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Abstract. The distributions of deviations of point estimators for
parameters of interest are essential in the evaluation of the efficiency of
point estimators. The bootstrap method suggested by B. Efron is one
of the main methods directed at solving the problem of producing
distributions which mimic the unobserved distributions of deviations.

The main object of this article is to study the asymptotic validity
of the bootstrap in the context of heteroscedastic regression models,
using the central limit resampling theorem. In the case of one-parame-~
ter Linear regression, theoretical results are illustrated by an example
with simulated statistical data.

Key words and phrases: Bootstrap, heteroscedastic regression,

resampling, ordinary least squares estimates, central limit resaropling
theorem.

1. Introduction. The use of the bootstrap to estimate the sampling dis-
tribution of parameter estimates in homogeneous linear models was first pro-
posed by Efron [4] and further developed by Freedman [7], and Wu [14]. The
process involves approximating the distribution of unobserved errors with the
empirical distribution of the centered residuals. Other works for bootstrapping
homogeneous regression models are Navidi [12], Holm [11], Stone and
Brooks [13].

When the errors are not equally distributed, and for example have very
different variances, we cannot neglect this in the bootstrap resampling. Vector
resampling is the first idea in the domain and this possibility has been already
considered in Efron [5]. For the linear model, Wu [14] has suggested an
improved idea of resampling but it seems to require rather a lot of data for good
performance. The paper by Freedman and Peters [9] presents some empirical
results for the bootstrap in the context of an econometric equation by considering
constrained generalized least squares with an estimated covariance matrix.

We examine the accuracy of bootstrap estimates of the distribution of
linear combination of heteroscedastic regression parameter estimates. In this
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case, the appropriate basic statistics have been found and we shall prove that
the polynomial randomization gives an imitating distribution. Note also that
here we drop the restriction that copies of design of regression experimenis are
realized from factors combined via random resampling with centered errors as
in Freedman [7]. The original design of regression experiments can practically
be arbifrary in the suggested approach.

This article is organized as follows: Section 2 gives a brief review of the
heteroscedastic linear regression model. Section 3 gives a short review of the
bootstrap procedure and the central limit resampling theorem is used to prove
the accuracy of the bootstrap for heteroscedastic regression models, under the
viability of some assumptions. Section 4 applies the results to the simplest case
of one-parameter linear regression by proving the claimed assumptions and
presents a simulation experiment to assess the validity of the bootstrap by
comparing the homogeneous bootstrap with the heteroscedastic one. Some
final remarks will be also drawn.

2. The heteroscedastic regression model. The model studied is defined as
follows. Let 4 be a restricted set in R and x; = (X;y, ..., X;)" be factors which
define conditions of the i-th experiment, i =1, ..., n. The result of the experi-
ment is a value of a random real variable

(1) Vi =X Prot... +xpProte, i=1,...m,

where Bj0,j = 1, ..., 1, are unknown real numbers and @, ..., w, are values of
unobserved random errors W, ..., W,. We assume that W, ..., W, are inde-
pendent r.v.’s with zero expectations and unequal finite second order moments
o3, ..., o2. This statistical model is called a heteroscedastic linear regression.
In order to rewrite (1) using vectors and matrices we will use the following
notation:

=060 Xi)y Xp=0q), i=1...m j=1...m,
WE = Wiy oo, Wa)y Y2 = (V1 eees Y
Because X7 =[xy, ..., x,], (1) takes the following form:
) ¥n = XPo+W,,
where Bo = (B1os -.-» Bro);

max |lx|* < sup(lxf*: xe¥eR) =g} <0, [l ==x"x.
1=ign

¥

We also assume that
(3) max o7 € 6% < 0.
1€ign
Later we will use the following slightly stronger assumption on the moments of
errors:
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ASSUMPTION 1.

) max E|W2** < C2+8) <o, 0<d<l.

1<i<n

Statement (4) implies (3) for some ¢34 < co. If rang (X7 X) = ry < v, then it
is possible to consider generalizations of a least squares approach to statistical
inference, based on notions related to pseudoinverse (or Moor-Penrose) ma-
trices. Under the assumption that

(5) Bo = (X" X)" (X" X) Bo,
the By is said to be estimable. In this case, it is possible to consider
© P = (XTX)* X"y,

which is often called an ordinary least squares estimator (OLS-estimator).
If B, is estimable, then (5) implies that f, is unbiased without assumption that
all 6¥’s are equal.

