PROBABILITY

EDGEWORTH EXPANSIONS FOR L-STATISTICS

BY
IVO B. ALBERINK (Nijmegen), GYULA PAP (Debrecen) and MARTIEN C. A. van ZUIJLEN (Nijmegen)

Abstract. We study the approximation by a short Edgeworth expansion of the distribution function of normalized linear combinations

$$
\frac{1}{\sqrt{n}} \sum_{j=1}^{n} c_{j n} X_{j: n}
$$

of order statistics of n independent random variables with common distribution function F. Under the assumptions

$$
\begin{aligned}
\left|c_{j n}\right| & \leqslant C n^{-p_{1}}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-p_{2}}, \\
\left|c_{j n}-c_{j=1, n}\right| & \leqslant C n^{-q_{1}}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-q_{2}}, \\
\left|c_{j+1, n}-2 c_{j n}+c_{j-1, n}\right| & \leqslant C n^{-r_{1}}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-r_{2}}, \\
\left(F^{-1}\right)^{\prime}(s) & \leqslant C[s(1-s)]^{-k}
\end{aligned}
$$

for some $p_{1}, q_{1}, r_{1} \in R, p_{2}, q_{2}, r_{2}, C \geqslant 0, \kappa \in[0,5 / 4)$, with an appropriate balance in these parameters, and under additional moment conditions, the rate of uniform convergence is shown to be of order n^{-1}. Moreover, a special case is considered where the $c_{j n}$ are generated by a sequence of weight functions of a special structure.

AMS 1991 Subject Classification: 62E20.
Key words and phrases: Linear combinations of order statistics, Edgeworth expansions, rate of convergence.

1. INTRODUCTION AND RESULTS

Let X, X_{1}, \ldots, X_{n} be i.i.d. random variables with a common distribution function F. We put $\beta_{s}:=\boldsymbol{E}|X|^{s}$ for all $s \geqslant 0$ and suppose throughout the paper that $\beta_{2}<+\infty$. We shall consider the statistic

$$
T:=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} c_{j n} X_{j: n},
$$

a linear combination of order statistics. Here $X_{j: n}$ denotes the j-th order statistic of X_{1}, \ldots, X_{n} and $c_{1 n}, \ldots, c_{n n}$ are given constants. We will assume that in all cases $\mathbb{E}|T|<+\infty$.

For any symmetric statistic $T=T\left(X_{1}, \ldots, X_{n}\right)$ with $E|T|<+\infty$, let

$$
\begin{aligned}
T_{1} & :=\mathbb{E}\left(T \mid X_{1}\right)-E T, \quad T_{2}:=\boldsymbol{E}\left(T \mid X_{2}\right)-E T \\
T_{12} & :=\mathbb{E}\left(T \mid X_{1}, X_{2}\right)-\mathbb{E}\left(T \mid X_{1}\right)-\mathbb{E}\left(T \mid X_{2}\right)+E T
\end{aligned}
$$

and for $1 \leqslant i, j \leqslant n$ write

$$
E_{i} T:=E\left(T \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right) \quad \text { and } \quad E_{i j} T:=E_{i} E_{j} T
$$

In addition, write

$$
D_{i} T:=T-E_{i} T, \quad i=1, \ldots, n
$$

and

$$
\hat{\beta}_{s}:=\mathbb{E}\left|n^{1 / 2} T_{1}\right|^{s}, \quad \gamma_{s}:=\mathbb{E}\left|n^{3 / 2} T_{12}\right|^{s}, \quad \Delta_{2}^{s}:=\mathbb{E}\left|n^{5 / 2} D_{1} D_{2} D_{3} T\right|^{s}, \quad s \geqslant 0 .
$$

Finally, for $\hat{\sigma}:=\sqrt{\operatorname{var} T}>0$, let

$$
q:=1-\sup _{|x| \in\left[\tilde{\sigma}^{2} / 2 \hat{\tilde{p}}_{3}, \sqrt{n} \mid \hat{\sigma}\right]}\left|\mathbb{E} \exp \left\{\operatorname{itn}^{1 / 2} T_{1}\right\}\right|
$$

and

$$
\eta:=E\left(n^{1 / 2} T_{1}\right)^{3}+3 E n^{5 / 2} T_{1} T_{2} T_{12}
$$

We shall estimate

$$
\begin{equation*}
\delta:=\sup _{x \in \boldsymbol{R}}\left|\boldsymbol{P}\left(\frac{T-\mathbb{E}(T)}{\hat{\sigma}} \leqslant x\right)-\left(\Phi(x)-\frac{\eta}{6 \hat{\sigma}^{3} \sqrt{n}} \Phi^{\prime \prime \prime}(x)\right)\right| . \tag{1}
\end{equation*}
$$

From now on, by c and C we shall denote absolute generic constants: if such a c or C depends on, say, α, we will write $c(\alpha)$ or $C(\alpha)$. By Φ we shall mean the standard normal distribution function. Moreover, $I\{A\}$ will always denote the indicator function of event A.

Recently, a short Edgeworth expansion for symmetric statistics has been obtained in Bentkus et al. [2]:

$$
\begin{equation*}
\delta \leqslant \frac{C}{q^{2} n}\left(\frac{\hat{\beta}_{4}}{\hat{\sigma}^{4}}+\frac{\gamma_{3}}{\hat{\sigma}^{3}}+\frac{\Delta_{3}^{2}}{\hat{\sigma}^{2}}\right) . \tag{2}
\end{equation*}
$$

In Lemmas 1, 2 and 3 of Section 2 we will derive explicit expressions for $\hat{\beta}_{4}, \gamma_{3}$ and Δ_{3}^{2} in the special case of linear combinations of order statistics. These lead to precise upper bounds for these quantities in terms of moments of the underlying distribution function F, and hence to a short Edgeworth expansion of order n^{-1} for T, where the upper bound is given again in terms of the moments of F. The proofs are given in Sections 3, 4 and 5. Note that the results
of Helmers [3] are not applicable because here the weights are assumed to be of the form

$$
c_{j n}=J\left(\frac{j}{n+1}\right) \quad \text { or } \quad c_{j n}=n \int_{(j-1) / n}^{j / n} J(t) d t
$$

with a single weight function $J:(0,1) \rightarrow \boldsymbol{R}$. In Section 2.7 of Bentkus et al. [2] this same structure is used, whereas it is also assumed that $\sup _{x}\left|J^{\prime}(x)\right|$ is bounded.

We assume the quantile function F^{-1} of the population to be differentiable and for $\kappa \geqslant 0$ we set

$$
K=K(F, \kappa):=\sup _{s \in(0,1)}[s(1-s)]^{\kappa}\left(F^{-1}\right)^{\prime}(s)
$$

For

$$
d_{1}:=\max _{1 \leqslant j \leqslant n} n^{p_{1}}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{p_{2}}\left|c_{j n}\right|,
$$

$$
\begin{equation*}
d_{2}:=\max _{2 \leqslant j \leqslant n} n^{q_{1}}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{q_{2}}\left|c_{j n}-c_{j-1, n}\right|, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
d_{3}:=\max _{2 \leqslant j \leqslant n-1} n^{r_{1}}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{r_{2}}\left|c_{j+1, n}-2 c_{j n}+c_{j-1, n}\right| \tag{4}
\end{equation*}
$$

we have the following theorem:
Theorem 1. Let $\kappa \in[0,5 / 4)$, and $p_{1}, p_{2}, q_{1}, q_{2}, r_{1}, r_{2}$ be real numbers satisfying $p_{2}, q_{2}, r_{2} \geqslant 0$. Then there exist constants C and $c=c\left(p_{2}, q_{2}, r_{2}, \kappa\right)$ (independent of n) such that for any n we have

$$
\delta \leqslant \frac{C}{q^{2} n}\left(\frac{d_{1}^{4}}{\hat{\sigma}^{4}}\left(A_{n}^{4} \beta_{4}+c \tilde{A}_{n}^{4} K^{4}\right)+\frac{d_{2}^{3}}{\hat{\sigma}^{3}}\left(B_{n}^{3} \beta_{3}+c \widetilde{B}_{n}^{3} K^{3}\right)+\frac{d_{3}^{2}}{\tilde{\sigma}^{2}}\left(C_{n}^{2} \beta_{2}+c \tilde{C}_{n}^{2} K^{2}\right)\right)
$$

where

$$
\begin{aligned}
A_{n}= & n^{p_{2}-p_{1}} I\left\{p_{1} \geqslant p_{2}\right\}, \\
\tilde{A}_{n}= & n^{-p_{1}} I\left\{p_{1}<p_{2}\right\} \\
& \times\left(I\left\{\kappa+p_{2}<5 / 4\right\}+I\left\{\kappa+p_{2}=5 / 4\right\} \log n+I\left\{\kappa+p_{2}>5 / 4\right\} n^{\kappa+p_{2}-5 / 4}\right), \\
B_{n}= & n^{q_{2}+1-q_{1}} I\left\{q_{1} \geqslant q_{2}+1\right\}, \\
\tilde{B}_{n}= & n^{1-q_{1}} I\left\{q_{1}<q_{2}+1\right\} \\
& \times\left(I\left\{\kappa+q_{2}<5 / 3\right\}+I\left\{\kappa+q_{2}=5 / 3\right\} \log n+I\left\{\kappa+q_{2}>5 / 3\right\} n^{\kappa+q_{2}-5 / 3}\right), \\
C_{n}= & n^{r_{2}+2-r_{1}} I\left\{r_{1} \geqslant r_{2}+2\right\}, \\
\tilde{C}_{n}= & n^{2-r_{1}} I\left\{r_{1}<r_{2}+2\right\} \\
& \times\left(I\left\{\kappa+r_{2}<5 / 2\right\}+I\left\{\kappa+r_{2}=5 / 2\right\} \log n+I\left\{\kappa+r_{2}>5 / 2\right\} n^{\kappa+r_{2}-5 / 2}\right) .
\end{aligned}
$$

The proof of Theorem 1 is based on the fact that

$$
\left\{\begin{array}{l}
\hat{\beta}_{4} \leqslant C d_{1}^{4}\left(A_{n}^{4} \beta_{4}+c \tilde{A}_{n}^{4} K^{4}\right) \tag{5}\\
\gamma_{3} \leqslant C d_{2}^{3}\left(B_{n}^{3} \beta_{3}+c \tilde{B}_{n}^{3} K^{3}\right) \\
\Delta_{3}^{2} \leqslant C d_{3}^{2}\left(C_{n}^{2} \beta_{2}+c \widetilde{C}_{n}^{2} K^{2}\right)
\end{array}\right.
$$

where $c=c\left(p_{2}, q_{2}, r_{2}, \kappa\right)$, which follows from Lemmas 1,2 and 3 in combination with Lemmas 4, 5 and 6 (Sections 6, 7 and 8). (From Lemmas 4-6 it also follows that we may take $C=27$.) By (2), Theorem 1 then follows immediately. Note that $X_{1}, \ldots, X_{n}, T, \hat{\beta}_{s}, \gamma_{s}, \Lambda_{3}^{s}, q, \eta, d_{1}, d_{2}$ and d_{3} all may depend on n.

The following corollary is a direct consequence of Theorem 1. It is the analogue of Corollary 4.2 of van Zwet [7].

Corollary 1. In the special case where $p_{1}=p_{2}=q_{2}=r_{2}=0, q_{1}=1$ and $r_{1}=2$ we have under the conditions of the theorem:

$$
\delta \leqslant \frac{C}{q^{2} n}\left(\frac{d_{1}^{4} \beta_{4}}{\hat{\sigma}^{4}}+\frac{d_{2}^{3} \beta_{3}}{\hat{\sigma}^{3}}+\frac{d_{3}^{2} \beta_{2}}{\hat{\sigma}^{2}}\right)
$$

where C denotes a universal constant. If $\beta_{4}<+\infty$, both $\hat{\sigma}^{2}$ and q are uniformly bounded from below and d_{1}, d_{2} and d_{3} are uniformly bounded from above, this provides an Edgeworth expansion of order n^{-1} for T.

