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Abstract. We study the appraxhatioa by a short mgeworth 
expmdon of the distribution functian of no 

of order sratistim of n indewdent random vitriabIes with common 
diswibutian fmction F. Under the wumptians 

(F-'y(sj G C[s(l-sI]-' 

for Borne p,, q,, r,slP, p3"2r41r pal C: B a, t c e p .  5/4), with an appw- 
priatf: Mance in these paraems, amd under adational mmmt con- 
djgaas, the rare sf r~niforrn coovergencc is shown to be d rsrder n-'. 
Moxeoum, a xperial ease js mnsidered where the c,, ase generated by 
a seqmnce of weight functions of a special s&uehure. 

AMS 1991 ;cjpbim (3idfiwkicrao: AZRZO. 

Key w d f i  and -=: Linear mmbinations of ardcr stat~aics, 
Mgcworth cxpanaions, sate; of coavleagcnce. 

Let X, X , ,  . . ., X ,  be i.i.d. random v ~ a b l e s  with a common distGbutioa3 
funelion E. We put f16 ),: = E 1x1' for all s 2 0 and slsgpase &mughnut, paper 
that 8, < -l" oo. We shall consider the st-at ist i~ 



a lhear combination of order statistics. Here X3:,, denofw the j-th order s b h -  
tic of XI, . . X n  and el,, . . . , cn:,, are @ven comtaxab, We will asswe that in dill 
caMs BIT] .<= 4-m. 

For any sgmet r i c  statktic T =  T ( X , ,  ..., Xnf with EtTl r +m, kt 

4End for 1 d i , j  4 B write 

EiT:= E(TlX,, ..., X i - 1 S  X;,,, ..., X,) and E i j T : = E i E j T  

En. addidox% write 

and 

fi8 : = H TJ,  ys := 8?( c2pr A;; : = E 1tt5f2 D~ a2 D~ TIS? s 3 0, 

Finally, for : = Ja 0, let 

q : -  3- sup IE exp (itrxxl" TI)! 
1:1~15~/2b3.&/~1 

We shall estimate 

From now on, by c and C we s h d  denote absolute generic cmstmt~: if 
such a c or C depends on, say, or, we will write c(a) or C(ol). By di we shall mew1 
the stmdstrd normal distribution fm~tian. Mureovelr, I (A) will always denote 
the indie~tor fvnctisn of event A. 

Rewntly, a short mgewarth expamian far symmetric stabtistics has. been 
obtained in Bentkw et al. [2]: 

kn Lemmas 1, 2 and 3 sf %~.eetian 2 we: will derive explicit expressiom for 
Id$,, y, and d: h the 8peciaJ case of linear combinations of order sSL&hfi~~. 
These bad to pre~ise upper bautl$s tirr these quaaei~es in t~m of nnornemt~ of 
tha undarlyiag distribution funcliotl F, md hence to to ahart Edgeworth expan- 
sian of order n4' for T where the upper bound is @yen again in terms of the 
moments of F, The proofs are given in S.ec~ons 3,4 and 4. Note that the raults 



af Melmiezs C31 are not applkable because here the weights are assued to be 
of the fom 

with a single weight function J:  (0, 13. -+ R. In $&on 2,7 of Bel~&us et aI, [2"j &is 
=me S~PUC~UXY: is wed, whereas it is dso assumed that sup, ]S(x)l is bounded. 

WE assume the quarille function F - I  of the pepulrrtioln to be differentia- 
ble and for K 3 O we set 

For 

we have the following & ~ r e m :  
T ~ ~ R E M  1. Let: K E  [O, 5/44), m d  p , ,  p z ,  41, q2* r l ,  r2 be real numbers 

sati$yi~ag pz 9 2 ,  PZ 3 0. Then there exlist. constmts G aad c = c (p,, g,, r,, rcj' 
(independent af n) swh that far any n we have 

A,, = y%px-pi 1 fpl 3 ~ 2 ) .  

An = n-'pf E ( p i  < pZ) 
x ( X ( ~ : - + - p ~  < S / ~ ) + I { K - C - P ~  = 5 / 4 ) l e g n + I ( l c + p ,  r SfrC)pl'C'Pr-51*$2 

= n~fl '""%l b?l 2 q 2  + 1 1 3  

ilH = ~ . = 1 - - u 1 ( ~ ~  .= q2+1) 
x ( ~ f ~ ; - t - q ~  .< 53/3]+I(x+q2 - 5;/3jlogn+1{re+q~ > 5/5')nKf4r55/3 In 

c , n p a ~ - 2 - ~ 1  I (r i  3 rz+2$,  

- n"pEf ( r ,  < rZi-21 
x (r ( K + P ~  < 5/21 - I - . ~ ( K - I - ~ ~  = 5/21 logn+f ( F C - I - P ~  > S/2)nK"Q-'/2). 