We consider the case when a number of experiments increases, i.e. n — 0.
We introduce the following assumption:

ASSUMPTION 2.
(N tr(XTX)* -0 as n— .
Assumption 2 is equivalent to max; << (X7 X)i — 0 as n— 0.

LemMa 1. If Assumption 2 is valid, then f, given by (6) is an unbiased and
consistent estimator for estimable By.
Proof. From (2), (5) and (6) it follows that

@ B Bo=X"X) X"y, ~(X"X)" (XTX) o = é (XTX)" %W,

We assume that EW, =0, and so

Epgﬂ = Bﬂ'
We note that

and

EW, W, = (EW, W) = (of &) = Z 0?8;6], where 6] = (i1, ..., Sin)-

i=1
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The covariance matrix is the following:
& = E(Ba—Bo)(B,—Bo)" = (X" X)* XT(EW, W) X (X" X)*

= (XTX)* Z 2 HH(XTX)T <o (XTX)* Z 7 E(XTX)

= o} (XTX)’*‘ XTX)(XTX)*" =0} (XTX)".
The variances of components f,—f, are diagonal elements of C,, and their
sum is tr(C,). Furthermore, (9) implies
tr(C) < o2 tr(XTX)" -0 as n— 0.
Hence, all » components of the vector f, — f, converge to zero in probability. m

The rate of convergence of £, to fj, can be different for different com-
ponents, j = 1, ..., r. Therefore, it is reasonable to consider estimation of sepa-
rate components of B, if possible or their linear combinations

Cgﬁ =0 ﬁv1&+~*‘-+crﬂr05

where ¢ = (cq, ..., ¢,)T is a fixed vector. The vector ¢ is said to be a direction
vector if ||e]|* = ¢T ¢ = 1. We can introduce
T (XTX)" x,
(10) a,{c):= mw(—v-——{)——, i=1,..,n
(cT [XTX)+ c)l[l

The following two assumptions will be used in the sequel. The first deals
with variances of errors and the second with some coefficients based on the
direction vector. Both of the following assumptions are related to the used
sequence of experiments:

ASSUMPTION 3. There exists 0 < 62 < 6% < o0 such that for any n
(11 a2 (XTX)< ) ofxixl <L (XTX).
i=1
AssumPTION 4. For any n=1,2,... and i=1,...,n there exists
Ag(e) < oo, A{e) < o0 such that

tr (X" X)*
e < A0 e a1 <

The variance of ¢’ (f,— fo) is

(12)

(13) 53(0) = BT (B, o) (ol e = €T X)" (3. oF xxf) (X0

Assumption 3, (11), implies the inequality
(14) 2 (XTX) et <t (XT X)e.
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Hence it is reasonable to consider the following normed deviations:
CT [En“"ﬁﬁ)

15 Unle) = ——co 00

(15) a{€) (TXTX) )

From (8) and (10) it follows that

(16 U@ = 3. au@ W

THeOREM 1. If Assumptions 1, 3 and 4 are valid, then the distribution law of
normed deviations U, (c) can be imitated by the normal distribution of mean and
standard deviation o7 (c)/e” (XT X)* ¢ when the number of observations, n, in-
credses to oo, Le.

(17) L(U,(e)—N, (0, ?""(%%

Proof The variance of summands in (16) is

T) 30 as n—o0.
¢

5‘3 (C) = EU%, (L‘) = ‘;;?};(ermiw ¢

and

#(0) = EUZ(d) = ¥ &2(0).
i=1

From (9), (10), and (12)-(14) we obtain

e"Cpe

ok 4% (0), a2 <30 S TEX e

<o?.

=

TAGES

Assumptions 1 and 4 imply
EiUin(‘fa’)\/?:’l2+6 = p! +"”2EIU;~N(C)«IZ+E
= |\/nay, (P P EIWJR+ < A(0P T2 C(249).