Next we state the analogue of Theorem 3 from Pap and van Zuijlen [5]. Let $\psi:(0,1) \rightarrow \boldsymbol{R}$ be a Lebesgue measurable real-valued function on $(0,1)$ and γ a real number. Taking $J: t \mapsto \psi(t)[t(1-t)]^{-\gamma}$, we consider the weights

$$
\begin{equation*}
c_{j n}:=n \int_{(j-1) / n}^{j / n} J(t) d t \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{j n}:=J\left(\frac{j}{n+1}\right) \tag{7}
\end{equation*}
$$

We start by quoting Theorem 2 of Pap and van Zuijlen [5], a Central Limit Theorem. Assume that the weights $c_{j n}$ satisfy (6).

Theorem 2. Suppose that $0 \leqslant \gamma<\frac{1}{2}$ and that there exist numbers $\Lambda \geqslant 0$ and $\lambda>\frac{1}{2}$ such that $|\psi(t)-\psi(s)| \leqslant \Lambda|t-s|^{\lambda}$ for all $s, t \in(0,1)$. If $\beta_{m}<+\infty$ for some $m>\left(\frac{1}{2}-\gamma\right)^{-1}$, then

$$
T-E T \xrightarrow{d} N\left(0, \hat{\sigma}^{2}(\psi, F)\right) \quad \text { and } \quad \hat{\sigma}^{2}(T) \rightarrow \hat{\sigma}^{2}(\psi, F),
$$

where

$$
\hat{\sigma}^{2}(\psi, F)=\int_{0}^{1} \int_{0}^{1}[s(1-s) t(1-t)]^{-\gamma} \psi(s) \psi(t)(\min (s, t)-s t) d F^{-1}(s) d F^{-1}(t)
$$

In the case of weights (7), we have the same results.

Assume we take our weights of the form (7). The announced Theorem 3 reads as follows:

Theorem 3. Suppose that $\kappa \in[0,5 / 4), \gamma>0, \kappa+\gamma<\frac{1}{2}$ and that ψ is twice boundedly differentiable. Then there is a constant $c=c(\kappa, \gamma)$ such that

$$
\delta \leqslant \frac{c}{q^{2} n}\left(\frac{K^{4}\|\psi\|_{\infty}^{4}}{\hat{\sigma}^{4}}+\frac{K^{3}\left(\left\|\psi^{\prime}\right\|_{\infty}+\|\psi\|_{\infty}\right)^{3}}{\hat{\sigma}^{3}}+\frac{K^{2}\left(\left\|\psi^{\prime \prime}\right\|_{\infty}+\left\|\psi^{\prime}\right\|_{\infty}+\|\psi\|_{\infty}\right)^{2}}{\hat{\sigma}^{2}}\right) .
$$

A theorem similar to Theorem 3 can be proved in the case of weights of the form (6). The proof of Theorem 3 will be given in Section 9.

Remark. Suppose that, instead of (6), for $\delta_{1}=0, \gamma_{1}, \gamma_{2} \geqslant 0, \delta_{2}>0$ we consider weights of the form

$$
c_{j n}:=n \int_{(j-1) / n}^{j / n} J_{n}(t) d t, \quad \text { where } J_{n}(t):=\sum_{i=1}^{2} \psi_{i}(t)[t(1-t)]^{-\gamma_{i}} n^{-\delta_{i}} .
$$

Using the same techniques as in the proof of Theorem 3, it is not too difficult to formulate a counterpart of the theorem. Of course, all expressions get more notationally involved. Naturally, we can go on in this way.

2. THE BETA DENSITY AND SOME FUNDAMENTAL LEMMAS

From now on we pretend that $X_{j}=F^{-1}\left(U_{j}\right)$, where $U_{j}, j=1, \ldots, n$, are i.i.d. random variables such that all U_{j} have the uniform distribution on the interval $(0,1)$. As usual, for any sequence S_{1}, \ldots, S_{r} of random variables the order statistics $S_{1: r}, \ldots, S_{\text {r:r }}$ denote a reordering of that sequence such that $S_{1: r} \leqslant \ldots \leqslant S_{r: r}$. For any subsequence S_{1}, \ldots, S_{r} of U_{1}, \ldots, U_{n}, by convention, $S_{-1: r}=S_{0: r}:=0$ and $S_{r+1: r}=S_{r+2: r}:=1$; for any subsequence S_{1}, \ldots, S_{r} of X_{1}, \ldots, X_{n}, by convention, $S_{-1: r}=S_{0: r}:=-\infty$ and $S_{r+1: r}=S_{r+2: r}:=+\infty$.

The beta density will play an important role when we examine γ_{3}. For $1 \leqslant k \leqslant l$ it is defined by

$$
b_{k, l}(s):=\frac{l!}{(k-1)!(l-k)!} s^{k-1}(1-s)^{l-k}=l\binom{l-1}{k-1} s^{k-1}(1-s)^{l-k} \quad(s \in[0,1])
$$

By convention, $b_{-1, l}:=b_{0, l}:=b_{l+1, l}:=b_{l+2, l} \equiv 0$. We note that $b_{j, n}$ is in fact the probability density of $U_{j: n}$. Furthermore, we set $\boldsymbol{P}_{l}^{s}(k):=\boldsymbol{P}(X=k)$ for a random variable X which is binomially distributed with parameters l and s, that is, for $s \in(0,1)$ we set

$$
P_{l}^{s}(k):= \begin{cases}\binom{l}{k} s^{k}(1-s)^{l-k} & \text { for } k=0, \ldots, l, \tag{8}\\ 0 & \text { for } k \notin\{0, \ldots, l\}\end{cases}
$$

The following simple equalities will be used in the sequel: for $0 \leqslant k \leqslant l+1$ we have $b_{k-1, l-1}(s)-b_{k, l-1}(s)=\frac{1}{l} b_{k, l}^{\prime}(s) \quad$ and $\quad(l-k) b_{k, l}(s)+k b_{k+1, l}(s)=l b_{k, l-1}(s)$, and hence

$$
\begin{equation*}
b_{k, l}(s)-b_{k, l-1}(s)=\frac{k}{l(l+1)} b_{k+1, l+1}^{\prime}(s) \tag{9}
\end{equation*}
$$

for all $1 \leqslant k \leqslant l$ we have
(10) $\quad b_{k, l}(s)=l \mathbb{P}_{l-1}^{s}(k-1) \quad$ and $\quad \int_{0}^{s}\left[b_{k, l}-b_{k, l-1}\right](t) d t=s \boldsymbol{P}_{l-1}^{s}(k-1)$.

Note that for each $l \in\{1,2, \ldots\}$ we have

$$
\begin{equation*}
\sum_{k=1}^{l} b_{k, l}(s)=\sum_{k=1}^{l} l P_{l-1}^{s}(k-1)=l \tag{11}
\end{equation*}
$$

Moreover, for all $0 \leqslant k \leqslant l$

$$
\begin{align*}
\boldsymbol{P}_{l}^{s}(k)=s \boldsymbol{P}_{l-1}^{s}(k-1)+(1-s) \boldsymbol{P}_{l-1}^{s} & (k) \tag{12}\\
& =\boldsymbol{P}_{l-1}^{s}(k)+s\left[\boldsymbol{P}_{l-1}^{s}(k-1)-\boldsymbol{P}_{l-1}^{s}(k)\right]
\end{align*}
$$

We also have (by application of (9)) for $1<k \leqslant l$:

$$
\begin{equation*}
\int_{0}^{s}\left[b_{k-1, l-1}-b_{k, l}\right](t) d t=(1-s) P_{l-1}^{s}(k-1) \tag{13}
\end{equation*}
$$

The next three lemmas are crucial for the analysis of $\hat{\beta}_{4}=\boldsymbol{E}\left|n^{1 / 2} T_{1}\right|^{4}$, $\gamma_{3}=\boldsymbol{E}\left|n^{3 / 2} T_{12}\right|^{3}$ and $\Delta_{3}^{2}=\boldsymbol{E}\left|n^{5 / 2} D_{1} D_{2} D_{3} T\right|^{2}$. The first one has already been mentioned in van Zwet [7]. The second and the third one will be shown to be correct in Sections 4 and 5. Some preparations concerning conditional distributions of order statistics are made in Section 3.

Lemma 1. We have:

$$
n^{1 / 2} T_{1}=\frac{1}{n} \sum_{j=1}^{n} c_{j n}\left\{\int_{0}^{U_{1}} s b_{j, n}(s) d F^{-1}(s)-\int_{U_{1}}^{1}(1-s) b_{j, n}(s) d F^{-1}(s)\right\}
$$

Lemma 2. We have:

$$
n^{3 / 2} T_{12}=\frac{n}{n-1} \sum_{j=1}^{n-1}\left(c_{j n}-c_{j+1, n}\right)\left\{\sum_{i=0}^{2}(-1)^{i} \int_{U_{i ; 2}}^{U_{i+1}: 2} s^{2-i}(1-s)^{i} b_{j, n-1}(s) d F^{-1}(s)\right\}
$$

Next we set $K_{0}:=0, K_{4}:=n+1$ and define $K_{1}<K_{2}<K_{3}$ as the ordered ranks of X_{1}, X_{2} and X_{3} among X_{1}, \ldots, X_{n}.

Lemma 3. We have:

$$
\begin{align*}
& n^{1 / 2}\left(D_{1} D_{2} D_{3} T\right) \tag{14}\\
& =\sum_{i=0}^{3}(-1)^{i} \sum_{j=K_{i}+2-i}^{K_{i}+1+1-i}\left(c_{j+1, n}-2 c_{j, n}+c_{j-1, n}\right) \int_{U_{j-2+i: n}}^{U_{j-1+i: n}} s^{3-i}(1-s)^{i} d F^{-1}(s) .
\end{align*}
$$

3. CONDITIONAL DISTRIBUTIONS OF $U_{j: n}$

3.1. The conditional distribution given U_{1} and/or U_{2}. In order to analyse γ_{3} we clearly need the conditional distribution of $U_{j: n}$ given U_{1} and/or U_{2}, since

$$
\gamma_{3}=\boldsymbol{E}\left|n^{3 / 2} T_{12}\right|^{3}=\mathbb{E}\left|n \sum_{j=1}^{n} c_{j n} H_{j}\right|^{3}
$$

with

$$
\begin{align*}
H_{j}= & \mathbb{E}\left(X_{j: n} \mid X_{1}, X_{2}\right)-\boldsymbol{E}\left(X_{j: n} \mid X_{1}\right)-\boldsymbol{E}\left(X_{j: n} \mid X_{2}\right)+\boldsymbol{E} X_{j: n} \tag{15}\\
= & \boldsymbol{E}\left(F^{-1}\left(U_{j: n}\right) \mid U_{1}, U_{2}\right)-\boldsymbol{E}\left(F^{-1}\left(U_{j: n}\right) \mid U_{1}\right) \\
& -\mathbb{E}\left(F^{-1}\left(U_{j: n}\right) \mid U_{2}\right)+E F^{-1}\left(U_{j: n}\right) .
\end{align*}
$$

From elementary considerations the following results can be deduced. The conditional distribution of $U_{j: n}$ given U_{1} is given by

$$
\boldsymbol{P}_{U_{j: n} \mid U_{1}}=b_{j, n-1} 1_{\left[0, U_{1}\right]} \lambda+\boldsymbol{P}\left(U_{j: n}=U_{1}\right) \delta_{U_{1}}+b_{j-1, n-1} 1_{\left[U_{1}, 1\right]} \lambda,
$$

where λ denotes the Lebesgue measure on $\mathbb{R}, \delta_{U_{1}}$ is the Dirac measure in U_{1}, and

$$
P\left(U_{j: n}=U_{1}\right)= \begin{cases}\int_{0}^{U_{1}}\left[b_{j-1, n-1}(s)-b_{j, n-1}(s)\right] d s & \text { for } j=2, \ldots, n \\ \int_{U_{1}}^{1}\left[b_{j, n-1}(s)-b_{j-1, n-1}(s)\right] d s & \text { for } j=1, \ldots, n-1\end{cases}
$$

Of course, we obtain the conditional distribution of $U_{j: n}$ given U_{2} after substituting U_{2} for U_{1} in these results.