The proof of Theorem I i s  isbased on the fact tbat 

ufhe~:re c = c@,, gz, r z ,  ~ 3 ,  which follows &om Lemmas 1,2 and 3 in cambina- 
tion with Lemas  4, 5 and ti (Sedans 6, 7 and 8). (From & e m a s  4-6 it dso 
follow that we- may take G = 27.) By (21, mearm 1 then fdows hmcdiately, 
Note that X,, ,.., X,, T, $,, y,, AS,, q,  g, dl,, Bz and d3 aU may depend csn a. 

The failowing wrollary is a direct wnsquense of Theorem 1, It is the 
analogue d Corollary 4-2 d van Zwet 

C ~ L L P L R W  1. Itz the special case Mlhelle p, = p, = q, = r ,  - 0, q ,  - I oncE 
r,  = 2 we ham u d e r  the eo~zditiom of the theorem: 

where C denotes a ufziuersal constarzf, rfP4 < + m, bath ziZ and q ere unfomly 
b o d e d  frorn below an$ d l ,  d, and d3 are unijformly bauded @om, aboue, rhk  
p~avides Bdgewarth expcansbn of order a - v i r  E 

Next we state the analogue of Theorem 3 from Pap and van Zzuijletn C5-J 
Let #: @, 1) -, R be a Lebesgue measurable real-valud function an (0, 1) and 
y a red number, T&ing J: t H $ jt) $LQI - f ; ) ] - Y ,  we consider the weights 

We start by quoG11g Thmrem 2 i7E Pap and van. Zuijlen C53, a Central Limit 
Theorem. Assume: that the weights cj, satisfy (6). 

W o r n  2. Suppose that 0 C y Z= 4 avld that there .exist nlarnbi~drs A 8 01 
and A > $ such tknt (t)==- 9 [s)3 G A 18 --sl"filr alL sq r E(Q, 1). If j3, .: + m .for 
s ~ m  m > ('-Y)-~, then 

T - B T A N ( o , ~ ' ( $ , F ) )  and 6'(T)-rd2M,F).), 

where 

In the case sf wei&ts ('71, WE have the same results, 



Assme we rake our weights d the farm (7). The aanounced Theorem 3 
reads as fdlows: 

mmm;w 4. S~rppese that t c ~ [ O ,  5/41, p > 0, rt-+ y < & a d  that fdi is twice 
b o u d d l y  d~xgrentiable~ Then there B Q. eomtalllt c - c (rc ,  mclz that 

A theorem simitar tto Theorem 3 can be proved in the case of weights d 
the fom ($1. The proof af neorem 3 will be given in Section 9, 

Remark. Suppose that, instead of (61, for S, = 0, y,, y, 3 0, ii, > 0 
we consider weights of the form 

.fin a 
ej, : = n j jm(t]dt) where J,@) : - tji It) [t (1 - t l J . ~ ~ -  a-". 

Ci- Il/n i = l  

Using the same techniques as in the proof of Tkorem 3, it is not too 
dificult to forrmufate a couaterpart of the theorem. Of course, all expressions 
get mare nota~onally involved. Naturally, we can go on in tlhis way, 

2. THE BETA IPmSm SCPkfE FUHVDAFMIENTAL WMMM 

l?rom now on wrt: pretend that XJ - F -  (Uj), where Uj ,  j - 1 ,  , . ,, n, are 
i.i.d. tandom variables such that all tr, have the W o r m  distribution on the 
intern1 (0, $1. As umal, for any seque-nw: S1, . . ., S, of rmdom variablw the 
order statistics Sly, . . denote a reordering of that sequenm such that 
SI:, G . . . C 5,:,. For any subsequence Sli, . . ., Sp of Vl, . , ., UR, by convention, 
S-l:r ==SO: , . :=O and 5,,,,,==S,,,:,:= I; far any subsequenm S , ,  ..., 3, of 
Xl, ..., XmI by C O P ~ V ~ ~ ~ O Y L ,  S-l:,-sSo:p:= -(XI m d  Spl.f;l=Src~:r:= +me 

The beta density will play rn implortaztt role when we axmine y3. For 
1 % k 6 E i t  i s  defined tay 

