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pirical distributions of Rnite squencc?s of successive states of Mzrrkov 
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fmm each of the adaptive p r a a d u ~ e q  provide:: an almost optimal 
adaptive controI. 
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Let c: E x Ci -+ R be a continuous bounded function. Let At, be the in- 
fimum of the risk sensitive irzfiaite horizon cost Functional 

* m - f  
3. 

J i  ((on, n E N))  = lirn sup - lug EE [exp ( yc (Xi, ui))3 
11-+cc ?I i= 0 

over the family of s {XI, . . . , X,)-adapted U-vdued controls, given value 
of the parameter as E A in the zrtansition probability of the process (X,, n E N )  
and a positive risk factor ~ f .  The term E: in (1) is used to denote condi- 
tional expectation given tbe initial state X ,  = x and the value of the param- 
eter a. Under the assumptions that are imposed, it follows that the optimal 
cost AE does not depend on the initial state x. Since the transition proba- 
bility rneaures of the Markov process depnd on the unknown parame- 
eer a EA, an adaptive prsmdure is required Lo constr'tlct a nearly optimal 
contral. 

In the gaper the following problem is solved: 

For a giwen e > Ofind a nonrandom time Tand an adaptive eontral (v,, n E N) 
such that 

1 n-  f 

(2) lim sup E:' - log Iiff0 [exp ( C yc [Xis nil) I X , , . . . , AFT] 
R e  a ?2 i = O  

whew R& is the infimum off(l) and ~ E A  is unknown. TI-zus an adaptive strategy B 
sowht that starting fieom a r~anrutzdarn time T almost minimizes the expected 
value of the risk sensitive cost conditional on a(X1, . . ., XT). 

Two approzhes te adaptive control are ttseled: the Erst is based on sbser- 
vation of the cost and the second is bmed on diacretizcd maximum likelihood 
estimates that are motivated by [GI and €71. 

In Section & continuity of the solu~on of the f3ami4ton-F~cobiiBe11ma1~ 
equation [29 with respect to the (unknown) parameier for the risk sensitisre 
cailtrol problem is verified. These cantilluity results are similar to tbasc of 11 3 
and [73 Ear average cast per unit time eolltrol problems, In Section 3, same 
large deviafans a t h a t e s  h r  finite sequences of successive states of the Mar- 
kov process are vefied, These estimates are used to mnstru~t an ad;tptiive, 
almost sp.eimal csnt~a1, hsd on observatian of the cost. la SectJan 4, aa 
adalpti- contrsi is canstmcted from a Family of disc~gzed maximum likeli- 
Exctod estimates [el. Similar adaptive controls sre constructed in [TI far average 
cost per unit time control problems, The main cantribueisn of this paper is ;  the 
cor~strractio~~ of an h o s t  optimal adaptive control for risk sensitive east func- 
tlunds. la seems that this i s  the Pist work on ndapxivc ~antriclf far rbk sensitive: 
cost funefijunals. 



2, RlSK SENSITIVE CONTROL PROBLEMS 
BZPE-WDmG ON A PARAMETER 

Tbe translition measures for the contrajlled Markov process are assumed to 
have densities with r e ~ p ~ t  to a fixed probability measure, that is, for XEE,  
ash ,  ~ E U ,  B E & ,  

where g is a fixed probability measure on E,  The following assumptions are 
made concerning the density p: 

(Al)  The density p: E x E x A x U -+ R+ is  cantinusus and bowded and, 
for each x ,  YEE,  ~ E A ,  and VEU, p(x,  Y, 0) 0. 

(A2) sup sup sup sup p(xYY9.7 0)  : = K  < 
ESA ~*x*'t:e E I ~ U ~ U  P ( X ' ~  Y)  a* 0') 

(A3) 36 < 1 such that Vx, x' E E,  Vix c A, Vu, vi E U, V B  E &, 

and Sexp {y l[dflrp) < where Ilcll, = sup,,, c. (x, ;I?l -inf,*.,, c Ex', v'). 

Remark. The assumptiom CAI) and [A21 are satisfied when E: is compact 
and p: E x E x A x ZT 4 R ,  is continuous. If E = R* sad 

where f i  Rd x A x U -+ Rd itre g: BCd a 9 ;PRd) am continuous and b~uaiied~ 
g-I: R" Z('(JE"~) and (E",, H E N )  is a sequenm of Ed-mlud independmt 
identically distributed standard Gaussian random variables, then ( A l )  nsld the 
first part of (A,?) art: satisfied and, consequently, Far 7 suffisier~tly small nlsa 
GexpCy llcllsp) 1. 