The conditional distribution of $U_{j: n}$ given U_{1}, U_{2} in turn is given by

$$
\begin{aligned}
\boldsymbol{P}_{U_{j: n} \mid U_{1}, U_{2}}=b_{j, n-2} 1_{\left[0, U_{1: 2]}\right]} \lambda+ & \boldsymbol{P}\left(U_{j: n}=U_{1: 2}\right) \delta_{U_{1: 2}}+b_{j-1, n-2} 1_{\left[U_{1: 2}, U_{2: 2}\right]} \lambda \\
& +\boldsymbol{P}\left(U_{j: n}=U_{2: 2}\right) \delta_{U_{2: 2}}+b_{j-2, n-2} 1_{\left[U_{2: 2}, 1\right]} \lambda,
\end{aligned}
$$

where

$$
\begin{array}{ll}
\mathbb{P}\left(U_{j: n}=U_{1: 2}\right)=\int_{0}^{U_{1: 2}}\left[b_{j-1, n-2}(s)-b_{j, n-2}(s)\right] d s & \text { for } j=2, \ldots, n, \\
\mathbb{P}\left(U_{j: n}=U_{2: 2}\right)=\int_{U_{2: 2}}^{1}\left[b_{j-1, n-2}(s)-b_{j-2, n-2}(s)\right] d s \quad \text { for } j=1, \ldots, n-1,
\end{array}
$$

and

$$
\boldsymbol{P}\left(U_{1: n}=U_{1: 2}\right)=1-\int_{0}^{U_{1: 2}} b_{1, n-2}(s) d s, \quad \boldsymbol{P}\left(U_{n: n}=U_{2: 2}\right)=1-\int_{U_{2: 2}}^{1} b_{n-2, n-2}(s) d s
$$

3.2. The conditional distribution given $n-3, n-2$ or $n-1$ of the U_{j} 's. In order to analyze Δ_{3}^{2} we need the conditional distribution of $U_{j: n}$ given $n-3$, $n-2$ or $n-1$ of the U_{j} 's, since $\Delta_{3}^{2}=\mathbb{E}\left|n^{5 / 2} D_{1} D_{2} D_{3} T\right|^{2}$, where

$$
D_{1} D_{2} D_{3} T=T-E_{1} T-E_{2} T-E_{3} T+E_{12} T+E_{13} T+E_{23} T-E_{123} T,
$$

and hence

$$
D_{1} D_{2} D_{3} T=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} c_{j n} M_{j}
$$

with

$$
\begin{aligned}
M_{j}:=D_{1} D_{2} D_{3} X_{j: n}= & X_{j: n}-\boldsymbol{E}_{1}\left(X_{j: n}\right)-E_{2}\left(X_{j: n}\right)-E_{3}\left(X_{j: n}\right) \\
& +E_{12}\left(X_{j: n}\right)+E_{13}\left(X_{j: n}\right)+E_{23}\left(X_{j: n}\right)-E_{123}\left(X_{j: n}\right) .
\end{aligned}
$$

To obtain the conditional distribution of $U_{j: n}$ given U_{2}, \ldots, U_{n}, given $U_{1}, U_{3}, \ldots, U_{n}$, given $U_{1}, U_{2}, U_{4}, \ldots, U_{n}$, given U_{3}, \ldots, U_{n}, given $U_{2}, U_{4}, \ldots, U_{n}$, given $U_{1}, U_{4}, \ldots, U_{n}$, and given U_{4}, \ldots, U_{n}, respectively, we define subsequences of X_{1}, \ldots, X_{n} and U_{1}, \ldots, U_{n}, respectively, by

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left(A_{1}, \ldots, A_{n-1}\right):=\left(X_{2}, X_{3}, X_{4}, \ldots, X_{n}\right), \\
\left(B_{1}, \ldots, B_{n-1}\right):=\left(X_{1}, X_{3}, X_{4}, \ldots, X_{n}\right), \\
\left(C_{1}, \ldots, C_{n-1}\right):=\left(X_{1}, X_{2}, X_{4}, \ldots, X_{n}\right),
\end{array}\right. \\
& \left\{\begin{array}{l}
\left(A_{1}^{*}, \ldots, A_{n-1}^{*}\right):=\left(U_{2}, U_{3}, U_{4}, \ldots, U_{n}\right), \\
\left(B_{1}^{*}, \ldots, B_{n-1}^{*}\right):=\left(U_{1}, U_{3}, U_{4}, \ldots, U_{n}\right), \\
\left(C_{1}^{*}, \ldots, C_{n-1}^{*}\right):=\left(U_{1}, U_{2}, U_{4}, \ldots, U_{n}\right),
\end{array}\right.
\end{aligned}
$$

and

$$
\left\{\begin{array} { l }
{ (P _ { 1 } , \ldots , P _ { n - 2 }) : = (X _ { 3 } , X _ { 4 } , \ldots , X _ { n }) , } \\
{ (Q _ { 1 } , \ldots , Q _ { n - 2 }) : = (X _ { 2 } , X _ { 4 } , \ldots , X _ { n }) , } \\
{ (R _ { 1 } , \ldots , R _ { n - 2 }) : = (X _ { 1 } , X _ { 4 } , \ldots , X _ { n }) , }
\end{array} \quad \left\{\begin{array}{l}
\left(P_{1}^{*}, \ldots, P_{n-2}^{*}\right):=\left(U_{3}, U_{4}, \ldots, U_{n}\right), \\
\left(Q_{1}^{*}, \ldots, Q_{n-2}^{*}\right):=\left(U_{2}, U_{4}, \ldots, U_{n}\right), \\
\left(R_{1}^{*}, \ldots, R_{n-2}^{*}\right):=\left(U_{1}, U_{4}, \ldots, U_{n}\right),
\end{array}\right.\right.
$$

and, finally,

$$
\left(T_{1}, \ldots, T_{n-3}\right):=\left(X_{4}, \ldots, X_{n}\right), \quad\left(T_{1}^{*}, \ldots, T_{n-3}^{*}\right):=\left(U_{4}, \ldots, U_{n}\right)
$$

Remember that $X_{j}=F^{-1}\left(U_{j}\right)$, so that

$$
\boldsymbol{E}_{1} X_{j: n}=\boldsymbol{E}\left(F^{-1}\left(U_{j: n}\right) \mid U_{2}, \ldots, U_{n}\right) \quad \text { for } j=1, \ldots, n,
$$

and so on.
As can be checked easily: the conditional distribution of $U_{j: n}$ given $A_{1}^{*}, \ldots, A_{n-1}^{*}$ is determined by

$$
\boldsymbol{P}_{v_{j: n} \mid A_{1}^{*}, \ldots, A_{n-1}^{*}}=A_{j-1: n-1}^{*} \delta_{A_{j-1: n-1}^{*}}+1_{\left[A_{j-1: n-1}^{*}, A_{j, n-1}^{*}\right]} \lambda+\left(1-A_{j: n-1}^{*}\right) \delta_{A_{j: n-1}^{*}},
$$

and hence

$$
\begin{aligned}
& \boldsymbol{E}\left(F^{-1}\left(U_{j: n}\right) \mid A_{1}^{*}, \ldots, A_{n-1}^{*}\right) \\
& =F^{-1}\left(A_{j-1: n-1}^{*}\right) A_{j-1: n-1}^{*}+\int_{A_{j-1: n-1}^{*}}^{A_{j: n-1}^{*}} F^{-1}(s) d s+F^{-1}\left(A_{j: n-1}^{*}\right)\left(1-A_{j: n-1}^{*}\right) .
\end{aligned}
$$

Therefore, by partial integration we obtain

$$
\begin{equation*}
\boldsymbol{E}\left(X_{j: n} \mid A_{1}, \ldots, A_{n-1}\right)=A_{j-1: n-1}+\int_{A_{j-1: n-1}}^{A_{j: n-1}}[1-F(t)] d t . \tag{16}
\end{equation*}
$$

The conditional distribution of $U_{j: n}$ given either $B_{1}^{*}, \ldots, B_{n-1}^{*}$ or $C_{1}^{*}, \ldots, C_{n-1}^{*}$ can be dealt with in exactly the same way.

Next we look at the probability distribution of $U_{j: n}$ given $P_{1}^{*}, \ldots, P_{n-2}^{*}$ or $Q_{1}^{*}, \ldots, Q_{n-2}^{*}$ or $R_{1}^{*}, \ldots, R_{n-2}^{*}$. We obtain:

$$
\begin{aligned}
\boldsymbol{P}_{U_{j: n} \mid P_{1}^{*}, \ldots, P_{n-2}^{*}}= & \sum_{l=1}^{2} g_{l} 1_{\left[P_{j-3+l: n-2}^{*}, P_{j-2+l: n-2}^{*}\right]} \lambda \\
& +\sum_{k=0}^{2}\binom{2}{k}\left[P_{j-2+k: n-2}^{*}\right]^{2-k}\left(1-P_{j-2+k: n-2}^{*}\right)^{k} \delta_{P_{j-2+k: n-2}^{*}},
\end{aligned}
$$

where $g_{1}: s \mapsto 2 s$ and $g_{2}: s \mapsto 2(1-s)$. Therefore

$$
\begin{aligned}
\boldsymbol{E}\left(F^{-1}\left(U_{j: n}\right) \mid\right. & \left.P_{1}^{*}, \ldots, P_{n-2}^{*}\right)=\sum_{i=1}^{2} \int_{P_{j-3+1: n-2}^{*}}^{P_{j-2+l: n-2}^{*}} F^{-1}(s) g_{l}(s) d s \\
& +\sum_{k=0}^{2} F^{-1}\left(P_{j-2+k: n-2}^{*}\right)\binom{2}{k}\left[P_{j-2+k: n-2}^{*}\right]^{2-k}\left(1-P_{j-2+k: n-2}^{*}\right)^{k} .
\end{aligned}
$$

Partial integration leads to

$$
\begin{align*}
\boldsymbol{E}\left(X_{j: n} \mid P_{1}, \ldots, P_{n-2}\right)=P_{j-2: n-2}+\int_{P_{j-2: n-2}}^{P_{j-1: n-2}}[& \left.1-F^{2}(t)\right] d t \tag{17}\\
& +\int_{P_{j-1: n-2}}^{P_{j: n-2}}[1-F(t)]^{2} d t
\end{align*}
$$

Again, the other sequences can be dealt with in the same way.