By convention, l ~ - , ~ , : =  ball:= B :== bF+I,E = 0. We note that b,,, is is fact 
the probability density of Uj;.. Furthermore, tve set & [k) : - P ( X  = k) fur 
a randarn variable X which i s  binomially distributed wit11 parawcters I and s, 
that is, far .~E(O, 1) we set 



The following simple equali~es will be used in the sequel: far 0 G k G t - f -  1 we 
have 

and hence- 

for dl I g k  k l we haye 

Note that for each i ~ j l ,  2, ...I we have 

Me~ever ,  for all O G. li 6 d 

(az) ~ ~ ~ ~ = s P ~ - ~ ~ ~ - I ~ + ~ ~ - s ~ ~ - ~ ~ ~ ~  

=: f l - l ( k ) + ~  ( k -  l)i-E-l(k)]. 

We also have (by applicatim of (9)) for 1 -c k < I: 

Thc next three le~nrnas we crucial for the analysis of /?@ = E .9j14, 
y3  = E InSn TT;,13 and 4: =.: E ln5j2 Dl D2 D3 TI2. The first one has already been 
menlkiond in irm Zwel E71. The swund and the third one will be shown ta be 
correct lie Se~tions 4 &$id. 5.  Some preparations eoncerniug conditional &- 
tributicns of order ~tntistics are made in Section 3.  

Le 1. We have: 

Next we set Kg := 0, K4 :- CZ+ 1 and define K I  < K 2  < K g  8 9  the ordered. 
sanaks of XI, X,  and X 3  among X,, ..,, X,, 



31, Tika? cadddtnd &tdb&on give& SPI amd/or U,, In order to andyse 
y3 we clearly need the conditional distribution d UJ,. given 0, md/or U , ,  since 

with 

From elementary considerations the following results can be deduced, The 
conditional distribution of Ui:, given U1 is gven by 

where A denotes the Lebespe measm on R, the Dirae measure: in UI, 
and 

Of course, we obtain the co~ditional distd-ibu~otl of Uj, given Uz af&r sub- 
stituting Uz for U1 in these rmults. 

The conditional distriblalim of U,,, given W , ,  IJ, in turn is g i m  by 



and 
Uli2 1 

P ( U I : , = C J I , , ) ~ ~ -  j b l , , - z ( s )a~ ,  ~ C ~ J 8 : , z ~ , , , ) = 4 -  j b , - ~ , ~ - z ( s ) h .  
0 Da.2 

32. The cornditilspnal crllisjribation girern n-3, a-2 OF n- l sf the U;sm In 
order to analyze d i  we need the: conditional distsibwtion of U,:, given n -3, 
n - 2  s r  n- l of the Vis, since A: = BIn5i2D, Da D3 TI2, where 

and henee 
1 " 

- E P , D ~ D ~  a 7 ~ -  cjWM4 
&$=I 

with 

To obtain the condi6onal akributirsn of Uhs given U2, ..., Uwl  @yen 
ZTlrU3r. . .eU, ,  given U 1 , U z 3 U 4  ,...? UnJ given U 3  7 . . .  @yen 
U 2 ,  U4$ . . .9 Unr given UI , U4, . . . Wn, and given U,, . . . , U,, mspect.ively. we 
define subsequences of XI, ..., X, and U1, . .., U,, resyectively, by 

and 

and, finally, 
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Remember that X,. -: P-VIUd, sa that 

and so on. 
As a n  be che~ked eaiIy: the ~onditional disributiorn. of U;,, given 

A:, . . ., A% I is determined by 

and hence 

Therefore, by partial integration we obtain 

The conditional distribution af Uj:, gvear hrher B:, . . , , Bt - ,  or C:, . . ., C,"- I 

a n  be dedt with th exactly the same way. 
Next we look at the pwbability distdbutisa of ,fUj,l, given P:, . . ., PZ-, ar 
..-, QrrT2 OF Rfr .... R:-2. We obtain: 

where y : s r-a 2s and gZ : s H 2 (1 - s), Therefore 

Partial hlegrattion leads to 
PI- n : m - 2  

(17) E(Xkm/Pt, =,,, P,-,)= .Fj-2t.-2+ J [1 -F2(t)3dt  
' . j - ~ . n - ~  

p d . z r  , 
+ $ El-F( t )J2dt .  

~ l - l : r i - 2  

Again, .the sther sequences can be dedt with in the same way. 



