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Abstract. The distributjons of deG.iations of point es.stimato~ for 
pmrun~ters of iterest are essential in the evvaluation of the eficiency of 
point estirnnors. The baotstrap method suggested by B. I?Trm is one 
d the main methods directed at solving the pxobfen of producing 
distsibutions wMcb d m i e  thc mobserved Bistilbufious d deviations 

The main object d this astScL is to study the asymptatie vdidiity 
d the bootstrap in the context of betsromdask regremion models, 
using the mntraf b i t  msmpling theorem. In the case of m e p a m e -  
kr linear mpmioot, tharetirral results are illllstrated by an exnatde 
with imulaQr:d shtistical data. 

Key W O ~ B  ~ B l l f j  pews: Beotstxap, heterost.edilsaiG rege~ian, 
r~mpl jng ,  or-q imst squares estimates, wtrrrl limit ~esan*pling 
amam. 

8.  h&odacdom. The use of the bo~tstrap to wtimate the sampfing &s- 
hibution of parameter estimates in homogeneous linear models was first gro- 
posed biy Efsolr [4] and further develowd by Freedman CTJ, and Wu [14]. Ilke 
process invaXves approximating the distribution of uaobsened errors with the 
empi rim1 distrSbuCiae, of ffie mntered residuals, Other works for boatstrapping 
homageneaus wumsion models are Navidi [12], Holm El 11, Stone and 
Brooks C13J 

When the errors me not qually distributd, and far exarnplc have very 
dserent vacriances, we carnot negece this in the bootstrap mampEag VCCWBT 
resmpling i~ the first: idea in the domain and this possibility has been akeady 
matsidered in E&on [S] .  For the linear model, Wu [I43 has suggestd an 
hp rovd  i&a af ~sarnp1hg but it seems to n=qtzire rathea: a lot of data for good 
p d o m n m .  The paper by F W M ~ ~  and Peters p] pre8nb some empiricd 
malts for the bo~t,st;rap in the context d an ecrruometdc quagion by conside& 
co~slr&d gm~~&ed lwf sqwa with m estimated covarlan.= matrix, 

e the; accuracy of boohtrap egtilimettes of the &stribation of 
1iaa.r combination of ktetero~ceda&tic re~essisn prameter estimates. In this 



case, the appropriate basic statisti~cls have been falend and we shall prove that 
the po lyno~al  randomimtion gives arr idrating &stsibation. Note also that 
here we drop the m s t ~ c ~ o n  that copies of desiw of regression experirnanB stae 
realized f r m  factors combined via random resampling .with zxmtered errors as 
in Frmdman LTJ, The ori+al design OF regession expcbents can practicaly 
be arbitrary in the s u a e s t d  approah, 

This artide is orgaaizeld as foJriows: Section 2 gives a brief resriew of the 
beterascedastic linear regression madel. SwGon 3 gives a short revie% of the 
boorstsap pzocedure and the cenbd limit ressunplhg theorem is used to prove 
the accuracy of the bootstrap far b~texosw$astic regression models, under the 
viability of some assmptions, Section 4 applies the rewlts to the simplest GM: 

of one-paramctex linear regression by proving the &aimed asslrmptions and 
presents a sinnulatioa exgekent ta assess the validjty of the bootstrap by 
cornpadng the homogeneous bootstrap with the fietertroscdastic me, Some 
Final remukr; will bf: abo drawn. 

2 heteruwdas~c regreaim madel The model studid is defined as 
fcilows. Let Q Ib;e a res&ic&d set in F and xi = (x i , ,  . . ., x,)" be factors which 
d d n e  conditions of the i-th experimenf i = 1, . . ., w. The result of the experi- 
ment is is aaalue of a raadom red variabIe 

where Pjo,  j = I . . . r  r, am unkruom real nurab@rs and o, , . . . , w, are values of 
unobserved random errors Wl, ..,, W",. We assum that W;, . .., S1V, are indts- 
pendent r.v.% s t h  zero expectations and tmequd finire second order moments 
a:, . . ,, a:. This &tatcistical model is mlled a hers~rescedcdarbic linear regression, 
In order to r e d t e  (I) using V ~ G ~ O X S  m d  matrioes we will use the following 
mlration : 

We &la assume that 
(3 max a: 6 o: < m, 

l 6 i 6 ~  

Labr we- wiar us@ the dbUowhxlg slightly strongr assumptian on the moments of 
errors: 