Finally, for $T_{1}^{*}, \ldots, T_{n-3}^{*}$ we note that

$$
\begin{aligned}
\boldsymbol{P}_{U_{j: n} \mid T_{1}^{*}, \ldots, T_{n-3}^{*}}= & \sum_{l=1}^{3} h_{l} 1_{\left[T_{j-4+1: n-3}^{*}, T_{j-3+l: n-3}^{*}\right]} \lambda \\
& +\sum_{k=0}^{3}\binom{3}{k}\left[T_{j-3+k: n-3}^{*}\right]^{3-k}\left(1-T_{j-3+k: n-3}^{*}\right)^{k} \delta_{T_{j-3+k: n-3}^{*}},
\end{aligned}
$$

where $h_{1}: s \mapsto 3 s^{2}, h_{2}: s \mapsto 6 s(1-s)$, and $h_{3}: s \mapsto 3(1-s)^{2}$. This leads to

$$
\begin{aligned}
\boldsymbol{E}\left(F^{-1}\left(U_{j: n}\right)\right. & \left.\mid T_{1}^{*}, \ldots, T_{n-3}^{*}\right)=\sum_{l=1}^{3} \int_{T_{j-4+l: n-3}^{*}}^{T_{j-3+l: n-3}^{*}} F^{-1}(s) h_{l}(s) d s \\
& +\sum_{k=0}^{3} F^{-1}\left(T_{j-3+k: n-3}^{*}\right)\binom{3}{k}\left[T_{j-3+k: n-3}^{*}\right]^{3-k}\left(1-T_{j-3+k: n-3}^{*}\right)^{k},
\end{aligned}
$$

which in turn leads to:

$$
\begin{align*}
& \boldsymbol{E}\left(X_{j: n} \mid T_{1}, \ldots, T_{n-3}\right) \tag{18}\\
& \quad=T_{j-3: n-3}+\sum_{m=0}^{2} \int_{T_{j-3+m: n-3}}^{T_{j-2+m: n-3}}\left\{\sum_{k=0}^{2-m}\binom{3}{k} F(t)^{k}[1-F(t)]^{3-k}\right\} d t .
\end{align*}
$$

4. ANALYSIS OF γ_{3} : PROOF OF LEMMA 2

Recall that $n^{3 / 2} T_{12}=n \sum_{j=1}^{n} c_{j n} H_{j}$, with H_{j} as in (15). With the results of Section 3 , for all j we are able to give the following explicit formula for H_{j} :

$$
\begin{aligned}
H_{j}= & \int_{0}^{U_{1: 2}} F^{-1}(s)\left[b_{j, n-2}-2 b_{j, n-1}+b_{j, n}\right](s) d s \\
& +F^{-1}\left(U_{1: 2}\right) \int_{0}^{U_{1: 2}}\left[b_{j-1, n-2}-b_{j, n-2}-b_{j-1, n-1}+b_{j, n-1}\right](s) d s \\
& +\int_{U_{1: 2}}^{U_{2: 2}} F^{-1}(s)\left[b_{j-1, n-2}-b_{j-1, n-1}-b_{j, n-1}+b_{j, n}\right](s) d s \\
& +F^{-1}\left(U_{2: 2}\right) \int_{U_{2: 2}}^{1}\left[b_{j-1, n-2}-b_{j-2, n-2}-b_{j, n-1}+b_{j-1, n-1}\right](s) d s \\
& +\int_{U_{2: 2}}^{1} F^{-1}(s)\left[b_{j-2, n-2}-2 b_{j-1, n-1}+b_{j, n}\right](s) d s .
\end{aligned}
$$

We are looking for an alternative form for H_{j}.
We use partial integration on the first, third and fifth term of this expression in order to obtain this nicer form. For this purpose we define the following
three indefinite integrals:

$$
\begin{gathered}
I_{1}(s):=\int_{0}^{s}\left[b_{j, n-2}-2 b_{j, n-1}+b_{j, n}\right](t) d t \\
I_{2}(s):=\int_{0}^{s}\left[b_{j-1, n-2}-b_{j-1, n-1}-b_{j, n-1}+b_{j, n}\right](t) d t
\end{gathered}
$$

and

$$
I_{3}(s):=\int_{0}^{s}\left[b_{j-2, n-2}-2 b_{j-1, n-1}+b_{j, n}\right](t) d t .
$$

Application of (10) and (13) leads to the equalities

$$
\begin{aligned}
I_{1}(s) & =-s\left\{\mathbb{P}_{n-2}^{s}(j-1)-\boldsymbol{P}_{n-1}^{s}(j-1)\right\} \\
I_{2}(s) & =-s\left\{\mathbb{P}_{n-2}^{s}(j-2)-\boldsymbol{P}_{n-1}^{s}(j-1)\right\}
\end{aligned}
$$

and

$$
I_{3}(s)=-(1-s)\left\{P_{n-1}^{s}(j-1)-P_{n-2}^{s}(j-2)\right\} .
$$

As $\mathbb{E}|X|<+\infty$, we have

$$
\lim _{s \downarrow 0} F^{-1}(s) I_{1}(s)=0 \quad \text { and } \quad \lim _{s \uparrow 1} F^{-1}(s) I_{3}(s)=0
$$

Now the first term of the expression for H_{j} equals

$$
\left[F^{-1}(s) I_{1}(s)\right]_{0}^{U_{1: 2}}-\int_{0}^{U_{1: 2}} I_{1}(s) d F^{-1}(s),
$$

and so on. Substituting these forms in the expression for H_{j} we see that the second and fourth term cancel and we find that

$$
H_{j}=-\int_{0}^{U_{1: 2}} I_{1}(s) d F^{-1}(s)-\int_{U_{1: 2}}^{U_{2: 2}} I_{2}(s) d F^{-1}(s)-\int_{U_{2: 2}}^{1} I_{3}(s) d F^{-1}(s) .
$$

Finally, application of (12) shows that

$$
H_{j}=\sum_{i=0}^{2}(-1)^{i} \int_{V_{i: 2}}^{U_{i+1: 2}} s^{2-i}(1-s)^{i}\left\{\boldsymbol{P}_{n-2}^{s}(j-1)-\boldsymbol{P}_{n-2}^{s}(j-2)\right\} d F^{-1}(s) .
$$

Consequently,

$$
\sum_{j=1}^{n} c_{j n} H_{j}=\sum_{j=1}^{n-1}\left(c_{j n}-c_{j+1, n}\right)\left\{\sum_{i=0}^{2}(-1)^{i} \int_{U_{i: 2}}^{U_{t+1: 2}} s^{2-i}(1-s)^{i} P_{n-2}^{s}(j-1) d F^{-1}(s)\right\},
$$

and hence the statement of Lemma 2 follows readily.
We remark that a proof of Lemma 1 can be easily constructed along the lines of the proof of Lemma 2.

5. ANALYSIS OF Δ_{3}^{2} : PROOF OF LEMMA 3

Summarizing the results of Section 3 we see that

$$
D_{1} D_{2} D_{3} T=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} c_{j n} M_{j}
$$

where (see (16)-(18))

$$
\begin{aligned}
M_{j}= & X_{j: n}-\sum_{E \in\{A, B, C]}\left(E_{j-1: n-1}+\int_{E_{j-1: n-1}}^{E_{j: n-1}}\{1-F(t)\} d t\right) \\
& +\sum_{F \in\{P, Q, R\}}\left(F_{j-2: n-2}+\int_{F_{j-2: n-2}}^{F_{j-1: n-2}}\left\{1-F^{2}(t)\right\} d t+\int_{F_{j-1: n-2}}^{F_{j: n-2}}\{1-F(t)\}^{2} d t\right) \\
& -\left(T_{j-3: n-3}+\sum_{m=0}^{2} \int_{T_{j-3+m: n-3}}^{T_{j-2+m: n-3}}\left\{\sum_{k=0}^{2-m}\binom{3}{k} F(t)^{k}(1-F(t))^{3-k}\right\} d t\right) .
\end{aligned}
$$

As mentioned in Lemma 3, we denote the ranks of X_{1}, X_{2} and X_{3} in increasing order by K_{1}, K_{2} and K_{3}. With the aid of the given ordered ranks of X_{1}, X_{2} and X_{3}, we are able to reconstruct the order statistics of the X 's from the ordered A 's, and so on. For example, for $X_{1} \leqslant X_{2} \leqslant X_{3}$ we see that

$$
\begin{aligned}
\left(A_{1: n-1}, \ldots, A_{K_{1}-1: n-1}, A_{K_{1}: n-1}\right. & \left., \ldots, A_{n-1: n-1}\right) \\
& =\left(X_{1: n}, \ldots, X_{K_{1}-1: n}, X_{K_{1}+1: n}, \ldots, X_{n: n}\right)
\end{aligned}
$$

From this point on it is a matter of careful bookkeeping to find out that (14) is correct, which completes the proof of Lemma 3.

6. AN UPPER BOUND FOR $\hat{\beta}_{4}$

In the next three sections we will prove (5), from which our main theorem follows. The three lemmas that will follow, Lemmas 4-6, precisely state what we need.

First we prove a lemma concerning $\hat{\beta}_{4}$. In the following we repeatedly use the L^{p}-norm $\|T\|_{p}:=\left\{E|T|^{p}\right\}^{1 / p}(p \geqslant 1)$. For the following three sections, let $A_{n}, \tilde{A}_{n}, B_{n}, \tilde{B}_{n}, C_{n}, \tilde{C}_{n}$ be as defined in Theorem 1.

Lemma 4. There exists a $c=c\left(p_{2}, \kappa\right)$ for which

$$
\hat{\beta}_{4}^{1 / 4} \leqslant 2 d_{1} A_{n} \beta_{4}^{1 / 4}+c K d_{1} \tilde{A}_{n} .
$$

Proof. First we note that

$$
\begin{equation*}
\boldsymbol{E}|X|=\int_{0}^{+\infty}(1-F(s)) d s+\int_{-\infty}^{0} F(s) d s \tag{19}
\end{equation*}
$$

and

$$
\begin{align*}
d_{1} \geqslant & n^{p_{1}-p_{2}}\left|c_{j n}\right|, \quad d_{2} \geqslant n^{q_{1}-q_{2}}\left|c_{j n}-c_{j-1, n}\right|, \\
& d_{3} \geqslant n^{r_{1}-r_{2}}\left|c_{j+1, n}-2 c_{j n}+c_{j-1, n}\right|, \tag{20}
\end{align*}
$$

since

$$
\frac{1}{n} \leqslant \frac{j}{n}\left(1-\frac{j-1}{n}\right) \quad \text { for } 1 \leqslant j \leqslant n
$$

Hence Lemma 1 leads us to

$$
\begin{aligned}
d_{1}^{-1} n^{p_{1}-p_{2}}\left|n^{1 / 2} T_{1}\right| & \leqslant \frac{1}{n} \sum_{j=1}^{n}\left\{\int_{0}^{U_{1}} s b_{j, n}(s) d F^{-1}(s)+\int_{U_{1}}^{1}(1-s) b_{j, n}(s) d F^{-1}(s)\right\} \\
& =\int_{0}^{U_{1}} s d F^{-1}(s)+\int_{U_{1}}^{1}(1-s) d F^{-1}(s) \quad \text { (see (11)) } \\
& =\int_{-\infty}^{0} F(t) d t+\int_{0}^{X_{1}} F(t) d t+\int_{X_{1}}^{0}(1-F(t)) d t+\int_{0}^{+\infty}(1-F(t)) d t \\
& \leqslant E\left|X_{1}\right|+\left|X_{1}\right| \quad \text { (see (19))). }
\end{aligned}
$$