Hence the moments ElUm(c)ﬁgz‘“‘ are bounded uniformly in », and the
desired result is obvious now. m

3. The bootstrap procedure. We consider the following general scheme of
data collecting. Let (2, #(2), Po(-)) be a basic probability space. Data col-
lecting can be understood as a sequence of experiments &, &5, ... The plan
(design) of the i-th experiment and its result can be represented as a point
x;€ %;, where Z; is the set of all possible values for x;, We consider x; as a value
of the Z-valued r.v. X;(-) which is a measurable mapping from Q into ;. The
probability that X;e B is given by Py, ;(B) = Py (X;(w)e B) under the assump-
tion that the true parameter 0, &. Throughout this paper we use the assump-
tion that random Xpvalued variables X,, i=1,2,..., are independent.

2 — PAMS 212
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For each fixed n we consider x, = (x,, ..., X,) as given original statistical
data. Let 8, = S,(xy, ..., X,) be a consistent point estimator of 0, ie., in some
sense, 8, — 0 as n— . If ® c R, we consider the distribution law of normed
deviations:

(18) Loy = £ (/n(0,—00)).

If a parameter of interest yo = 7(fy), where y: @ — X, Y= {y(0): 6e@} < R,
then we can consider

(19) Q’?iﬂmm =Y (\/’; ﬁ;n - VD)}:

where 7, = T, (x4, ..., X,) is 2 point estimator of yo. The estimator J, := p(8,)is
called a plug-in estimator. If we consider 8, a true parameter, then §, should be
meant as the true value for the parameter of interest.

How then can we find or at least to know more about the distributions
(18) or (19) when 6, is unknown?

It is natural to think that the order of experiments is not essential to
a statistical inference. One has to have the same inference when the experiments
&, ..., &€, have been fulfilled in another order, say, §;,, &4, ..., €;,. Then the
original data are (x;,, X;,, ..., X; ). We want to know more about the distribu-
tion of normed deviations of the point estimator §, = T, (x4, ..., x,) for the
parameter yo = 7(6,).

We will call the bootstrap the approach which is described by the following
sequence of actions:

(i) Find §, = T{x,) (a consistent estimator).

(ii) Take B random samples with replacement from the original data
x, = (X1, ..., X,) with the same size n:

(xl ] x‘n 3 ey ‘x:li)!
(xl > Xy 25 *3 *xn ) x;B = (x‘ x:&: sy x:}ﬁ);

we call x2 the baatstrap copy of the original data.
(iii) If yo = y(6o) is a parameter of interest and §, = T'(x,) is its consistent
estimator, then for each bootstrap copy of the original data find

(20) Pt =T, 72 = TE o 727 = T30,
(iv) Find the deviations of estimated values (20) from 7,, ie.
('Y =P fn """" n3 +ess ?n ?r;);
compute the bootstrap version for the conditional law of normed deviations

from §, given Xy, ..., X,

Q1)  Lipi=L(/nGi—9) | X1, - w~—-——~zr\/‘w —fe).

b*i
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Under some assumptions, the central limit bootstrap theorem states that
Z¥p will mimic £, for large values of n.

Now we are ready to apply the central limit resampling theorem (Hall and
Mammen [107). Let M,, ..., M, be random variables obtained via »n indepen-
dent polynomial experiments with n outcomes and probability n for each out-
come. From the above-mentioned theorem it follows that the distribution laws
of the sequence of r.v.’s given in (16), n =1, 2, ..., approach weakly the dis-
tribution laws of the sequence of r.v.s:

n T(XTX) " T{XTXYP =
@ Lirwr: )”2 W=D = 2 (T

There is no possibility of applying this nice fact directly because p, is not
known. But we can do that if we replace f, by its OLS-estimator f, given
by (6). This is what we are doing below. We define the following basic statistics:

23) Us(o) = 5': CXTX)E

175 (M=) (Y~ £ o).

Y (W( —1)(Y— T,
where ¥, = #7f, = £7 (X" X)* X" ¥, are components of the predictor vector
and Y;— ¥, are estimated errors, i=1,..., n. We note that we can find,
for each n, the distribution law L(Ui‘,(cﬂ ¥, = y., X) via simulation M,,
i=1,...,n

THEOREM 2. Let Assumptions 1-4 be valid. Then the distribution law of
normed deviations U, (¢) can be imitated by the conditional distribution law of
Us (c) given ¥, = y, and X, when the number of observations, n, increases to .