SrattcmenP (4) imphes (3) far some 0% < GO. If rang (XT .XI = -:r, < r, then i t  
is possible to consider generalizations of a bast sq;ua.res ay>prostch to statistical 
inference, bmed on notian$ related to peudoivalslerse (or Moor-Penrose) ma- 
trices. Under the a s s m p ~ s n  that 

the Po i s  said to be essimble. In this case, it is possibj~ to consider 

which i s  oftien called an ordinary Feast sgumes estimator (QLS-esrirnrrtor)- 
Sf Ba is esthable, then (5)  himpges &at Ffl is isanbias4 Gtbaut assumpGon that 
dl 4% are equal, 

TdVe consider the case when a number af experiments increases? i,e. yr --+ co . 
We introduce the; fallowing assumption: 

LBEV'IU 1. If Assumption 2 is valid, t!w~z flm giuers by (6) is an unbiased a& 
consasnt e~tirilat~rp f ~ r  estimd-nbk Po. 

Proof, From (21, (5)  end (6) it fallows that 

We assme that EI;FZ -- 0, and so 

and 
n 

EWn W r  -- (E& q] - (rr; iTSf) = i$ dBldF, where 66 (6i lF . . . , 6iR)' 
r = l  



The coval-iance matdx is the follawhg: 

The variances of components $O---j30 are; diagond tllem~nts of CR, and their 
s m  is tr(CR). Fwrtbemore, (9) imp5es 

Hen~e, a11 r compaaell-tr; of the vector -Po converge tto zero in prababitity. m 

The rate of convergezlcc: of Bjn to. pj, can be dfierent for different 608~1- 
ponents, j - 1,  . . ., r. Therefore, it is reasonable to consider estimation of mpa- 
rate camponen& of /I, if possible er their finear ~smbinations 

where c = (c19 . . ., eJT a h e l d  wetar. The vector 6: is said to be a direction 
uecaor if [[cllz = c T c  = 1. Vtle can i.tlCrsduce 

The fallawing twa assumptions will be us& jn the sequel. The First deals 
with v a ~ m c e s  of errors and the seclolld with same coeEcients based on the 
direc~on vector, Bath of tbe folIawing assumptiarrs are related to the ~ s e d  
rsequenm of expe~m~nts:  

ASSUW~IQN 3. Thvfi exists 0 o <- $ a$ < m ,such that fir arty rr 

i = ] L  

Assu~mrsra 4. Far any ~a = 1, 2 ,  .. . and i = 1, ., ., a, &ere exists 
Aa(c) < co, Ale) < m S U C ~  that: 



Hence it is reasanable to consider the following named deviations: 

From (8) and (18) it follows that 

M 1 I f A s ~ a m p t i ~ r n  1 , 3  and 4 are ualid, then  he distribution law oj 
norlimed denrh~orrs U, (c) can Be imitated by the normat dis~rihutioa of mean avkd 
sta~dard driotiors cr: (ej/eT (KT X)' c when the number of obserwatio~s, n, h- 
cwases $0 -Dcz;., i&. 

Proof. The vanaact: of su 

and 
R 

From (9)3 (10.), a d  (12H14) we obtain 

Assumptions 1 and 4 imply 

Hence the momon*; E [U~.(C)&~' *' are bounded uniformly in n, and the 
desired result i~ C ~ ~ G Q U S  now. m 

3* The Bantstmp p ~ w d w ~  We wnsidtr the following general. scheme of 
data couwting. kt (a, @{fZ), P o ( . ) )  be a bmic probability space. Data col- 
1e.eePjyLg can be understood a a ascquence of experiments 11, g2, . . . The plan 
(design) of the: i-tltr exprimerza. and its result can be represenEd as a point 
xi e $?& where 3; is the set af all pu.ssiMe valules for xi. We consider xf as a value 
of the %-valued P-v. Xi(-) which is a masurabb mapping from A2 htci 4- The 
pmbability that Xi E B i s  dven by (El) = Po (Xi (4 E _IF) mdes t h ~  assump- 
tion that t h ~  Lme paramfe~" G I Q ~  @. Tlkr~ugh01~1 this paper we us% the assump- 
tion that random Xi-slalged uariabbs X I ,  i = I T  2 L  .$ are ir%dependent, 



Far each fixed n we wnsider w, = (x1, . . ., x,) as given oPigiaal statkti~al 
data. Let 4 == Sn(xrr . x,) be a crmsistent point mtlmator of Bo, I.e., in same 
sense$ &$, -+ Bo as 1.t I, ao. If 8 c R", we consider the d i s ~ r ~ i h t i o ~  law 5frzormt.d 
deuiatitms: 

If a para%nete:r of interest yo = y (Bo), where 8:  @ -+ r- { y  (B): 8~ 0) c dldl", 
then we cm consider 

where f m  = (xi, . . ., xJ is a paint estimator af yo.  The estimator f& : = y is 
called a plug-in estimator. If we consider &, a true parmeter, then jB, should be 
memt as the true: value for the parameter of interest. 

