from Theorem 2. Step 2 can be performed by
Lemma 6. Step 3 is feasible by Lemma 5 and the compactness of A. Step 4 is
feasible from the proof of Theorem 10 of [7] because, as in the proof of
Proposition 2, it follows that if (A1) and (A2) or (A1), (A3) and (A4) are satisfied,
then (B4) of [ 7] is also satisfied, so a large deviations upper bound for empirical
distributions of pairs of consecutive states (Theorems 5 and 6 of [7]) can be
applied. Thus, there is a y>0 and an NeN such that for n> N,
i,je{l,2,..., K}, and ue.(¢/4)

n-1 5
Sup sup Pa?( - Z lagp(Xma Xm+l: u(’Xm)s “j)“K"(% aj) 2 ‘) = e .
sed; xeW M m=0 8

Using the methods of proof of Theorem 10 in [7] it follows that for ue #,(g/4)

sup sup P2 (K*(at, o) — K" (at, i) > 6) < K'e™™.

ped; xeW
Using this inequality and (40) we infer that, for N sufficiently large, (43) and (45)
are satisfied. The existence of a compact set W in (44) follows directly from (A2)
or (Ad). m

The almost optimality of the adaptive procedure with steps 1-6 is given
now.

THEOREM 6. If (Al) and (A2) or (A1) and (A3) together with (A4) are satis-
fied, then the adaptive procedure with estimation given by steps 1-6 is e-optimal,
that is, for T = kN the inequality (2) is satisfied.

Proof. Let B, Q be given by

B, = {I4,5— 4| < ¢/8}.
Using the methods of proof of Theorem 5 and (43){45) we obtain
&
4y llell

&
Pin{ﬂ -B!c);" 1—-
p=1
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If weﬂ , By, then

A < A ,te8= inf AZ+e8< inf }f‘g + /4 < Ay +8/2.

rell, ok} pe{l,k

Thus

n-F o0

. i o L
hmsupEf{;logE“ [exp (Y ye(Xu 89) | Xy, ..o, XT]:]
! i=0

k
< EY [, 5, A1+ el P““(U AR
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