In the case where $p_{1} \geqslant p_{2}$, this shows us that

$$
\begin{equation*}
\hat{\beta}_{4}^{1 / 4}=\left\|n^{1 / 2} T_{1}\right\|_{4} \leqslant d_{1} n^{p_{2}-p_{1}}\left(\left\|E\left|X_{1}\right|\right\|_{4}+\left\|X_{1}\right\|_{4}\right) \leqslant 2 d_{1} A_{n} \beta_{4}^{1 / 4} \tag{21}
\end{equation*}
$$

which completes the proof for $p_{1} \geqslant p_{2}$.
Next we consider the case where $p_{1}<p_{2}$. Note that

$$
\begin{aligned}
\hat{\beta}_{4}^{1 / 4}= & \left\|n^{1 / 2} T_{1}\right\|_{4} \\
\leqslant & \frac{d_{1}}{n^{p_{1}+1}} \sum_{j=1}^{n}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-p_{2}} \\
& \times\left\{\left\|\int_{0}^{U_{1}} s b_{j, n}(s) d F^{-1}(s)\right\|_{4}+\left\|\int_{U_{1}}^{1}(1-s) b_{j, n}(s) d F^{-1}(s)\right\|_{4}\right\} .
\end{aligned}
$$

A little later we will show that for $j=1, \ldots, n$ and some $c=c(\kappa)$

$$
\begin{equation*}
\left\|\int_{0}^{U_{1}} s b_{j, n}(s) d F^{-1}(s)\right\|_{4} \leqslant c K\left(\frac{j}{n}\right)^{1-\kappa}\left(1-\frac{j-1}{n}\right)^{1 / 4-\kappa} . \tag{22}
\end{equation*}
$$

By symmetry arguments we have

$$
\left\|\int_{U_{1}}^{1}(1-s) b_{j, n}(s) d F^{-1}(s)\right\|_{4} \leqslant c K\left(\frac{j}{n}\right)^{1 / 4-\kappa}\left(1-\frac{j-1}{n}\right)^{1-\kappa}
$$

so that

$$
\left\|\int_{0}^{U_{1}} s b_{j, n}(s) d F^{-1}(s)\right\|_{4}+\left\|\int_{U_{1}}^{1}(1-s) b_{j, n}(s) d F^{-1}(s)\right\|_{4} \leqslant 2 c K\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{1 / 4-\kappa},
$$

and therefore

$$
\hat{\beta}_{4}^{1 / 4} \leqslant 2 c K d_{1} n^{-p_{1}} \frac{1}{n} \sum_{j=1}^{n}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{1 / 4-\kappa-p_{2}} .
$$

In order to study the behavior of this expression we approximate

$$
\frac{1}{n} \sum_{j=1}^{n}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{1 / 4-\kappa-p_{2}}
$$

by integrals of the form

$$
\int_{1 / n}^{1-1 / n}[s(1-s)]^{1 / 4-\kappa-p_{2}} d s
$$

Constants which appear over here depend on $\kappa+p_{2}$, so at the end we have constants depending both on κ and on p_{2}. Doing this it follows easily that also in this case the result of Lemma 4 applies, which completes its proof, provided that (22) is correct.

We turn to the proof of (22). We remind the reader of the gamma function

$$
\Gamma: s \mapsto \int_{0}^{+\infty} t^{s-1} e^{-t} d t
$$

and the beta function

$$
B(u, v):=\int_{0}^{1} t^{u-1}(1-t)^{v-1} d t
$$

satisfying

$$
\Gamma(k+1)=k!\quad \text { and } \quad B(u, v)=\frac{\Gamma(u) \Gamma(v)}{\Gamma(u+v)} \quad \text { for all } k \in N, u, v>0
$$

It is known (see, for example, Lemma 2 in Pap and van Zuijlen [5]) that

$$
\begin{equation*}
C_{1}(y) \leqslant \frac{\Gamma(k+y)}{\Gamma(k)} / k^{y} \leqslant C_{2}(y) \quad \text { for } k>-y . \tag{23}
\end{equation*}
$$

Suppose that $j \in\{1, \ldots, n-1\}$ or $\kappa<1$. As

$$
s b_{j, n}(s)=\frac{j}{n+1} b_{j+1, n+1}(s)
$$

we have

$$
\begin{aligned}
\left\|\int_{0}^{U_{1}} s b_{j, n}(s) d F^{-1}(s)\right\|_{4}^{4} & =\left(\frac{j}{n+1}\right)^{4} \boldsymbol{E}\left(\int_{0}^{U_{1}} b_{j+1, n+1}(s) d F^{-1}(s)\right)^{4} \\
& \leqslant\left(\frac{j}{n+1}\right)^{4}\left(\int_{0}^{1} b_{j+1, n+1}(s) d F^{-1}(s)\right)^{3} E \int_{0}^{U_{1}} b_{j+1, n+1}(s) d F^{-1}(s) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\int_{0}^{1} b_{j+1, n+1}(s) d F^{-1}(s) & \leqslant K \frac{(n+1)!}{j!(n-j)!} B(j+1-\kappa, n-j+1-\kappa) \\
& \leqslant K \frac{\Gamma(n+2)}{\Gamma(n+2-2 \kappa)} \frac{\Gamma(j+1-\kappa)}{\Gamma(j+1)} \frac{\Gamma(n-j+1-\kappa)}{\Gamma(n-j+1)} \\
& \leqslant c_{1} K(n+2)^{2 \kappa}(j+1)^{-\kappa}(n-j+1)^{-\kappa} \quad(\text { see }(23)) \\
& \leqslant c_{1} K\left(\frac{j+1}{n+2}\right)^{-\kappa}\left(\frac{n-(j-1)}{n+2}\right)^{-\kappa} \leqslant c_{2} K\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-\kappa}
\end{aligned}
$$

for constants c_{1} and c_{2} depending on κ, and

$$
\begin{aligned}
& E \int_{0}^{U_{1}} b_{j+1, n+1}(s) d F^{-1}(s)=\int_{0}^{1} \int_{0}^{t} b_{j+1, n+1}(s)\left(F^{-1}\right)^{\prime}(s) d s d t \\
& \quad=\int_{0}^{1} b_{j+1, n+1}(s)\left(F^{-1}\right)^{\prime}(s)\left\{\int_{s}^{1} d t\right\} d s \leqslant K \frac{(n+1)!}{j!(n-j)!} \int_{0}^{1} s^{j-\kappa}(1-s)^{n-j+1-\kappa} d s \\
& \quad=K \frac{\Gamma(n+2)}{\Gamma(n+2+1-2 \kappa)} \frac{\Gamma(j+1-\kappa)}{\Gamma(j+1)} \frac{\Gamma(n-j+1+1-\kappa)}{\Gamma(n-j+1)} \\
& \quad \leqslant c_{3} K\left(\frac{j}{n}\right)^{-\kappa}\left(1-\frac{j-1}{n}\right)^{1-\kappa}
\end{aligned}
$$

for some constant $c_{3}=c_{3}(\kappa)$. Thus

$$
\begin{aligned}
\left\|\int_{0}^{U_{1}} s b_{j, n}(s) d F^{-1}(s)\right\|_{4}^{4} & \leqslant\left(\frac{j}{n+1}\right)^{4} c_{2}^{3} c_{3} K^{4}\left(\frac{j}{n}\right)^{-4 \kappa}\left(1-\frac{j-1}{n}\right)^{1-4 \kappa} \\
& \leqslant c_{4} K^{4}\left(\frac{j}{n}\right)^{4(1-\kappa)}\left(1-\frac{j-1}{n}\right)^{4(1 / 4-\kappa)}
\end{aligned}
$$

for some $c_{4}=c_{4}(\kappa)$, which proves (22) in the case where $j \in\{1, \ldots, n-1\}$ or $\kappa<1$.

The cases which remain are more difficult to handle, as they imply that

$$
\int_{0}^{1} b_{j+1, n+1}(s) d F^{-1}(s)=+\infty .
$$

This is why we use a different approach. For $j=n$ and $\kappa \in(1,5 / 4)$ we will prove that for some $c=c(\kappa)$

$$
\left\|\int_{0}^{U_{1}} s b_{n n}(s) d F^{-1}(s)\right\|_{4} \leqslant c K n^{\kappa-1 / 4}
$$

Namely, we have

$$
\begin{aligned}
\| \int_{0}^{U_{1}} s b_{n n}(s) & d F^{-1}(s)\left\|_{4}^{4} \leqslant\right\| \int_{0}^{U_{1}} n s^{n} K[s(1-s)]^{-\kappa} d s \|_{4}^{4} \\
& =K^{4} n^{4} E\left(\int_{0}^{U_{1}} s^{n-\kappa}(1-s)^{-\kappa} d s\right)^{4}=K^{4} n^{4} \int_{0}^{1}\left(\int_{0}^{t} s^{n-\kappa}(1-s)^{-\kappa} d s\right)^{4} d t \\
& \leqslant K^{4} n^{4} \int_{0}^{1} t^{4(n-\kappa)}\left(\left[\frac{(1-s)^{-\kappa+1}}{\kappa-1}\right]_{0}^{t}\right)^{4} d t \\
& =\left(\frac{K n}{\kappa-1}\right)^{4} B(4(n-\kappa)+1,-4(\kappa-1)+1) \\
& =\left(\frac{K n}{\kappa-1}\right)^{4} \Gamma(5-4 \kappa) \frac{\Gamma(4 n-4 \kappa+1)}{\Gamma(4 n-4 \kappa+1+5-4 \kappa)} \\
& \leqslant c_{1} K^{4} n^{4}(4 n-4 \kappa+1)^{-(5-4 \kappa)} \leqslant c_{2} K^{4} n^{4 \kappa-1}
\end{aligned}
$$

for some c_{1}, c_{2}, depending on κ. This again proves the point.
Finally, we take up the case in which $j=n$ and $\kappa=1$. The previous argument does not work as we divided by $\kappa-1$. We show that for some C

$$
\left\|\int_{0}^{U_{1}} s b_{n n}(s) d F^{-1}(s)\right\|_{4}^{4} \leqslant C K^{4} n^{3} \quad \text { or } \quad\left\|\int_{0}^{U_{1}} s^{n-1}(1-s)^{-1} d s\right\|_{4}^{4} \leqslant C n^{-1} .
$$

Ronald Kortram (personal communication) provided us with the following proof. The function $s \mapsto s^{n-1}(1-s)^{1 / 4}$ is increasing on $[0,1-1 /(4 n-3)]$ and decreasing on $[1-1 /(4 n-3), 1]$. So

$$
\begin{aligned}
& \left\|\int_{0}^{U_{1}} s^{n-1}(1-s)^{-1} d s\right\|_{4}^{4} \\
& =\int_{0}^{1-1 /(4 n-3)}\left(\int_{0}^{t} \frac{s^{n-1}(1-s)^{1 / 4}}{(1-s)^{5 / 4}} d s\right)^{4} d t+\int_{1-1 /(4 n-3)}^{1}\left(\int_{0}^{t} \frac{s^{n-1}(1-s)^{1 / 4}}{(1-s)^{5 / 4}} d s\right)^{4} d t \\
& \leqslant \int_{0}^{1-1 /(4 n-3)} t^{4 n-4}(1-t)\left(\left[\frac{(1-s)^{-1 / 4}}{1 / 4}\right]_{0}^{t}\right)^{4} d t \\
& \quad+\int_{1-1 /(4 n-3)}^{1} \frac{1}{4 n-3}\left(\left[\frac{(1-s)^{-1 / 4}}{1 / 4}\right]_{0}^{t}\right)^{4} d t \\
& \leqslant 4^{4} \int_{0}^{1} t^{4 n-4} d t+\frac{4^{4}}{4 n-3} \int_{0}^{1}(1-t)^{-1 / 4} d t \leqslant C n^{-1}
\end{aligned}
$$

for some constant C. This completes the proof. $■$

7. AN UPPER BOUND FOR γ_{3}

The aim of this section is to prove the following lemma:
Lemma 5. There exists a $c=c\left(q_{2}, k\right)$ for which

$$
\gamma_{3}^{1 / 3} \leqslant 3 d_{2} B_{n} \beta_{3}^{1 / 3}+c K d_{2} \tilde{B}_{n} .
$$