Proof If we add (22) to (23) and subtract one from the other, then we
have

n ET(,XT X){w £

(24) Un(e) = 3, (Mi—1)(Y;— £ Bo)

fml(cT(XTX)'{' )”2
[ o xTx
-3 (-t ﬁfﬁﬁ’ JiTa=stho.

where ¥;— &7 B, = W,, and hence the distribution of the first sum has the de-
sired property, as shown above. We have to prove that the second sum in (24)
converges to 0 in probability. The predicted response is ¥, = %7 f5,. Hence we
can write

(25) 0a(e) = Vi () H,(e),
where

o e Bu—B
V,T(C)mi;l (Mi—1) " (XTX)* %27, H,(c)= W—-.
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From (25) we have
Q2 (o) < IVa (@I | H, (o>
Relations (9) and (12) imply

_Elf—Boll? _ A tr(X"X)* _

iH ( ) T(XTX)+ = T(XTX)+

\U+A0(ﬂ}< .

Therefore, it is sufficient to prove that the first factor V7 (¢} in (25) tends to zero
in probability when n — oo. The randomness of this factor is due to the ran-
domness of (M, ..., M,). We note that EM; =1, E(M;—1)* =1—1/n and
EM;—1)(M;,—1)= ml/n! iy # I,. Consequentiy, we have EV,(¢) = 0, and

E[V, (0> = EVT(0) ¥, Z E(M;— 12T (XTX)* %, #7 £ 7 (XTX) ¢

+ T E(M,—DEM;,~1)e" (X" X)" £, £ %, X X) e
i1%# iz
=% c’*’(xm*finfifﬁfé"(ﬂm*c%ﬂ Y XX &P
i=1 i=1
2 % (T Tt ) 2‘42(‘:]"TT+
ﬂg.}. Z(ﬁ (X X) xi) €9+TZ£ (X X) [

i=1 {=1

< gi A (XTX)*t

because we can use ||c]|> =1 and the inequality ¢ (X" X)* e < tr (XTX)*.
Assumption 2 implies E ||V, (¢c)}] — 0 as n— co. Hence we obtain @,(c) =
VI(e)H,(c)—0 in probability, as n— 0. =

4. One-parameter linear regression. We consider the simplest case of the
one-parameter linear regression:

(26) i =g (t) Bo+wi

where w; = h{t;}2;, 2y, ..., 2, are values of iid, normally distributed r.v.’s
Zyy ey Zny FL(Z)= N;(0,1). The OLS-estimator is

b = Z; lg(ti)ﬁ(ti)
Z;a 1 g (t‘:)
the predicted responses are
j‘}i‘n = g (ti}Em
and the corresponding residuvals are

W)in = yiﬂ"yﬁin-
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In this case we have

X =(gty), ... gt X'wail g*(t) and (XTX) Zg )"

a=1

Hence, it will be easy to check the validity of the above assumptions. We
assume that

max(g@): te¥=[0,1])=g+ <00 and max(h(@): tel0, 1]) = hy < o0.

Assumption 1 follows directly from the normality of the distribution of (Z});,
(e.g. E(h(z) Zi) < 3h%). Assume also that the experiments are planned in such
a way that for some hy, > 0 and g, > 0 the number of the experiments n(go, ho),
with g (t)] = go > 0 and |h(t)] = ho > 0, increases proportionally with n, i.e. for
all sufficiently large n

n{go, ho) = qon for some gq,, O<gp<1.
In this case, Assumptions 24 are valid. For example, we have
Bl =lg@) <9+, (mg) ' <(XTX)* < (ngogd)™",
and for a4, given by (10) the foﬂowing inequality holds true:

| < 1 Q T
\/— lcl (g0 90)2

Hence Assumption 4 is fulfilled.

A SIMULATION EXPERIMENT. Let the statistical data (¢;, y;), presented in Fig. 1,
be chosen in such a way that y; is the response and ¢; is the parameter defining
the conditions of the i-th experiments. The number of observations is n = 25,
These data were simulated with g(t) =t, k() = 1—tand ;= ifn, i=1,...,n
16

1+ .