Finally, for T:, . . ,, T:-, we note- that 

athere h, : s++ 3s" h2: sr-t 6s(3 -s), and h,: s ~ .  3 (1 ---s)'. This leads to 

which in turn leads to: 

4, mALYSHS OF y,; PROOF OF L E W A  Z 

Recall that n3I2T,, = nC;_, ciRHi, with H j  as in (15). With the results of 
Section 3, far all j are ia~ able to give the follaw.in_g explicit fornula for Hj: 

Wr; are looking for m alternative fsm ha: Hfi.  
We usr, partial inkgation sn the first, third and %~ term of this expces- 

sion in order to obtain t h i ~  nicer form. For this purpose we define the followi~~g 



and 

Appjication of (101) and 113) leads to the equalities 

Now the: first term of the expression for HJ equals 

and so an, Substituting these farms in the expression ibr Hj we see that the 
second and fourth tern cancel and we find that 

Rnaffg, application of (12) @how8 that 

and hence the statement of Lemma 2 follows readily. 
We remark that a praof of Eemrt. 1 c m  be easily cousiructed along the 

lines of tile proof of L e m a  2. 





and 
dL 3 lBsP' E C ~ , ~ ,  dZ 3 3,'' -" k j a - ~ j -  I , B I ,  

d, 2 l ~ c ~ * , , - 2 ~ , , + ~ ~ - 1 , . 1 3  

Hence hmma 1 leds us to 

In the case where p1 2 p,, this shows us that 

which campletes the proof far p1 B p2. 
Next we comider the case whew p ,  < p2. Note that 

piL4 = lfn112 

A little Inter we will show that for j = 1, . . ., n md same c = c [ rc)  

By symmetry arguments we have 

so that 



m d  therefore 

la order to study the behavior of thk expression we appro*atc 

by integr:ds of the form 

Cclastamls which appe;tr aver here depend on, rc+pz, so at the end we have 
mnstants depending both on K and on p,, Doing this it Edows easily that also 
in tbilis a s e  the result of Lemma 4 applies, which compl%tes its proof, provided 
that (22) is mnmt. 

We turn to the proof of (22). We remind the reader of the gmma function 

and the beta func~on 
1 

B(u,  US:= jP - i ( l - t )P - 'd t l  
0 

satisfying 

It is known (BW, for example, ]Lemma 2 in Pap and vaa Z ~ j l e u  [5])i that 

Suppa~e that j ~ ( f ,  ..., n-I] or M:< 1. As 

we have 



~ c , K ( n - t - 2 ) ~ " ( j + I ) - ~ ( m - j + 1 ) - ~  (see (23)) 

for constants GI and c, depnding on K, and 

for soam iu, =3 cr5 (4, which pr~ves (22) in the Gaee whim j E (1, . . . , n - l f os 
K <  I .  

The cases which remain are more dmculllt to handle, as they imply that 

This is why we use a diffe~nt approach. Far J" - n and K E /1,5/4) we will prove 
that for same c = C ( K ]  



292 1. B. Albelrink et al. - 
Namely, WE have 

far some c,, c,, depending on K. This again proves: the point. 
Finally> we take up the case in which J = n and re - 1. The previous 

argument does not work as we divided by K - -  1, We show that for some fS 

Ronald Kortram Ipersorzal ccomuicatian) provided us with the f d o w i q  
proot The function s ~ b - ~  (I -s)1'4 is insreairlg on [a, 1 - 1/(4a-- 311 and 
d e c ~ a ~ i n g  on [I - 1 J(4n - 31, 11. So 

1 4& 
- = . ~ " j t ~ " " - ~ d t + - - - - - - $ ( l  -t)-'/' -% $1 f Cn-z 

o 4a-3, 

far some constant C, This completes the proof a 
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The aim of this wtioa is to prove the bllowing Lemma: 

LEWA 5. There exists a c = c(q,, K) fiw which 

~!j'" 33d2 B, 8:'" + c l ~ ~ a ~  &. 
Pro o E: Flmt we consider the case in w&sb 2 q2 -t. 1. By & m a  2, (1 I), 

(19) and (201, the method we have used to prove h m m a  4 in the case where 
PI & PZ yields 

d; l a e ~ - 4 n - l  InW2 TTazl G H 1x11 +lXll +lXzl. 