Let g:  E -+ R he a Blorel mtasurahle function and defislc: T" as 

Let CL(E)  be the suhspnce d the space C (h9 of bounded, continuow 
functions an E whose spa11 norm {I*[I,, is botmded by L, that ii.s ~ E C , ( E )  if 

Ilf Ifsp .= sun f (4 - inf .fW) G L. 
XFR yc K 

The foElowing rest& gives an important property of 2"" acting on CL(E), 
T ~ O R E M  1. {ff'(Al) and (A21 or CAI) und (A31 are sati$ed, for any 6, > 0 

the operatrtr T"; C,(Z) 4 C(E1 ggl'uen by (4) is  u spare nor811 conrracrien, There rs 
a unique pair I&, t w , ) ~  R ,  x CL(E) suck that, fur each x if, E and a $xed ZEE, 



where,., trrzdclr (Al l  and {A2I3 L =. logK+llct/, with giusz in (A2), MthiSe ulzder 
(AX) and (AJ), 

Proof. Note first that by (a) these is a 6 < 1 such that 

for all o t ~  A, x, x k E ,  v ,  U ' E  U and BE&, FalloUring the praof of Proposi- 
tion 2 in [2] it follows that for g,  , g, E C ( E )  

where 

T o  complete the proof of the {span norm) contraction property it suffices to 
show that 

Following the proof af Propsition 2 in I.21 it can be shown that if (8) 3s 
not satisfied, then (6) is ispot satisfied, To complete the proof use Theorem 1 of 
6.21 in the case of (A11 and (A2) and Pmposltiun 2 and Theorem 1 of [_7] in the 
case of (AT) and (b3). as 

CORULLMY 1. 4f (All and (A2) or (Al) and (83 )  art. satisfied, zhen 

Proof. By Theorem 1 of E21, under (Al) and (A21 the operator T g  trans- 
forms CL (E)  with L given in Theorem I into itself Under (Al)  and (AJ), by 
Proposition 2 of 633 the iterations of TEO belong to C,(E) with L as In Tbw- 
rem I. Usirzg a contraction principjafe agpraxima~an with contraction eonstant 
p(L) we obtain 

For easb fn E N from ]](Tan~(Q)--(T~mfl)~~,,  -+ O as n 4 it fallows that 



Therefare, there i s  a sequelzce: of real numbers (tir2,,, ~ E J I J E  such that 

Sir~cle w , ~  (2) = wa (2)  - 0, it fbllows that d, -+ Q as rz --, a, rr 
CCJWQLLARY 2, [f (142) and (A21 or (GI) and ( 8 3 )  are satisfied, the,% 

PraoT. Note that 

It,,l = inf [yc Ix, U) + log f exp (w,, (y)) Pan' (x, dy)] - wE,, (x). 
ueC' L 

It follows from Corollary 1 and (Al)  that &,% -+ 2, as 11 -+ a. 

Let u: E 4 U be Borel measurable and far each E E  A define a: as 

where: q -- $4 EXt). 
The next lemma follows from Proposition 2 of C2J (under the assumptions 

(AI) and (A31 using the arguments of the proof of Theorem 1 we obtain easily 
an analog of Proposition 2 of [2]) a d  the proof af Corollary 2 of [2]. 

LEMMA 1. [f (A1) and (A2) or (Al) w ~ d  (k3) are satisfie4 th~njofbr  EN 
a-l 

14>frerc L is  yi;c%en in Tlzeore~n 1 sand u is fERrei' measurable, 
The following resukt grova the existence of a finite f a ~ l y  of almost op- 

timal! eantroIs. 

P~c~rosl~ros\r f * U' (GI] a ~ d  (A21 nr {All and (A31 are sufifled, then for. 
E > O there is a JitlJlte falvaidy Yd ( E )  = [U . . . ulC] (7f ~-0pCin163i c ~ # & r o h ~  tlaar is, 
ern,: E -t U is Bsrsl i~ttrcastrrabke fbr I Y ~  = I .  2, . . ., A: sndjbr each BE A tls~re is an 
t n ~ { 1 ,  ..., fc) sgch thaa 

J:Nu,~(X;~), E E N ) )  G A,+&. 