05+ ’ Lt

0 ' i ] 1

»

0.5

Kas

Fig. 1
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The parameter f,, which has to be estimated, is taken to be 1. The OLS-
-estimator for simulated fy’s based on the data is f§, = 0.949. Even if we do not
know h(z), it is easy to see that the regression data obviously look hetero-
scedastic. We want to know the distribution law ;?"(\/1; (Ba—Bo))-

Let us ignore the heteroscedasticity and try to use the bootstrap technics
for homogeneous regression (Freedman [7]). In the case of homogeneous re-
gression, all variances of errors are the same. We center the residuals and
consider them as errors:

. 1 . .
wh = ,Vr—J’fn"fn' Z We—Je), i=1,..,n

i=1
We take the j-th random sample with replacement of volume n from
(W3, ..., o). Let (WS, ..., w) be the sampled values. Then we find the j-th
bootstrap copy of responses

27 H=g)f+wi, i=1,...,n

and calculate the value ¢, which is an OLS-estimator based on the data
(¥, g(ta; .. W, g (2a), ie
P T (3
Y92
We repeat these calculations for B bootstrap copies, ie. for j=1, ..., B. This

approach is called a homogeneous bootstrap. It is known (Freedman [7]) that
the empirical function based on the normed deviations,

(29) (SnB =B, S/n B2 =B, ... S BE— B},

mimics the unknown (true) distribution function of the normed deviations,
\@ (B.—Bo) as n— oo, in the homogeneous case when all errors W, have the
same distribution. Here, we have the heteroscedastic case and there is no
guarantee for such a similarity.

By (29), the homogeneous bootstrap distribution law for normed devia-
tions is

28) 4 =

- 12 .
L= L (bipo)~ g L 1B =By <w).  ueR.

From the above suggested theory it follows that there is another way to mimic
true distribution of the normed deviation % = ﬁf(ﬂ (s~ Bo)) via the ran-
domizing statistic (23), which in our example with ¢ =1 is

(X a2 @) gt
o g2 w)

(yi—ﬁin):

30) Ui = ¥, (M)
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and where M4, ..., gav are numbers of outcomes in » simulated polynomial
experiments. We simulate the data, wua hence we know that the true dis-
tribution law %, is normal and due to (8) we have here

-1 _, n

N N = Mia ,\..MQ t)h{t) Z:.

()
Hence the true distribution law %, is
(I/mY_ ., g ) R ()
) Y]
(a/mY;_ a2 @)
In Fig. 2, three distribution functions are shown: @ — theoretical #,;

b — homogeneous bootstrap ;. and ¢ — &5 based on randomized statistics
P

QQ:H,Z,HAOy

Fig. 2

It is seen that the formal usage of the homogeneous bootstrap gives er-
roneous results. The basic statistics (30) gives rather good approximation to the
true distribution of normed deviations. Of course, such a good coincidence of
L¥ with the true &, for n = 25 can also be random due to “too good” data.
But, in any case, the larger n is better if the heteroscedastic law..%; is as an
approximation to

N, (0, ((1/n) M g @) K @)Y (/) M g @))

whereas this will not be the case for the homogeneous bootstrap.

CoNcLUDING REMARKS. The history of intensive theoretical research in this
area especially related to the bootstrap has now been going on for more than 18
years. In this paper, the bootstrap method is suggested to heteroscedastic re-
gression models, via the central limit resampling theorem. The problems relat-
ed to regression models are of wide interest, as shown in a paper by Wu [14].




276 O. Fercheluc

The bootstrap can be also used in other regression contexts. For instance,
Delaney and Chatterjee [3] proposed a bootstrap method for choosing the ridge
parameter in a ridge regression, although their bootstrap unit is a vector of
observations (¥, x;) rather than a residual. Freedman [8] and Freedman and
Peters [9] applied the bootstrap in more complex regression models such as
a dynamic linear model estimated by two-stage least squares estimates. They
showed that it is asymptotically valid, like classical methods, but that the boot-
strap solution sometimes outperforms the classical methods. Efron and Tibshirani
[6] also applied the bootstrap to Cox’s proportional-hazards model and to the
projection pursuit.
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