(Here we also used the inequality F -  (UZt2)  - max (XI, Xz) G [XI 1 + IXZ(.) As 
a catlsquence 

which completes the proof fox q, >, q,  4- 1. 
Now suppose that q, q,+l .  By Lemma 2 and (3)  we have 

n - t  
1/3 - 

~3 - TL2313 d - d2 u - ~ ~  B--1 

where for i = 1,2, 3 
u1:2 

(24) : =  5 ~ " ' ~ - s S > ' - ~ d ~ - * [ s ; ) .  
Ur -1.2 

the order of IlfJ13. As 

md we cam find sn upper bound in the game way as we- did for 
I / ~ ~ ' ~ b , . ( s ) d F - l  (s)/l, in Section 6. Again we have the following three cases: 

again in e a ~ h  of tham tbs? result is the same and the methods to prove them 
differ considerably. We codme olrrxlves to the first: case. We have 



and 

which for some c - c (x) leads to 

Mor~over, we find that for some c = G ( M )  

h wnclusion, for some c =. c_(rc) we have 

so, that 

R 1"-1 j ?it' 4 -- dr  iKn' -" - [- n - l  j-l " 
Zrm the: same way as in SecTion 6 this lead8 to the result mentianeel in k m -  
ma 5. Tlae stxmond and the third case can also be handled with the approach d 
Swti;an 6. rs 

We wjll prove the followhg lernm: 
E R ~ A  6. Thme exis@ a s = c (r,, 1 ~ )  for whl6h 

G 4 4  C, pi1' 2 +Kd3 cn. 
P r o s  F. In the case u7hesc: P ,  & PJ + 2, like kfore we dedue that 

4 - l  nr' -P ' -2  InS'ZDtW2B3 TI G EtX~lf  ]X,I+lXll+IXsl, 

so (dEda,)us = l l ~ ' " " ~  B2 B3 d 4dg 6,Bki2. 
Now sappose tkat r X  < r2-+2. By b ~ ~ l f g a  3 and (4) we h1pve 



with 

As we use the ineigludty t(F- 9)' (s)[ < K 1s (1 - .Y)] -", by swmetry argummts it 
a n  easily be shown that the upper burads for dl  and d4 are: of the same order, 
The same applies for dl, and A 3 ,  SO that tvc: can coneenbate on finding orders 
for ljddll2 auld Ild2112. 

First we remark that, for each combination (k,, k, ,  k,) for whi~h 
1 6 k, < k, < k, sg n, 

"-' a-kz $(n-kl)(n-(kl+l)) - P [ K 1  "= kl] = G -- for I G k ,  6 4 - 2 .  
k a - k l  +I. 

Since #, and U,:., -,,, E?r,,l,, are independent, we have 

Furlheranore, Lemma. 4 of Pap and van Zuijlea [SJ statm: for .each fixed pair 
E Z  E R there exists (under some candi~ons on the triple; (8% EX, j)? whkk for 

our purposes; ;sre always satisfied) a constant c = e ( ~ , ,  gz) such that 

TF"hcrfare it Fellows easily that for j = 2,.  +,, a- 1 



far conzstmts el,  c,, depenrfing on rc. By integral alpprowarnation WE see that 

for some c = e ( ~ + r , ) .  For K+ r ,  < 1 this kads ta 

far a @ e r t ~ n  r ,  = el(tc, r2), that is, 1141112 g e l  K .  lFrir x+r2  = 1 this leads to 

for some clt, c,, depnding cta rc and r2,  skim 

fur certain c ~ ,  c5 (depending on rc;, P~), SO that in this cage, far same 
c6 = GB ~~3~ 
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For x + r z  3 4 we always, have: two t e r n  producing two orders, ef which we 
?c+rz-1 need the largest. The (n/(n-kl)) -part in (29) will $eld IlcillflZ 6 cKnK 6 r - s - 5 / 2 .  

The other parb produce orders that are dominated by the: order of the first 
tern, Hena, for some c = c [rz, re) we h d  

To detemirre the order of Ifdz[la we roughly promd s s a r l y .  We shall 
stop n o k g  that the: c-snstants depmd on both K and r,, though of course they 
do. Like before (see (27) as well as (28)) 

Vdm 2 

] j' s2(I-s)dF1fs) 
Uj- L-n 

Far x + r a  < 2 this hads to 

so that ltldzllz G c$R. For x+r2 = 2w@ fmd tfa~ slam order. For 2 < K + r Z  < 3 



we get 
1 n - l  k a - 1  

\[A211; G c5 K2--- C 
mz k z = l  k l = l  

1 

c 6 K 2  f (1 - s ) ~ - ~ ~ - ~ ~ ~ ~ s  < .Z- c;K2,  
0 

as 5-2x-2r2 r -1. Here also lidzlla G e 7 K .  
FOP r~ + r2 2 3 again we have two t e r n  playing a part. As with A here 

the ( n / ( ~ - k ~ ) ~ * ' ~ ~ - t e r n  do~na te s  the others. "Fhk Ieads us to 
1142112 G CKJG if r+r2 = 3 and to lIdJ12 b eKnXtr2-' if x+r ,  > 3. 