P r o of. By PI-opasitions 1 of [2] mnnd [3] and Theorems I of [Z] and [3"j fax: 
each cx F= A there is an optimal ilcon~ml Ld EM tt&: such that L / P z ~  < e/4* By 
Lemma X for u: E =+ Irl  BOY^^ rne~~~urable IX, 6' E A  it ~OUOWS that for 12 3 ~2~ 

E:" [exp (xi; rc (Xi. a (xi,))] 
IA;l-/i;f a --+- log > - ----  :I s . ~ ~ ~ ~ ~ ; : : ~ ~ i x . u r a . ~ ~ l  
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If F,,(M',  E ,  X, u) --. 0 as ix" a, then 

is continuous fox aU Borel measurable u: E --a U .  Thus the family 
( X ' E A :  I/13--il,$E c c), for E E A  and a.5, Barel measurable, is an open coveting 
of the coinpact set A. Consequently, 

where A is a finite set, so fbr % ( E )  =: ( u ~ ,  rx E A) the assertion of Progosifiorl B i s  
satisfied. 

It only remains; lo show that F,, (a', a, x, rr) -+ O as a" 3. Initially, it i s  
shown that 

rr- l 

I 1 I lim EP [ a p  ( C r j ~  (Xi, 81 j ~ l ) ) )  fpm IX,,,] 
m-+ rm i= 0 

where a,, -+ rx as m -, m and [cp,,l, r n ~ P 6 )  is a Fimjly of uniformly bounded, 
Borel meausable fun~tions that eonverge mifoifo~lnly on compact: subsets of 
E to a fknction yr. Given G 0, for ra r= 1 choose a coanp;act set K such tlzat 
q ( K )  3 1 - E  a11c1 

By (hl), rhe sight-hand side af(12) can be mndc arbitrarily small, Furthermore, 
it is clear that by (12) 

uniformly in y from cumpaet srlbsets of E, Assuming lay induction that (31 8 )  i s  
true for r13 it is verified for nl-t  1, that is, 



This vcrifies the iazduction hypothesis. Letting p,, - y3 = 1 we have 

whence am obtain 

lim &(a,, a, x, er) = 0. sss 
tn -+ WJ 

CQROLI~ARY 3. / f(A I ) und (A2) or (A 1 ) and (A 3) me snri,~fied for. each Barel 
n~~asurfihiefi~nctirrn ta:  E -t W ,  L~E~~LZP~, the ntappifzg h"l" A A R+ is cantinztnzts, where 
$1: is given by (9). 

This corollary falIaws immediately from the arguments used in the proof 
af Prnpasitiarr 1. 

The main result sf this section i s  the following result on the existence of 
a finite family of contilluous almost optimal centrals. 

TI~EO~EI 2, Jf [All a d  (A21 or (A 1) a ~ d  (A 3) w e  sarisBed, tkte~s for each 
E > 0 there is a,fir.ritejiamily %,(G) = (u~, . . .:, uk) of '~-~-~pt jn~al  C U ~ ~ I Z E E O U S  con~r'ol 
,fu~ctioras, tlzal is, far eacla cc E A there is at1 ~t E { 1, . . ., k )  SUC~? cIacke 

and zrj: E -+ k.' * f c~  j E ( t , . . . , k )  is continuous. 

Proof. Since E is IocaIly compac?, there is an increasing scquenee 
(K, , ,  H E N )  OF compact sets such that Ur=, K,, = E ,  It can bc assumed that 
q (8Kn) = O for aI1 M: E f\l* C011sider a sequence nf partitions ((E; . . . . , E:,), 11 E iV) 
af E wit11 re~>rescratativc elements ({e;, . . ., e$J, nE N )  such that ei E E i ,  
E - Ud" En 1 3  Ey n E; = O if i $ j, 11 (8E:) - 0, the diameter of E; is llor grcakr 
lI~an I/n for IE {I ,  . .., d,- I j, = E\#,, (Gf < . .., E$llf,:) is a subp:zrtitiun 
of {E'j ,  . . . E:,,)., and (el;, . . . , ezS) c {eVi . . I E::,",) for each n EN, 