Proof. First we consider the case in which $q_{1} \geqslant q_{2}+1$. By Lemma 2, (11), (19) and (20), the method we have used to prove Lemma 4 in the case where $p_{1} \geqslant p_{2}$ yields

$$
d_{2}^{-1} n^{q_{1}-q_{2}-1}\left|n^{3 / 2} T_{12}\right| \leqslant E\left|X_{1}\right|+\left|X_{1}\right|+\left|X_{2}\right| .
$$

(Here we also used the inequality $F^{-1}\left(U_{2: 2}\right)=\max \left(X_{1}, X_{2}\right) \leqslant\left|X_{1}\right|+\left|X_{2}\right|$.) As a consequence

$$
\gamma_{3}^{1 / 3}=\left\|n^{3 / 2} T_{12}\right\|_{3} \leqslant 3 d_{2} B_{n} \beta_{3}^{1 / 3},
$$

which completes the proof for $q_{1} \geqslant q_{2}+1$.
Now suppose that $q_{1}<q_{2}+1$. By Lemma 2 and (3) we have

$$
\gamma_{3}^{1 / 3}=\left\|n^{3 / 2} T_{12}\right\|_{3} \leqslant \frac{n}{n-1} \sum_{j=1}^{n-1} d_{2} n^{-q_{1}}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-q_{2}}\left\{\left\|\Gamma_{1 j}\right\|_{3}+\left\|\Gamma_{2 j}\right\|_{3}+\left\|\Gamma_{3 j}\right\|_{3}\right\},
$$

where for $i=1,2,3$

$$
\begin{equation*}
\Gamma_{i j}:=\int_{U_{i-1: 2}}^{U_{t: 2}} s^{3-i}(1-s)^{i-1} d F^{-1}(s) \tag{24}
\end{equation*}
$$

First we determine the order of $\left\|\Gamma_{1 j}\right\|_{3}$. As

$$
s^{2} b_{j, n-1}(s)=\left(\frac{j+1}{n}\right)^{2} b_{j+2, n+1}(s)
$$

we have

$$
\left\|\Gamma_{1 j}\right\|_{3}^{3}=\left(\frac{j}{n+1}\right)^{6} E\left(\int_{0}^{U_{1: 2}} b_{j+2, n+1}(s) d F^{-1}(s)\right)^{3}
$$

and we can find an upper bound in the same way as we did for $\left\|\int_{0}^{V_{1}} s b_{j, n}(s) d F^{-1}(s)\right\|_{4}$ in Section 6. Again we have the following three cases:
(i) $j=1, \ldots, n-1$ or $\kappa<1, \quad$ (ii) $j=n$ and $\kappa \in(1,5 / 4), \quad$ (iii) $j=n$ and $\kappa=1$;
again in each of them the result is the same and the methods to prove them differ considerably. We confine ourselves to the first case. We have

$$
\int_{0}^{1} b_{j+2, n+1}(s) d F^{-1}(s) \leqslant K \frac{\Gamma(n+2)}{\Gamma(j+2) \Gamma(n-j)} \frac{\Gamma(j+2-\kappa) \Gamma(n-j-\kappa)}{\Gamma(n+2-2 \kappa)}
$$

and

$$
E \int_{0}^{U_{1: 2}} b_{j+2, n+1}(s) d F^{-1}(s) \leqslant K \frac{\Gamma(n+2)}{\Gamma(j+2) \Gamma(n-j)} \frac{\Gamma(j+2-\kappa) \Gamma(n-j+2-\kappa)}{\Gamma(n+4-2 \kappa)},
$$

which for some $c=c(\kappa)$ leads to

$$
\left\|\Gamma_{1 j}\right\|_{3} \leqslant c K\left(\frac{j}{n}\right)^{2-\kappa}\left(1-\frac{j-1}{n}\right)^{2 / 3-\kappa}
$$

By symmetry arguments we see that

$$
\left\|\Gamma_{3 j}\right\|_{3} \leqslant c K\left(\frac{j}{n}\right)^{2 / 3-\kappa}\left(1-\frac{j-1}{n}\right)^{2-\kappa}
$$

Moreover, we find that for some $c=c(\kappa)$

$$
\left\|\Gamma_{2 j}\right\|_{3} \leqslant c K\left(\frac{j}{n}\right)^{1-\kappa}\left(1-\frac{j-1}{n}\right)^{4 / 3-\kappa}
$$

In conclusion, for some $c=c(k)$ we have

$$
\begin{equation*}
\left\|\Gamma_{1 j}\right\|_{3}+\left\|\Gamma_{2 j}\right\|_{3}+\left\|\Gamma_{3 j}\right\|_{3} \leqslant c K\left(\frac{j}{n}\right)^{2 / 3-\kappa}\left(1-\frac{j-1}{n}\right)^{2 / 3-\kappa} \tag{25}
\end{equation*}
$$

so that

$$
\gamma_{3}^{1 / 3} \leqslant \frac{n}{n-1} d_{2} c K n^{1-q_{1}} \frac{1}{n} \sum_{j=1}^{n-1}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{2 / 3-\kappa-q_{2}} .
$$

In the same way as in Section 6 this leads to the result mentioned in Lemma 5. The second and the third case can also be handled with the approach of Section 6.

8. AN UPPER BOUND FOR Δ_{3}^{2}

We will prove the following lemma:
Lemma 6. There exists a $c=c\left(r_{2}, \kappa\right)$ for which

$$
\left(\Delta_{3}^{2}\right)^{1 / 2} \leqslant 4 d_{3} C_{n} \beta_{2}^{1 / 2}+c K d_{3} \tilde{C}_{n} .
$$

Proof. In the case where $r_{1} \geqslant r_{2}+2$, like before we deduce that

$$
d_{3}^{-1} n^{r_{1}-r_{2}-2}\left|n^{5 / 2} D_{1} D_{2} D_{3} T\right| \leqslant E\left|X_{1}\right|+\left|X_{1}\right|+\left|X_{2}\right|+\left|X_{3}\right|,
$$

so $\left(\Delta_{3}^{2}\right)^{1 / 2}=\left\|n^{5 / 2} D_{1} D_{2} D_{3} T\right\|_{2} \leqslant 4 d_{3} C_{n} \beta_{2}^{1 / 2}$.
Now suppose that $r_{1}<r_{2}+2$. By Lemma 3 and (4) we have

$$
\begin{equation*}
\left(\Delta_{3}^{2}\right)^{1 / 2}=\left\|n^{5 / 2} D_{1} D_{2} D_{3} T\right\|_{2} \leqslant d_{3} n^{2-r_{1}}\left(\left\|\Delta_{1}\right\|_{2}+\left\|\Delta_{2}\right\|_{2}+\left\|\Delta_{3}\right\|_{2}+\left\|\Delta_{4}\right\|_{2}\right) \tag{26}
\end{equation*}
$$

with
$\Delta_{i+1}:=\sum_{j=K_{i}+2-i}^{K_{i+1}+1-i}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]_{U_{j-2+i, n}}^{-r_{2}} s^{U_{j-1+i+n}} s^{3-i}(1-s)^{i} d F^{-1}(s) \quad$ for $i=0,1,2,3$.
As we use the inequality $\left|\left(F^{-1}\right)^{\prime}(s)\right| \leqslant K[s(1-s)]^{-\kappa}$, by symmetry arguments it can easily be shown that the upper bounds for Δ_{1} and Δ_{4} are of the same order. The same applies for Δ_{2} and Δ_{3}, so that we can concentrate on finding orders for $\left\|\Delta_{1}\right\|_{2}$ and $\left\|\Delta_{2}\right\|_{2}$.

First we remark that, for each combination $\left(k_{1}, k_{2}, k_{3}\right)$ for which $1 \leqslant k_{1}<k_{2}<k_{3} \leqslant n$,

$$
P\left[\left(K_{1}, K_{2}, K_{3}\right)=\left(k_{1}, k_{2}, k_{3}\right)\right]=\binom{n}{3}^{-1}
$$

consequently,

$$
\begin{equation*}
\mathbb{P}\left[\left(K_{1}, K_{2}\right)=\left(k_{1}, k_{2}\right)\right]=\frac{n-k_{2}}{\binom{n}{3}} \quad \text { for } 1 \leqslant k_{1}<k_{2} \leqslant n-1 \tag{27}
\end{equation*}
$$

and

$$
\boldsymbol{P}\left[K_{1}=k_{1}\right]=\sum_{k_{2}=k_{1}+1}^{n-1} \frac{n-k_{2}}{\binom{n}{3}}=\frac{\frac{1}{2}\left(n-k_{1}\right)\left(n-\left(k_{1}+1\right)\right)}{\binom{n}{3}} \quad \text { for } 1 \leqslant k_{1} \leqslant n-2 .
$$

Since K_{1} and $U_{0: n}, \ldots, U_{n+1: n}$ are independent, we have

$$
E\left|\Delta_{1}\right|^{2}=\mathbb{E}_{K_{1}}\left(\mathbb{E}_{\left(U_{0: n}, \ldots, U_{n+1: n}\right)}\left\{\left|\Delta_{1}\right|^{2} \mid K_{1}\right\}\right),
$$

so that

$$
\left\|\Delta_{1}\right\|_{2}^{2}=\sum_{k_{1}=1}^{n-2} P\left[K_{1}=k_{1}\right]\left\|_{j=2}^{k_{1}+1}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-r_{2}} \int_{U_{j-2: n}}^{U_{j-1: n}} s^{3} d F^{-1}(s)\right\|_{2}^{2} .
$$

Furthermore, Lemma 4 of Pap and van Zuijlen [5] states: for each fixed pair $\varepsilon_{1}, \varepsilon_{2} \in \boldsymbol{R}$ there exists (under some conditions on the triple ($\varepsilon_{1}, \varepsilon_{2}, j$), which for our purposes are always satisfied) a constant $c=c\left(\varepsilon_{1}, \varepsilon_{2}\right)$ such that

$$
\left\|\int_{U_{j-1: n}}^{U_{j: n}} s^{\varepsilon_{1}}(1-s)^{\varepsilon_{2}} d s\right\|_{2} \leqslant c \frac{1}{n}\left(\frac{j}{n}\right)^{\varepsilon_{1}}\left(1-\frac{j-2}{n}\right)^{\varepsilon_{2}} .
$$

Therefore it follows easily that for $j=2, \ldots, n-1$

$$
\left\|\int_{U_{j-2: n}}^{U_{j-1: n}} s^{3} d F^{-1}(s)\right\|_{2} \leqslant K\left\|\int_{U_{j-2: n}}^{U_{j-1: n}} s^{3-\kappa}(1-s)^{-\kappa} d s\right\|_{2} \leqslant c K \frac{1}{n}\left(\frac{j}{n}\right)^{3-\kappa}\left(1-\frac{j-1}{n}\right)^{-\kappa}
$$