How then can we find or at least to know more about the dktfibutiaus 
(18) or (19) when 8, is unknown? 

It is naturd to &i& that the order af experiments is not essential t;a 
a statitistical inferace. One has to have the same inferens when tbe experiments 
dTl, . . ., gM have been fuEUd in another or-derg say, b,,, b,, . . ., b,. Then the 
orignal data are (x,,, xi,, . . ., xim). We want to know more about the distribu- 
tion of normed deviations of the point atinator -fn - T, jx,, . . ., x,) far the 
paramekr y, = y (8,). 

We will call the boot3:saap the appraach which is descibed by the foi>IlowLng 
sequenGe of actions: 

(i) Find $, = T(xJ (a consistent estimator). 
(ii) Take B ra-ndorn samphs with redaeement from the original data 

X, = [xtl x,) With tbe same size n: 

we: mll xf the bootstrap c ~ p y  of the original data, 
If yo = y (do) is a parameter of intierest and 1T, - *F(xJ is iB consistent 

estimator, then for ezch hootrtrap copy of the rrrigkal data find 

(iv) Find the deviations of estimated values (20) from f,, ie.  
- 4 l a 2  ._ a 

Ynl Y n  Ynr -.=, Y"zB-ftJ; 
cclmpule Ike bootstrap version fos the corrditlon&l law af nomtd deviairans 
fwrn Ij, given x i ,  . .', x,: 



Under some wsuznp~ons, she central h i t  bnotstrltp theorem states that 
2,*,B will mimic 9,ta,,,n for large values of pz, 

Now we are ready to apply the central l i ~ t  sesampl&g theorem (Hall and 
Mammera [603). Let Ad', , . . . , M ,  be random variables obtained via ft indepen- 
dent poJymomia1 experiments with sz outcanes and probabifity n for each out- 
wme, From the above-mentioned th~orem it follows that atthe distribution lsws 
af the sequence of r.v.'s given in (I&) ,  rz = 1,2,  . . ., approach weakly the djs- 
tsjbnrtlon laws of the sequence of r.v.'s: 

There is no gassibility of applgng this nice fact dkectfy kcause 8, is not 
known. But we cae do that if we replace g, by its OLSestimator flrT given 
by (6). This is what we are doing below. We define the follswi~tg basic statistics: 

where z, =  KIT^^^ = =1? (XTX)' X' %", are components of the predictor vec t r  
and are estimated errors, 1 = 1, ..., n. We nore that we caa Fmd, 
for each n, the distribution law t ( U : ( c J  e) [ = p,, X) via simulation M,, 
I = 1 ,  ..., w. 

T m m ~  2. Leo Assumptions I 4  be ~caUd. Then the df.glriburian law of 
~ ~ o r w a ~ d  rleailations UE(c) e m  be imitated by the corzdirio~al distribution law of 
IT; (c) given H, .= y, and X, whea the &umber of obser~atations, n, imeases to 13i3 . 

ProoK If we add (22) to (23) and subtract one from the other, then we 
have 

where x--.x"TB, - @61;:9, and I~ence the dirrtfibutian of the first mum has the dc- 
sired property, as shown above. We have; to prow that the second sum in (24) 
collverges to 0 in probability, Tb%t predicted response is %, = 2ra, Hence we 
ermn write 

where 



From 1/25) we; have 

Relations (9) and (12) imply 

Tberdore, it is ?;u&cient to prove that the first factor V z  (el irz (25) tends to zero 
in probability whm n -, m, The randoranless d this factor is due to the ran- 
domess of (MI, . . ., Mn). W note that EMf == I, E(w - 1)" 1 - 1/Jn aud 
E (Mii - I) (Mi ,  - I) = - 1 /al il =$ i,. Consequently, we have ElrJI (c) = 4 and 

because we can use llc]t2 - 1 and the inequality e T ( X T X ) + s  G tr(XT%)"% 
Assumption 2 impEea: E 11 pfR (c)ll-5- O a5 n ---t ag . Hence we obtain g f ,  (c) = 