Let I$"(&, ey) -- Pa" Ey). Cailsider the cotltrolled Mcgarkov process with 
the state space (el, . . ., eZF,,) and the tsmsition grohahELities py(@, e;) for 
i , j ~ { J ,  . .., d,,). 'The mapping 

is ca~rt;iuuous and under (A23 we obtain 

st1y sup sup sup G K ,  
8 ~~6.4 t,jc[l .... ,dnJ- f ? s ~ r P U  P?' I< 5 &f3 
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while under QA3) we have 

with tbc sane coastants X and 6 as in fA2) and (A3). 
Proposition 1 applied to the Markat( process with slate space (@, ,. . ., eZm) 

imlalies that [here is a finite family (I?;, . . ., l;ZiR) OF (&/3)-opt-imitl confroi func- 
tions. Now let I ~ ; [ x )  == ibT(e!) and P ~ ( x ,  ' )  r= Pa"(e!:, -) E B ~  XEEF, i ~ ( 1 ,  ..., d,)  
md n E N. It ire dear that for esrch fixed nr E M the famiry of piecewise constant 
fulzctioos (a?, . . ., u;:~) is (c/3)-optimal fbr the Markov process (Xz, n E gJ) with 
"the transition masum er ( x ,  w ) .  Far a Borel measurable function w :  E -, U kt 

be given by 

1 11 - 1 
,I:,, = lirn sup - log B: [exp { C pc (Xf u (xT))], 

n-bm PI i = O  

From Lemn~a 1 it ifoillaws that for PIEN 

Therefore, 

(1 7 )  sop sup lit,, - Azl 
m.4 w 

wherc the Supremum over u i s  over the family af Bore1 measurable funceioars 
la:E-.FJ: 

S ~ G I C  

where the convergenm is uniform in x from ~ o m p a ~ t  sets and Il.[j,,:de~~ntes the 
variation narm. Choosing a suFficiently large ita (17) and trsiag It  R), for m $ 

we rsbtsain 

Thus the fanlily of piema~ise constant ftrnstiuns (td;l, . . ., urmQI is [28/3)-optimal 
for 1516 Markav prswss (X,, n E N )  with the tranr;itir>a measure dh""(x, ). 

It only remains to show that each TAE {a?, . . . , er;f.,) can be approxirnatd 
by n sequence  EN) of continuous control functio~~s; such that 

lirn sup =- ,4:1 - 0. 
@ A  
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Given a u E {H?, . . ., ~ f Z l n , ) ,  13haose x sequence (ui, l E N) of caocinuous U-valued 
functions on 6 such that 

Thus, 

and 

lim q (2: sup IJP"u"f") {z, .) - pErrcz) 
1-a  m A 

By Lemma 1 it fallows that for  EN 

So choosing n and 1 sufficie~tly large it fallows by (20) that 

SUP [A:" 1-3 4 3 .  
am 

Thus there is a finite family of coutinuous e-optimal ~ o a t s d  fu~etiuns. B 

To e ~ d  this section a continuity ~s.sult for the invariant measures of the 
Markov process with respect ta garmeters is given, 

LEMMA 2. Jj' (Alf  and (A2) or. (Al)  ayld (A3) are satisfied and 14: E -) U is 
continuows, rhert rEte figlppi~ig 

is cnntivzuous in the variation nam, wher.~ nl;: is the unique f~at~arianl ntsnsu~ejbr 
E l @  transition opsrrcalor Pyx, -1. 

Proof. By (6) and (A3) using I,emmn 3.3 of it31 we see that for estch Bore1 
measurablt: w :  &-+ EP there is a uniyrle invariant measure n: and for XEE 

11/~3"(x.,.)-x~llV,,G26"" for ~ E A .  

Sin, d < 1 does not depend on pt and a, the family of invarjant measurcs 
(x:, O L G A )  IS tight. 

Let naw a: E -+ U be caatinuaus. If a,g 4 ct as rz --i rm, t11m there is 2 sub- 
sequence, denoted as Ihe whole sequence far notadsaai amplicity, such that 



n:# * p, where p i s  a probability measure on E. f f  f :  E 4 R is eontk~uoas and 
butlrrded, then, raking into account that xl,, (PRn'"S) - R:,, (,f)$ we have 

Since 

and, for E > 0, xZn(K" ) ~/21lf11 for all  EN for a suitable compact set :tR, ilt 
follaws that /t[PB" f )  = pCf) for all bounded con~nuozls fu~zctions J Thus 11s 

an invariant Ineasure and, by u~queness,  p = rrz and the mapping 

is cantifi~lous in the weak* topology. 
For B E  & and a seqrrenm (a,,, rz E N ]  ~ucI"ILkar -1. icx as n -* cr3. it follows 

that 

Since 

and the right-hand side tends 10 zars as ra -+ ea~. by the weakY cnnvergenca: of 
(E: ,~ ,  P ~ E M )  20 4, c~nt imi ty  of u, it f011uws that ($pB, laeN) converges tn xt in 
the variation I ~ O M ~ .  a 

3, ADAPTIVE CON'1FRCJL WI'I'M. OkSSERVATJerM OF Tm 

Ini~ally same results OII the Xuge deviations n l  cmpirieal distributinr-as of 
finite sequences of €be4 states of tbe Markov process are giucn. These results are 
used for fht: adaptive controls. 