We obtain
(28) $\left\|\Delta_{1}\right\|_{2}^{2} \leqslant \sum_{k_{1}=1}^{n-2} \boldsymbol{P}\left[K_{1}=k_{1}\right]\left(\sum_{j=2}^{k_{1}+1}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-r_{2}}\left\|\int_{U_{j-2: n}}^{U_{j-1: n}} s^{3} d F^{-1}(s)\right\|_{2}\right)^{2}$

$$
\begin{aligned}
& \leqslant \sum_{k_{1}=1}^{n-2} \frac{\frac{1}{2}\left(n-k_{1}\right)\left(n-\left(k_{1}+1\right)\right)}{\binom{n}{3}}\left(c_{1} K \frac{1}{n} \sum_{j=2}^{k_{1}+1}\left(\frac{j}{n}\right)^{3-\kappa-r_{2}}\left(1-\frac{j-1}{n}\right)^{-\kappa-r_{2}}\right)^{2} \\
& \leqslant c_{2} K^{2} \frac{1}{n} \sum_{k_{1}=1}^{n-2}\left(1-\frac{k_{1}}{n}\right)^{2}\left(\frac{1}{n} \sum_{j=2}^{k_{1}+1}\left(\frac{j}{n}\right)^{3-\kappa-r_{2}}\left(1-\frac{j-1}{n}\right)^{-\kappa-r_{2}}\right)^{2}
\end{aligned}
$$

for constants c_{1}, c_{2}, depending on κ. By integral approximation we see that

$$
\begin{align*}
& \text { 29) } \quad \frac{1}{n} \sum_{j=2}^{k_{1}+1}\left(\frac{j}{n}\right)^{3-\left(\kappa+r_{2}\right)}\left(1-\frac{j-1}{n}\right)^{-\left(\kappa+r_{2}\right)} \tag{29}\\
& \leqslant c\left(I\left\{\kappa+r_{2}<1\right\}+I\left\{\kappa+r_{2}=1\right\} \log \frac{n}{n-k_{1}}+I\left\{\kappa+r_{2}>1\right\}\left(\frac{n}{n-k_{1}}\right)^{\kappa+r_{2}-1}\right. \\
& \left.\quad+I\left\{\kappa+r_{2}=4\right\} \log n+I\left\{\kappa+r_{2}>4\right\} n^{\kappa+r_{2}-4}\right)
\end{align*}
$$

for some $c=c\left(\kappa+r_{2}\right)$. For $\kappa+r_{2}<1$ this leads to

$$
\left\|\Delta_{1}\right\|_{2}^{2} \leqslant c_{1}^{2} K^{2} \frac{1}{n} \sum_{k_{1}=1}^{n-2}\left(1-\frac{k_{1}}{n}\right)^{2} \leqslant c_{1}^{2} K^{2}
$$

for a certain $c_{1}=c_{1}\left(\kappa, r_{2}\right)$, that is, $\left\|\Delta_{1}\right\|_{2} \leqslant c_{1} K$. For $\kappa+r_{2}=1$ this leads to

$$
\left\|\Delta_{1}\right\|_{2}^{2} \leqslant c_{2} K^{2} \frac{1}{n} \sum_{k_{1}=1}^{n-2}\left(1-\frac{k_{1}}{n}\right)^{2} \log ^{2}\left(\frac{n}{n-k_{1}}\right) \leqslant c_{3}^{2} K^{2}
$$

for some c_{2}, c_{3}, depending on κ and r_{2}, since

$$
\int_{0}^{1}(1-s)^{2} \log ^{2}\left(\frac{1}{1-s}\right) d s=\int_{0}^{1}(t \log t)^{2} d t<+\infty
$$

Hence $\left\|\Delta_{1}\right\|_{2} \leqslant c_{3} K$. For $1<\kappa+r_{2}<4$ we get

$$
\begin{aligned}
\left\|\Delta_{1}\right\|_{2}^{2} & \leqslant c_{4} K^{2} \frac{1}{n} \sum_{k_{1}=1}^{n-2}\left(1-\frac{k_{1}}{n}\right)^{2}\left(\frac{n}{n-k_{1}}\right)^{2\left(\kappa+r_{2}\right)-2} \\
& =c_{4} K^{2} \frac{1}{n} \sum_{k_{1}=1}^{n-2}\left(1-\frac{k_{1}}{n}\right)^{4-2\left(\kappa+r_{2}\right)} \leqslant c_{5} K^{2} \int_{0}^{1-1 / n}(1-s)^{4-2\left(\kappa+r_{2}\right)} d s
\end{aligned}
$$

for certain c_{4}, c_{5} (depending on κ, r_{2}), so that in this case, for some $c_{6}=c_{6}\left(\kappa, r_{2}\right)$,

$$
\begin{aligned}
\left\|\Delta_{1}\right\|_{2} \leqslant c_{6} K\left(I\left\{1<\kappa+r_{2}<5 / 2\right\}+I\{ \right. & \left.\kappa+r_{2}=5 / 2\right\} \sqrt{\log n} \\
& \left.+I\left\{5 / 2<\kappa+r_{2}<4\right\} n^{\kappa+r_{2}-5 / 2}\right)
\end{aligned}
$$

For $\kappa+r_{2} \geqslant 4$ we always have two terms producing two orders, of which we need the largest. The $\left(n /\left(n-k_{1}\right)\right)^{\kappa+r_{2}-1}$-part in (29) will yield $\left\|\Delta_{1}\right\|_{2} \leqslant c K n^{\kappa+r_{2}-5 / 2}$. The other parts produce orders that are dominated by the order of the first term. Hence, for some $c=c\left(r_{2}, \kappa\right)$ we find
(30) $\left\|\Delta_{1}\right\|_{2} \leqslant c K\left(I\left\{\kappa+r_{2}<5 / 2\right\}+I\left\{\kappa+r_{2}=5 / 2\right\} \sqrt{\log n}\right.$

$$
\left.+I\left\{\kappa+r_{2}>5 / 2\right\} n^{\kappa+r_{2}-5 / 2}\right)
$$

To determine the order of $\left\|\Delta_{2}\right\|_{2}$ we roughly proceed similarly. We shall stop noting that the constants depend on both κ and r_{2}, though of course they do. Like before (see (27) as well as (28))

$$
\begin{aligned}
& \left\|\Delta_{2}\right\|_{2}^{2} \leqslant \sum_{k_{1}=1}^{n-2} \sum_{k_{2}=k_{1}+1}^{n-1} P\left[\left(K_{1}, K_{2}\right)=\left(k_{1}, k_{2}\right)\right] \\
& \times\left(\sum_{j=k_{1}+1}^{k_{2}}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-r_{2}}\left\|\int_{U_{j-1: n}}^{U_{j: n}} s^{2}(1-s) d F^{-1}(s)\right\|_{2}\right)^{2} \\
\leqslant & \sum_{k_{1}=1}^{n-2} \sum_{k_{2}=k_{1}+1}^{n-1} \frac{n-k_{2}}{\binom{n}{3}}\left(K \frac{1}{n} \sum_{j=k_{1}+1}^{k_{2}}\left(\frac{j}{n}\right)^{2-\left(\kappa+r_{2}\right)}\left(1-\frac{j-1}{n}\right)^{1-\left(\kappa+r_{2}\right)}\right)^{2} \\
\leqslant & c_{1} K^{2} \frac{1}{n^{2}} \sum_{k_{1}=1}^{n-2} \sum_{k_{2}=k_{1}+1}^{n-1}\left(1-\frac{k_{2}}{n}\right)\left(\frac{1}{n} \sum_{j=k_{1}+1}^{k_{2}}\left(\frac{j}{n}\right)^{2-\left(\kappa+r_{2}\right)}\left(1-\frac{j-1}{n}\right)^{1-\left(\kappa+r_{2}\right)}\right)^{2} .
\end{aligned}
$$

As in (29) we have

$$
\begin{aligned}
& \frac{1}{n_{j=}} \sum_{k_{1}+1}^{k_{2}}\left(\frac{j}{n}\right)^{2-\left(\kappa+r_{2}\right)}\left(1-\frac{j-1}{n}\right)^{1-\left(\kappa+r_{2}\right)} \\
& \leqslant \\
& c_{2}\left(I\left\{\kappa+r_{2}<2\right\}+I\left\{\kappa+r_{2}=2\right\} \log \frac{n}{n-k_{1}}+I\left\{\kappa+r_{2}>2\right\}\left(\frac{n}{n-k_{1}}\right)^{\kappa+r_{2}-2}\right. \\
& \left.\quad+I\left\{\kappa+r_{2}=3\right\} \log n+I\left\{\kappa+r_{2}>3\right\} n^{\kappa+r_{2}-3}\right)
\end{aligned}
$$

For $\kappa+r_{2}<2$ this leads to

$$
\left\|\Delta_{2}\right\|_{2}^{2} \leqslant c_{3} K^{2} \frac{1}{n^{2}} \sum_{k_{1}=1}^{n-2} \sum_{k_{2}=k_{1}+1}^{n-1}\left(1-\frac{k_{2}}{n}\right) \leqslant c_{4}^{2} K^{2} \frac{1}{n^{2}} n^{2}=c_{4}^{2} K^{2},
$$

so that $\left\|\Delta_{2}\right\|_{2} \leqslant c_{4} K$. For $\kappa+r_{2}=2$ we find the same order. For $2<\kappa+r_{2}<3$
we get

$$
\begin{aligned}
\left\|\Delta_{2}\right\|_{2}^{2} & \leqslant c_{5} K^{2} \frac{1}{n^{2}} \sum_{k_{2}=2}^{n-1} \sum_{k_{1}=1}^{k_{2}-1}\left(1-\frac{k_{2}}{n}\right)\left(\frac{n}{n-k_{2}}\right)^{2 \kappa+2 r_{2}-4} \\
& =c_{5} K^{2} \frac{1}{n^{2}} \sum_{k_{2}=2}^{n-1}\left(k_{2}-1\right)\left(1-\frac{k_{2}}{n}\right)^{5-2 \kappa-2 r_{2}} \\
& \leqslant c_{6} K^{2} \int_{0}^{1}(1-s)^{5-2 \kappa-2 r_{2}} d s \leqslant c_{7}^{2} K^{2}
\end{aligned}
$$

as $5-2 \kappa-2 r_{2}>-1$. Here also $\left\|\Delta_{2}\right\|_{2} \leqslant c_{7} K$.
For $\kappa+r_{2} \geqslant 3$ again we have two terms playing a part. As with Δ_{1}, here the $\left(n /\left(n-k_{1}\right)\right)^{\kappa+r_{2}-1}$-term dominates the others. This leads us to $\left\|\Delta_{2}\right\|_{2} \leqslant c K \sqrt{\log n}$ if $\kappa+r_{2}=3$ and to $\left\|\Delta_{2}\right\|_{2} \leqslant c K n^{\kappa+r_{2}-3}$ if $\kappa+r_{2}>3$.

Collecting the results we see that for some $c=c\left(\kappa, r_{2}\right)$ we have

$$
\left\|\Delta_{2}\right\|_{2} \leqslant c K\left(I\left\{\kappa+r_{2}<3\right\}+I\left\{\kappa+r_{2}=3\right\} \sqrt{\log n}+I\left\{\kappa+r_{2}>3\right\} n^{\kappa+r_{2}-3}\right)
$$

Since the order of $\left\|\Delta_{1}\right\|_{2}$ dominates the ones of $\left\|\Delta_{2}\right\|_{2},\left\|\Delta_{3}\right\|_{2}$ and $\left\|\Delta_{4}\right\|_{2}$, it now follows from (26) and (30) that Lemma 6 is correct.