V," (c) R, (c) -+ O in protsahdity, as n -+ as. ~s 

4. Ban&-psmnnetm Eiines~ 11qrwsia~. We consider the hg1est case of ithe 
one-parameter linear b~e~e8~iun: 

rxphere wi - k [rJ e;, zl, . . ., z, are values of i.i,d, normally distribakd r.v.'s 
Z,, . . ., Z,, 3 (Zi] = MI (0, I). The bES-estimatur is 

the predicted responses are 



h thiy. case we have 

Hence, it will be easy to chwk tlke vdarlidity of the above assumptions. We 
assume that 

Assamption 1 M o w s  directly from the normality of the distribution of 
(e.g. ~ ( h ( t 3 ~ , ) 4  6 3h4,). Assume also that the experiments are platlned in such 
a way that for same ho > 10 and go > O the uumber of the expefiacaents n(gol ho)$ 
with Illjl (td] 2 go > 0 a d  [la (ZJ] ho 4 kcreases p~op0rti~n;rIfy with a, i.e, far 
all suff"lcien1:Iy large n 

n(g.,,h,)Zqolyl for some qo,  O . = q , s 1 .  

In this ease, Assumptions 2 4  are valid. For example, we haw 

and FOP ah gven by (10) the fouowing inequality holds true: 

Hence Assumption 4 is fulGl9ed. 

A SSmATION T. Let the ststtistical data (tt, yd, present& in Fig. 1, 
be chosen in such a way that yi is the respnse a d  ti is the parmeter de6ning 
the conditions of the i-th mperiments. The number of &senrations is n = 25. 
akretse: data were simulated with g (c) = c , h jt) = 1 -t and t i  = i/n, i = 1, . . ., n. 

Fig' 1 



The garmeter pa, which has to be eseimated, is taken to be 1. The OLS- 
-estimator far simufarted flo's based on the data is 8;1 = 0.949, Even if we do aot 
know Xls(t), it is easy to see that the regression data obviously la& hetero- 
scedastic. We want to know the distribution law 2(&(&-fi0)). 

Let us igtaorc the heteroscedasticity and try to use the baotstritp technics 
lor homogeneous regession (Freedman C7-j). In the case d homogeneous re- 
gression, a31 variances of errors are the same. We c e n t ~  the residuals and 
consider them as errors: 

We take the j-tb random san~ple with replacement of volume n fromi 
[wyn, . . ., w : ~ ) .  Let (t~l-",,, .. ., WE!,) be the sampled values, Then we find the j-;th 
bootstrap copy of responses 

and calculate the value $zJ, which is an OLS-estimator based 041 the data 
(J$,  err); ytJ, g(tn))3 ice 

We repeat these calculations for B boobtrap copies, i,e. for j - 1, . . ., B. This 
apprsach is called a homogeneous bootsircap. It is known ( F ~ e d m a n  [7]) that 
the emempirreal function based on the normed deviations, 

mimics the nnknow11 {true) distribution functiotk of the named ile~Gatiuns, 

Jn - Po) as n -+ m, in the homogensous case when all errors U: have the 
same distribution. Here, we Ira~tve the hetesoscedastic case and there is no 
guarantee for such a similar-jty, 

By @9), the homogeneous bootstrap distribution Iaw for narmed devia- 
tions is 

From the above suggested theory it foIIlovvs that there is another way to naimic 
true distributiar~ of the narmed deviation 23'; = 3'(di @i-fia)E via the ran- 
domizing statistic (231, which in our exampie with c = 1 i s  





Thc hotstrap can be also used ia other regression eontexts For instanc~ 
De1aaey md Chdkrlee L3-j proposed a bootstrap method for choosing the ridge 
parameter in a rJdge reg~ssion, a l~ough  their bootstrrip unit is st vectar of 
observationrs (x, xi) rather than a wsidraal, Freeban C8-J and Freedman and 
Peters C9J applied the bootstrap in more -e:complex regression modeki such as 
ii dynannic linear model esthsted by two-stage Ileast 8q;quares estimates* They 
showed that it is asynupta'â caU.y valid, Eke dassical methods, brat that the boot- 
strap sdutioa somehe our~x:doms the dassieal methods. Efron and T i b s b a ~  
[6]  also applied the boatstrap to Cox" ppfoporriond-hazar$s model and to the: 
projection pursuit. 
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