111 this section (X,,, S EM) is a rvlarkoy PPOCESS with the transition prab;ta- 
bility measure P" (x, s) dependkg on a parameter LYE A,  Tfie fdlowhg assump- 
tion is ilscd: 
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(Bl) For each j ' ~  CEE), the mapping 

is 60ajlti17~021~. 

Fix N E N and fur BE#(E") and n E N define the empirical distribution 
SF as 

Some asymptotic properties of the measure 

P2) Q K ; ~ # ~  ( F )  = I":~ J S ~  E r)  
for T E @ (*P (EN)) are given. 

Let 2 = fxl, . . ., xNJ and 7 = [y, ,  . . ,, y,) be two vectors in EM, k t  @ be 
given as 

@ =  (J .EC(E*):  there is n r O  such that f ( X ) g a  for all ~ E E ~ ]  

and for I E P { E ~ )  let I" be given as 

(23) I"M=sup 1 lag 
f ( u 1 ,  Y N )  

1 { 4 ~ 1 ~  dyd.  
~ ~ x C f ( ~ ~ * . - . ~ x ~ > l  

6"' is related to logQ in the following result, 

T ~ O R E M  3, If (IBI) is sati$ed, then f i r  conzpacl sets C c 9 ( E X )  and 
Al c A and a posifim drrtecger N 

t 24  
1 

Iim sup - sup sup log &:gl" (C) & - inf iaf  I' (CJ, 
l1 ' 2  x& 46Ap kc 

Proof.  For d > O  let 

FolIowinllg the proof of Theorern 1 in [59 i t  can be shown that for f ~ 4 ,  

and therefore far r E (P  @")I 

The rehainin8 para of thc proof follows as In Theorems 1 and 4 in [73, a 
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To obtain a stronger version of Theorem 5 for closed sets C an analogue 
of the assumption (B4) of [7 ]  is used. 

(B2) There i s  a c ~ ~ l t i n u a u s  functioxl $: A x EM 4 R s~lzeb that Jl (tx, 2) $ 1 
for a c  A, ~ E P ,  and the mapping 

is bour~ded on dornpact subsets of E and lor any m =. O the set K,, given by 

An analysis of the proofs of Lemmas 4 and 5 and Theorem 5 of C7] shows 
Ibat the following andugue of Theorem 5 of [SJ is satisfied, 

THEOREM 4. I '  (@I) mad 1332) art. satisfied "for elosd sets C c @(EM) and 
A, c A, t l ~ g n  for m y  ec7nzpact ~ ~ b ~ e i  W c E 

(25) lirn sup 1%- "up sup log Qf;"-" (47) =g - inf infl* (C). 
*I-' at ~ Z R I  mW UEAI  lee 

Followirrg the proof of Lemma 4 2  in [5]  an analogue of Lemma, 6 of i 8  

o btaiaed, 

LEMMA 3, Iff (B1) a ~ d  (B2) are satisJ%ed, rhea .for rn > O the set 

C,, = (1 E 9 (E'): inf F D ! ( 5 )  < m) 
~ E A  

The f~lhowii~g proprt-y of I' is useful. 