9. PROOF OF THEOREM 3

Theorem 3 is proved by using (2). We need to find upper bounds for $\hat{\beta}_{4}(T), \gamma_{3}(T)$ and $\Delta_{3}^{2}(T)$. First we set $J: t \mapsto \psi(t)[t(1-t)]^{-\gamma}$. As to $\hat{\beta}_{4}^{1 / 4}(T)$ we can apply Lemma 4. By taking $p_{1}:=0$ and $p_{2}:=\gamma$ in the expression for d_{1}, we obtain $d_{1} \leqslant 2^{2 \gamma}\|\psi\|_{\infty}$, so that Lemma 4 implies that for some $c=c(\kappa, \gamma)$

$$
\hat{\beta}_{4}^{1 / 4}(T) \leqslant c K 2^{2 \gamma}\|\psi\|_{\infty}
$$

Next we determine the order of $\gamma_{3}(T)$. By taking

$$
c_{j, n}:=J\left(\frac{j}{n+1}\right) \quad \text { for } j=1, \ldots, n
$$

we have for $1 \leqslant j<n$

$$
c_{j, n}-c_{j+1, n}=e_{j 1}+e_{j 2}
$$

with

$$
\begin{aligned}
& e_{j 1}:=\left[\frac{j}{n+1}\left(1-\frac{j}{n+1}\right)\right]^{-\gamma}\left(\psi\left(\frac{j}{n+1}\right)-\psi\left(\frac{j+1}{n+1}\right)\right), \\
& e_{j 2}:=\psi\left(\frac{j+1}{n+1}\right)\left(\left[\frac{j}{n+1}\left(1-\frac{j}{n+1}\right)\right]^{-\gamma}-\left[\frac{j+1}{n+1}\left(1-\frac{j+1}{n+1}\right)\right]^{-\gamma}\right) .
\end{aligned}
$$

By Lemma 2 and (24), we obtain

$$
\begin{aligned}
\gamma_{3}^{1 / 3}(T) & =\left\|n^{3 / 2} T_{12}\right\|_{3}=\left\|\frac{n}{n-1} \sum_{j=1}^{n-1}\left(c_{j, n}-c_{j+1, n}\right)\left\{\Gamma_{1 j}-\Gamma_{2 j}+\Gamma_{3 j}\right\}\right\|_{3} \\
& \leqslant \sum_{k=1}^{2}\left\|\frac{n}{n-1} \sum_{j=1}^{n-1} e_{j k}\left\{\Gamma_{1 j}-\Gamma_{2 j}+\Gamma_{3 j}\right\}\right\|_{3}
\end{aligned}
$$

which leaves us two terms to estimate from above.
First we take a look at the $e_{j 1}$-term. As

$$
\left|e_{j 1}\right| \leqslant 2^{2 \gamma}\left\|\psi^{\prime}\right\|_{\infty} \frac{1}{n}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-\gamma} \quad \text { for } j=1, \ldots, n-1,
$$

we obtain

$$
\left\|\frac{n}{n-1} \sum_{j=1}^{n-1} e_{j 1}\left\{\Gamma_{1 j}-\Gamma_{2 j}+\Gamma_{3 j}\right\}\right\|_{3} .
$$

for some constant $c=c(\kappa, \gamma)$ (see (25)). Integral approximation yields

$$
\left\|\frac{n}{n-1} \sum_{j=1}^{n-1} e_{j 1}\left\{\Gamma_{1 j}-\Gamma_{2 j}+\Gamma_{3 j}\right\}\right\|_{3} \leqslant c K\left\|\psi^{\prime}\right\|_{\infty}
$$

Regarding the second term we need to estimate $\left|e_{j 2}\right|$ from above. To this end we introduce the function

$$
\varphi: s \mapsto[s(1+1 / n-s)]^{-\gamma} \quad \text { for } s \in[1 / n, 1] .
$$

We are mainly concerned with expressions of the form

$$
\left|\varphi\left(\frac{j+1}{n}\right)-\varphi\left(\frac{j}{n}\right)\right| \quad \text { for } j=1, \ldots, n-1
$$

As

$$
\varphi^{\prime}(s)=-\gamma(1+1 / n-2 s)[s(1+1 / n-s)]^{-\gamma-1}
$$

the mean value theorem leads to

$$
\left|e_{j 2}\right| \leqslant 2^{3 \gamma+1} \gamma\|\psi\|_{\infty} \frac{1}{n}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-\gamma-1} .
$$

In the same way as with $e_{j 1}$, for some $c=c(\kappa, \gamma)$ we obtain

$$
\left\|\frac{n}{n-1} \sum_{j=1}^{n-1} e_{j 2}\left\{\Gamma_{1 j}-\Gamma_{2 j}+\Gamma_{3 j}\right\}\right\|_{3} \leqslant c K\|\psi\|_{\infty} .
$$

We may conclude that for some $c=c(\kappa, \gamma)$

$$
\gamma_{3}^{1 / 3}(T) \leqslant c K\left(\left\|\psi^{\prime}\right\|_{\infty}+\|\psi\|_{\infty}\right)
$$

Finally, we turn to $\Delta_{3}^{2}(T)$, where $\sqrt{\Delta_{3}^{2}(T)}=\left\|n^{5 / 2} D_{1} D_{2} D_{3} T\right\|_{2}$ with $D_{1} D_{2} D_{3} T$ as in Lemma 3. Now for $j=2, \ldots, n-1$

$$
c_{j+1, n}-2 c_{j, n}+c_{j-1, n}=f_{j 1}+f_{j 2}+f_{j 3}
$$

if for all such j we set

$$
\begin{aligned}
f_{j 1}= & \left(\frac{n+1}{n}\right)^{2 \gamma}\left\{\psi\left(\frac{j+1}{n+1}\right)-2 \psi\left(\frac{j}{n+1}\right)+\psi\left(\frac{j-1}{n+1}\right)\right\}\left[\frac{j+1}{n}\left(1-\frac{j}{n}\right)\right]^{-\gamma}, \\
f_{j 2}= & \left(\frac{n+1}{n}\right)^{2 \gamma} 2\left\{\psi\left(\frac{j}{n+1}\right)-\psi\left(\frac{j-1}{n+1}\right)\right\} \\
& \times\left(\left[\frac{j+1}{n}\left(1-\frac{j}{n}\right)\right]^{-\gamma}-\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-\gamma}\right), \\
f_{j 3}= & \left(\frac{n+1}{n}\right)^{2 \gamma} \psi\left(\frac{j-1}{n+1}\right)\left(\left[\frac{j+1}{n}\left(1-\frac{j}{n}\right)\right]^{-\gamma}-2\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-\gamma}\right. \\
& \left.+\left[\frac{j-1}{n}\left(1-\frac{j-2}{n}\right)\right]^{-\gamma}\right)
\end{aligned}
$$

We proceed as with the $\gamma_{3}(T)$, splitting $\left\|n^{5 / 2} D_{1} D_{2} D_{3} T\right\|_{2}$ up into three parts, corresponding to $f_{j 1}, f_{j 2}$ and $f_{j 3}$, respectively. We start with $f_{j 1}$.

Applying the mean value theorem for two times we see that for all j

$$
\left|f_{j 1}\right| \leqslant 2^{3 \gamma+1}\left\|\psi^{\prime \prime}\right\|_{\infty}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-\gamma} n^{-2}
$$

Now we try to find an upper bound for the expression corresponding to $f_{j 1}$. See (14) for the parts we abbreviated to '... As in Section 8 we see that

$$
\left\|n^{2}\left\{\ldots\left(f_{j 1}\right) \ldots\right\}\right\|_{2} \leqslant n^{2} 2^{3 \gamma+1}\left\|\psi^{\prime \prime}\right\|_{\infty} n^{-2}\left\{\left\|\Delta_{1}\right\|_{2}+\ldots+\left\|\Delta_{4}\right\|_{2}\right\},
$$

with the $\Delta_{1}, \ldots, \Delta_{4}$ as before, taking $r_{2}=\gamma$. So for some $c=c(\kappa, \gamma)$

$$
\left\|n^{2}\left\{\ldots\left(f_{j 1}\right) \ldots\right\}\right\|_{2} \leqslant c K\left\|\psi^{\prime \prime}\right\|_{\infty}
$$

We turn to the second term, where we need to estimate $f_{2 j}$ from above for all j. To this we apply the same function φ that we used to estimate $e_{j 2}$.

We obtain

$$
\left|f_{j 2}\right| \leqslant 2^{3 \gamma+2} \gamma\left\|\psi^{\prime}\right\|_{\infty} n^{-2}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-\gamma-1}
$$

and as with $f_{j 1}$ we see that

$$
\left\|n^{2}\left\{\ldots\left(f_{j 2}\right) \ldots\right\}\right\|_{2} \leqslant c K\left\|\psi^{\prime}\right\|_{\infty} .
$$

As to the third term we need to estimate $\left|f_{3 j}\right|$ from above (all j). To this end again we use the function φ, as we have to deal with expressions of the form

$$
\left|\varphi\left(\frac{j+1}{n}\right)-2 \varphi\left(\frac{j}{n}\right)+\varphi\left(\frac{j-1}{n}\right)\right| \quad \text { (all } j \text {). }
$$

We apply the mean value theorem two times to see that

$$
\left|\varphi\left(\frac{j+1}{n}\right)-2 \varphi\left(\frac{j}{n}\right)+\varphi\left(\frac{j-1}{n}\right)\right| \leqslant \frac{2}{n^{2}}\left|\varphi^{\prime \prime}(\xi)\right| \quad \text { for some } \xi \in\left[\frac{j-1}{n}, \frac{j+1}{n}\right] .
$$

Moreover,
$\varphi^{\prime \prime}(s)=\left\{2 s(1+1 / n-s)+(\gamma+1)(1+1 / n-2 s)^{2}\right\} \gamma[s(1+1 / n-s)]^{-(\gamma+2)} \quad$ for all s, so

$$
\left|\varphi^{\prime \prime}(s)\right| \leqslant \gamma(\gamma+3)[s(1+1 / n-s)]^{-(\gamma+2)} .
$$

Restricting ourselves to $s \in[(j-1) / n,(j+1) / n]$ we obtain

$$
\left|\varphi^{\prime \prime}(s)\right| \leqslant \gamma(\gamma+3) 2^{2(\gamma+2)}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-(\gamma+2)}
$$

Thus we see that for all j we have

$$
\left|f_{j 3}\right| \leqslant 2^{4 \gamma+5} \gamma(\gamma+3)\|\psi\|_{\infty} n^{-2}\left[\frac{j}{n}\left(1-\frac{j-1}{n}\right)\right]^{-\gamma-2} .
$$

Hence for some $c=c(\kappa, \gamma)$

$$
\left\|n^{2}\left\{\ldots\left(f_{j 3}\right) \ldots\right\}\right\|_{2} \leqslant c K\|\psi\|_{\infty} .
$$

We conclude that for some $c=c(\kappa, \gamma)$

$$
\sqrt{\Lambda_{3}^{2}(T)} \leqslant c K\left(\left\|\psi^{\prime \prime}\right\|_{\infty}+\left\|\psi^{\prime}\right\|_{\infty}+\|\psi\|_{\infty}\right) .
$$

Now Theorem 3 is an easy consequence.

REFERENCES

[1] V. Bentkus, F. Götze and A. Tikhomirov, Berry-Esseen bound for statistics of weakly dependent samples, Bernoulli 3 (1997), pp. 329-350.
[2] V. Bentkus, F. Götze and W. R. van Zwet, An Edgeworth expansion for symmetric statistics, Ann. Statist. 25 (1997), pp. 851-896.
[3] R. Helmers, Edgeworth expansions for linear combinations of order statistics, Math. Centre Tracts 105, Amsterdam 1982.
[4] G. Pap and M. C. A. van Zuijlen, On the asymptotic behaviour of the Stringer bound, Statist. Neerlandica 50 (3) (1996), pp. 367-389.
[5] G. Pap and M. C. A. van Zuijlen, A Berry-Esseen bound for linear combinations of order statistics, Statistics 31 (2) (1998), pp. 151-186.
[6] W. R. Pestman, Mathematical Statistics. An Introduction, Walter de Gruyter, 1998.
[7] W. R. van Zwet, A Berry-Esseen bound for symmetric statistics, Z. Wahrsch. verw. Gebiete 66 (1984), pp. 425-440.

Ivo Alberink, Martien C. A. van Zuijlen
Department of Mathematics
University of Nijmegen
Postbus 9010
6500 GL, Nijmegen
The Netherlands

Gyula Pap
Institute of Mathematics and Informatics Lajos Kossuth University
P.O. Box 12

H-4010, Debrecen
Hungary