Collecting the results we see: that for some c = c ( ~ ,  r,) we have 

Since the order of lid l l l a  dominates -the oms of llda[lal lid siIz and 11d4112, it now 
follows from (26) and (30) that b m m a  5 is correct. s 

Theorem 3 is proved by using (2). We need to find zapper baunds 
fur P4{nr Yr(T)  andl d$(T). First we set I :  a~-i$ft)Ct(l-t)]--'. As to @:/'(T) 
we can apply k m m a  4. By t&ng p, : = 0 and pz : = y in the expmssion far 
dl, we ~bfaCln dl & 2" []$llm, so that Lemma 4 innplies th& far some c = c(x, 7) 

Next we datermime the order of y,(n, By *iag 



By Lemma 2 and @4)> we obtain 

PI "-1 

yi f i3(T") = l i f i 3 1 2  - C ( C ~ , - ~ ~ + I , I ) { ~ I ~ - ~ ~ ~ + P ~ ~ )  n - 1  i=l  11 
which leaves US two terns to mtimate from above. 

First we take a look at the ej,-tern. As 

far some sanstant c = C [ K $  y) (see j25)), Integrd approximation yields 

Regading the second term we lreed to estimate lq21 from above. Tn t h i ~  end we 
introduce the hnc~aa 

9: st-,[s(l+ t / n - s ) J - V o r  ~ ~ [ l / n *  Ira+ 
We;. are mapinly wnarned with expressions of the fclm 

As 

~ " C s r  = --?(I -I- un-2s)[s( l  + k / r a - - ~ ] ] - Y - ~ ,  

the mean vdue theorem leads to 



In fihe s m c  way as with e j3 ,  for some e .=: C ( K ,  y) we obtaixl 

We may condude that far som c - c(rc, y) 

y f B 3 ( n  G ~~111@'lI,+If~11m~. 

Finally, we turn to A: ( T ) ,  whore Jd$ (T )  = !InS'' D ,  D, D, TI/, with 
Dl B, D, 3" as ia Lemma 3. Now for j = 2,  . . ., n- l 

t;:+~,n-%~,*+Cj-t,n - 41 ~&i23-&3 

if for d1 such j we set 

We proceed a$ with tk y3 (T),  split~ng llns12D1 DaDa Tlla L ~ I  into three parts, 
corser;psn$kng ta fij, Az a d  S,,, respectively. WG start with SJ1 + 

Applying the m m  value theorem for two times we see that far dl j 

Now we txy to find an upper bound for the axpression eorrelsrponding 
ta &, . Sw (1st) for the parts we abbreviated Ea f . ." As- in Section 8 we sae that 

Iln". - .. a,) .. .)I[, < ~ ~ 2 % ~ ~  113/"11, n--Ytlld~lfa+ s&a+Ilds-llaIj 

with the A, ,  . . ., A4 as before, taking s, = y. So for some c - c {K, 7) 

lln2 {. - 4hl"sl) ' 4112 eKIIV11m 

We turn to t h  second tern where: we ne:ed to estimate f i j  from above 
for all j'. TD this we apply the same function y, that we used to cst'inzste ~ j 3 .  
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We obtain 

and as with *G"jfwrc: see that 

As to the third tern we need to atimate I fJJ] from above QallJ. To this end 
again we use b e  Irunc~on ip, as we hawe to deal rYi& expressions of the form 

We apply the mean vduc: theorem two times to see that 

p '  far some {E 

Moreover, 

~"~~={(2~(1+I/~-~~+(~+1)(I+I/pt-~)2]~I[$(~+1/~-~~]-~Y22l foralls, 

90  

jq"(s)j G y (y+3)[s(I =+ f / ~ l - ~ ) " j - ~ ~ ' ~ ) .  

Thus we see that for all j we have 

Hence far some e; = e ( K ~  y)  

lln2 f.. . ( 4 3 ) .  . .)ll&t < eR fl@llm. 
We conciude that for S Q ~ E  e -. c&,  y)  

! 2-- 
1$d3($) d ~KII1e11~ -3- Il~/4f11m1:11$11u;.)4 

Now Theorem 3 i s  an easy caxasquence, ,W 
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