I,~n?wa 4, For a E A and 1 E B (Ew), d"{o = 0 ij' and only lf for each 
B E ~ C E ~ )  

\$?here n, ie an invariant mgasuru .for the Mnrkou pmcess (Xi,, i f  Nf with t k  
E rar~~sicion operator (PIN (x, -1- 

Pro  of. Fol4awirlg the proof of kernma 2.5 im [$.I it s t f i e s  to show that 
PC!). = Q i s  cc/uivafenf ta 

J f [ j ~ ~ ~  ...?I j )N) l (dyJ,  s . t o d ~ N ] ~ J e L f i ( X l ,  ..., XNflE(Rv-l, d ~ )  
EL7" $5 

for f ~ @ .  I 
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An adaptive control promdure is described for a given e r O and initial 

litare XEE S L I C ~  that in a nonrandom time T the iaequdity (2) is satisfied. 
The procedure consists of the following five steps: 
1. Determine the finite family %, (eJ4) F {(cr, , . . . , a,) sf  continuous @/4)- 

-optimal coratsol functions as dveua En Theorem 2. 
2. Detemix~e a padtive integer N such that far x' E E,  a E A, and u E ~ & ' ~ ( E / ~ J ,  

3. Determine a positive integer pa s u ~ h  that for X' E E, cri E A, and 14 E %, (44) 

where E: is m invirrlmt, measure of the Ma&ov prmess with transition operator 
P"(r, -1. %f E is only IoeatJIy compaeh choose a cornpact set W c E su~h that 

and then find a positive integer n s w ~ k  that for X'E W5 ~ E A ,  zt E %,(~/4) 

1 n-I (j+ 1)n 

(29) ,[i - exp ( G ye (Xr? CXi))) " j=o i = j p J * 1  
N 

- 5  E"," [exp ( 2 yc (Xi, u (x,))fln:ldy) 
E i =  l 

4, For the first fthr units OE time let the control funletion be u, ~%,(s/rE.), 
ther.11 use w2 E @G(~/4) Ear the next ptN milts nf time, and ~untinue by induction 
until all of the controls in I,(E/~) are used for tlPE units of t h e .  Let 

Let y bc such that 

5. At time T = knN choose  he control fumetiow u,, and for i 3 T use the 
~0alr01 6, == za, (XI). 

It is sbawn that the proce8ul.e described by steps 1-5 is feasible and that 
the control in step 5 is ahosr  optimall, In  the Gasa when the &ate space E is 
nsncompacl and (Al), (A31 are satisfied, we shall nccd the following additional 
assumption: 
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(A4) For any G > O there is a compact set W c E EUC~? that 

P1;ro~osn.r~~ 2. l f (Al)  aiad (,42) or (Al) xsad (A3) together with (A4) ure 
so.rsl:jied, then steps 1-5 iut the nbnw proeedttre are jkasible. 

Proof. The feasibility of step I follows from Theorem 2. By Lenlmzl I 
a positive integer N c a ~  be chosen such that L/M < c/8 and that step 2 is 
frasible. By (A2) and (63) the inequafity (6) is satisfied, aad consequel~tily fe.g., 
[8]) for each :hu E a, @/4f there is a unique invariant measure .Kt: far the transition 
operator PKU(')(x, .). Since by (Al) an embedded Mnrkov chain (Xi,, i E N) 
with trandtian operator (P"")" is apel-iodic, xj': is also the ulliqne invariant 
meaure  for (Xi,, i E N).  

For IEP(E") let 

By /AL) and the contiauity of the control hnctiou la, the mapping 

is lower sernicontinuous. Moreover, by Lemma 4 the Evrnctional S,"(.) attains its 
infimurn, that is 0, uniq~refy at tbe measure f that is given by 

Furthermore, by tcrrirna 2 the mallping 

i s  cc~ntinuous in tl~c variation norm. TI~erefore, for each ~7 E E(EN)  the magping 

QqI): A 4 R 

is contiuzmaus. 
The set aB measures 

where 



is closed in the: weak* topology oon 9(EM)I.  If E is compact, then $(EN)  and 
r, are compact in the weak* topology and 

T11e inequahly (33) is satisfied because otherwig by the ~ompactsless of A and 
F ,  and the lower semjeontinuity s f  the map 131) we have J:(*) = O for some 
E E  A and TE F,-, By Lemma 3 this implies that T= f~r,, which csntradicts the 
definition of 6",-. Proceeding now as in the proof of Theorem 3 uf we see 
thar for a y,~(0, a3 there is a positive E ,  suck that if n 2 n,, then 

(39.1 sup sup P*, [St E Em] G exp( - ny,J, 
asst X'EE 

where 3: i s  given by (21). Since the farnilgr %, (q'4) i s  finite, there is a positive 
integer ~ 1 .  S U C ~  that (29) is satisfied. This completes the proof for E earnpact. 

If E i s  not compact but only locally compact, then step 3 of the procedure 
requires additional discussion. Iuitialty it is shows that if [Al] and (A21 me 
satisfied and if E is locally wmpaet for each 11~%,[&/4), the =sumption (B2) 
is satisfied. Let (K&,  EM) be a sequence of compact sets such that K ,  is 
contained in the interior of K , ,  , for each $ Z E N  and U:', K, = E and for 
a fixed f E E 

where p('>(z, yr ce* v) = p (2, j), a, v )  and 

Now esnstnaet a santinuaus function rp: E -t R such tkat for y E#,\'~K,-, 

It follows easily thar 

so far II, given by (35) the msumption (B23 i s  satisfied. By a sinrilzlr cot~strtrction 
one can show that ur~dcr & I )  and (Ad) the assaption (BZ) is also satisfied. 

The inequality (29) can be obtained as In the comn13~r.ut. state spncx cecase 
by using for a G ~ J ,  (e/4); Theorem 4 and following the proof of TPhcorem 1 
in 1231. 



Naw it i s  shown that the adaptive p r o ~ d u r e  of steps 1-5 gives an ahos t  
optima1 adaptive control. 

T I ~ ~ R E M  5. l f (A1) clnd (A21 aF (A1) and (A31 together. with (A4) W E  satis- 
fwd, then. the adaptive procedure of steps 1-5 d~$aes an E-optimal control irl the 
sense that fir T -- knN the imquafity (2) is sati@ed, 

Proof For p ~ { l ,  ..., k )  let B, c Sa be given by 

Xt is clear that if E i s  compact, then 

EF E is nor campact but ady tacally camp&, then for p 3 1 

so (36) is satisfie$. 
For q defined by (30) and o t B, the following hequality is satirfied 

for p = ( I ,  ..., k ) :  

From (26) it follows tfiat 
k 

~ ~ ~ s < E / $ - I - ~ / ~ + R ~ = $ E + R , ~  ~ O F O E ~ P E ( J ~ . . . ~ ~ ) .  and c u ~  nB,, 
p = i  

n u s  



Let u :  E -t U be conlintlous md a, at' E A and let K: U x A x A --., R be 
@ven by 

137) K " ( ~ , a ' ) : = ~ ~ X ~ s ~ ( x , v , a ' , u ( x ) ) ~ ( x , ~ , ~ , ~ j x ) ) r s l ~ d ~ ) ~ C : ( d . J I ; ) .  
E B  

The fvncition X'(-, * ); has the fullowing continuity property: 

5, I f  (Al) and ( M )  or (GI) and (A3) are satisfied and er: E -+ U is  
contfnaous, tk&?n 

R": A x A - * R  

is continuow. hrth-laermore, tf KB (a ) a) - K" (aI 43 f= O1 f hen for x E supp (rj), 

P W ( x ,  -) = P"'"(x, *I. 
Pro  0 f. The wntiauity of K'"., e)  fallows from (A1X (A21 and L e m a  2. 

To verify the aeseecrnd claim in the lemma, we infer froin Jensee's inequality that 

If K"(ot, cij--Ke(a(Ol, a3 = 0, then 

for sr; almost daI1 x, and thus for q almost all x and, by the can~nulty of the 
transition densities, for all x x ssupp [q), Since log (-1 is a strictly convex hrxction, 
(38) is satisfied only if 

4 

Therefore, P"" (x, -) = PC" (x, a )  lofor all x E supp (q), s 

The e s t h a ~ s n  pracedwe that h used subscqucntly is based on the f'l- 
lowing l a m a :  

LEMMA 6, Q" (Al) and (A2) or (Al) an8 (A31 are srati&ed, then f i r  wch 
covstinunllss ea E E -+ R m d  E z=- O there is a S > O such Ithat- 

(39) @K"(a,a)-K"fot,oc")<Sfis~some cx,akA, then f d~ - l$ ( - ee .  

Preaf. A~sume that them is an c r O such that for no S > B r h ~  r~latim 
(39) is satisfied, su there am two sequences (ct,, R E N )  and fm;, n E  iV) that 
converge to  a and a', respective1y, such that 



and IA:m--12$I 2 n far all n. By the continuity s f  K N  from Lemma 5 we obtain 
K" (a, E)- KN'(ol, a') = O su that PE"(x, .) - PbC" (xg For x E supp ( g ) ,  and con- 
sequer~tiy % = &. By Corollary 3 there is a contradiction. 

Now an adaptive procedure with estimation ia, describd. Giwn 8 > 0 and 
an initial state XEB,  the fsUawlng steps are used: 

1. D e t c r ~ n e  the finite family qlc(p:/4) = ( u ~ ,  . . .$ uk) of cant inkt~u~ [~[4]- 
-uptima! cazltrol functions by Tl3eorern 2. 

2. Deternine a S > O suck that far u e 42, (s/rt) and ar ,  a" A 

(40) if KU(a,  or)-PCU(a, or') g 6, then IZ-Ag*] G g/:Js, 

3, Determine a fnite family Af - ( E ~ ,  . . ., akPj c R al~d a finite cover A!, 
i = I . . . . , Ic" of A such that mi E A ~  for i E (1, . . ., k') md for E E  A there is 
a j f ( 1 ,  ..., k')  with atzAj  and far each U E @ , ( E / ~ )  

(42 1 S U ~ ~ K " " ~ ~  El-KU(0c, 1511 < &,/l6" 
EeA 

4. For u E (~/4) define the estimator oi" as 

$1 - 1 
- - f l ~ g t X i s X i + ~ q u ( X i > ~ ~ p ) ) .  

@(2#. . .& . i  f = Q  

Hf E is conhpacl, then fmd a positive integer N such that For u~%,(d4)  

IF @ is only locally compact, cl~oasl: a earnpet set W L K such that 
C 

WY inf inf inf {XI e W )  3 1 --- 
X - E ~ ~  IC~A L ~ ~ ~ ~ E / ~ )  4 ~ r ~ l l  k' 

Thela choose an IV E N  such that for U E @ ~ ( E . / ~ )  

5* Use each of the control functions tr ~ c l l ~ j 8 / . $ )  for N successive ~ l n i h a  of 
time. For p -- 1 ,  . . ., k define 

N,-1 

d J , - ( ~ ~ ~ ~ :  I [  ~(Xi3Xv+1,%(X53381) 
I-Rtq I] R q - l  

=lnax p{Xi~Xii-~r~p(XO~Iji)],  
KWAI ,"N(y- la 
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where ties are settled by choasitlg rxf.AJ with the smallest: index. Choose 
17~(1,2,  ..., k )  such that 

6, At time T - -  kW choose the controi function tr, and for i r kN use the 
control 0, - u, (Xi). 

It is shown that this adaptive procedure is feasiMe. 

PR~POSITIO~~~  3. I j  [Al) atzd (A2) or (A]) and (A3) togetkgr with (A41 are 
sari~:fied, tilze~r slaps 1-6 in &lag aboae adsptr'ue estinlrstion and the control proce- 
dure are feasible. 

Proof. Step I follows fmrn Theorem 2. Step 2 can be perfarmad by 
Lemma 6. Step 3 is feasible by Lemma S and the compactness of A. Step 4 is 
feasible from the proof of Theorenz 10 af ['3] because, as in the proof of 
Prapositiorr. 2, it follows that iT(A1) and (A2) or (Al), (A31 and (A41 are satisfied, 
then (834) of [TJ is also satisfied, so a large deviations upper bouad Em empirical 
distributions of pairs of consecutive states nheorems 5 and 6 of r73) can be 
applied. Thus, there is a y > O and an N e M  such that fafor n 3 N ,  
i, j ~ { l ,  2, ..., k'), an8 U E % , ( E / ~ )  

1""" 
P09~ (I f l l f l  Xta+ u [XI.), M ~ )  - KUL ( E ; ,  D ~ ' )  

ES.4; rcw 

Using the methods s f  proof of Theorern 10 in [7] it fcllliows that for u E +/, (cJ4) 

Using this i~xquali ty ar~d (40) we infer that, for N sanfi~iiently Isnrge, (43) and (45) 
are satisfied. ?'he existle~lce of a cornpact set Win (44) follows dire~tlg. from (A21 
ar (A4). B 

The atmust optimality af the adal3tjve proceduw with stepas 2-6 is @veil 
!low, 

T I ~ E ~ R E M  hi, If" (Al) and (A21 or (Al) njad (R3) together with (44) ckre saris- 
$ed, then the d q b i n ~  P P O S X ~ M ~ ~  with ~ ~ ~ I R E ~ Z Z S I B M  glum by steps 1-6 is 8-upfimnl, 
char is, ji2r T - JcN the inqzlulify (2) b sati~jied. 

Proof, Let B, c C2 be given by 

Using the methods of praaf of Theorem 4 and (433 (45) we obtain 
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