
Ablrocr. Modified eonjugate families OF prior distributiorrs are 
ia-uestigatcd and their propefiies are examined in the context d ap- 
plica~ons trr admissible md mi-dx eestEmatiaa far the general cx- 
ponentid model for stochastic procesw d&ned by (1). The conjugate 
priors are cbwacteriad as those which yield a h e a r  admissitrlc es- 
h a l o t  under a weight& quadratic loss In a sequential statistical 
model, In Section 3, a new charade53zatinn of eonjugale priors is presen- 
ted which is relevafit ta the problem of Ending minimax csrimtrtors in 
the statistfual model that after a rmdom tune tr~nsforma~on cannot 
be redus-ed to a model far proasses with stationary independent in- 
crerntmts. Applications of tlte results: obMned arc present& in some 
s p e d  models, among othem tu a z e r ~  mean stationary Gaussian 
Markov process in the problem d @timating ibe variance parameter. 

Let X (t), t E .LT, be a siochatic pmeess with either & ~ c r e t ~  ar coniinuou~ 
timo m d  with ~ialut38 in (Rk, Suppose that the distribution of X (t) Hangs  
to a fmdy of probability measures @ =. IPS,. rlb E @), where B i s  an open set in 
R". Let denote the restricltiun sf P,  to = cr (X (8): s d t]. Suppose that 
the Family (.Pa,,, 8 E 8) is dominated by a measure p, which is the ratrictinrn d 
a pxolbabijlily meazl;ure j ~ .  to Moreover, assume that the density fmctieions 
(gkefihaod functions] have the following expanen tial farm: 

where both 91 (3) and 4F/ (4), 9 E B, are- red and srridy convex fwrctions, iuld 
(2 ~ ( t ) ) ,  r E F (Z  ( t - )  is ~d imens iond~  S (t) is one-dirnenrrional)$ is a stoskasric 
process ~ d a p t d  to the atration q, t EF, Clearly, (%(I) ,  S( t ) )  is a suEcient 
statistic far 9 relative to g9 teY- "khe process ('ZFt), ~( t ) ] : ) ) ,  tfF, is assurned 

* Institute or Mathematics, Wxoda~v Unrvessity of T d u l o g y .  



to satisfy the foillowing cnndieions: Z(E) is right mntinuous as a function of 
E ,  Pa-a.s., and S (4, t E F, are nonne-gative random variables (SCe) may be aaa- 
-random as well) such that S(t) is stI-ictly increasing and continuous as a fmc- 
tion of t md S(t) -+ i ~ r  5s t-+ m, fr8=a,~. 

The family of (1) covers many counting, bralzching, diffusion-type etc. 
processes and the family of expenerrtial-type processes wbicb may start from 
a random stale and/or time, camprising dso s o m  models for sfati~aary Gaus- 
sian pmeesses. 

k t  .c be rr stopping time relative to St, t EX such that P,(z < m) = f for 
each 9 E @. Assume that the proass X (t) is observed during the random time 
interval 23 and denote by Pa*, and & the restrictions of Pq and p tto Fv. 
Then, as weU known, Pa, is absoIutely con;lJnaous with respect to pT and. %he 
foDowhg Eundmentd identity of sequentid tlasidysis holds: 

Consider estimation of the unknown vector-dud paramekr A@ (a)+ BP(9) 
in the exponential farnilg (21, when the squared enor 01. weighted squared 
error is taken as a loss. b a n g s t  at1 the problems which one may state 
evduatjing this parameter the fellowing one seems to be of special interest: $0 
there exist a vector zo, a number no and a finite stopping time z for whit3 the: 
deeision rule 

is an admissible or minimax estimator of a linear combination A@ (9) -f- BY (811 
"khe standard way to solve both these problems (or at leasf the first sf t h a )  is 
to show that do (Z fi), S [a)) is a Bayes estimator of A@ (61) + BY 19) or a limit of 
Baycs mtimators of this linear combination. For this it is necessary ta End 
a suitable family Il of piors on 8 from which the desired prior, as a sequeace 
nf priors, may be chosen, A good andidate for such a 11 is a f a d y  of priors 
which are clonjugate tu 6P = {Po, 8~ @), No matter what is the s t t u ~ t ~ r e  of P3 
the mud definition i s  that a family Il of priors is conjugate to the family of 
dstributions @ if it is cIu8cd under sampling from Pa ~9'. This means that, for 
each prior distributhn n E 31 nf the parameter 9-, the postefios dist~buticrn of 
.this parameter also belongs to E. This, abviously, greatly sjmplifics all the 
~alsulotions and helps to solve gsblem8: sfaclHIiss;iblc and minimax estimaitioxs. 
in &PU Unfortunately, the mnjugat~ priors may aoyexisl if ,P .= {P,, 1 % ~  @] is an 
arbitrary set ofprsbamity distributims, but, BS explaLined below, this is not the 
case far the f d y  B defmed by ( 3 ) .  

The: &st, pneral. result ~on~erning  conjugate priors was obt&ed by Dia- 
csnis md I~lvisaker [U who Eound the family conjugate to (P, ,  9 E 81, where, 
for each 9 ~ 4 3 ,  Pg is the distribution of a random Y ~ ~ O T  Z and 

dP$dg =. exp C9Z - @ (9)f 



h r  a fixed odnite mwure p CE.BXI the Bore1 sets of Ra. They dso characresized 
this family through the property sf IIrrear postefior expectation of the mean 
prameter Ea Z .  Thh excejlent result was generalized by Magiera and Wfczyri- 
ski [39 who cansidered the f a d y  (Pal 9 E B3) diescribing distributions of the 
k-dimensionat process X(t) ,  t E,% whose Likelihood function at time t belongs 
to the following vt-parmeter exponential hdlty:  

where processes Zit) a d  S (t) are as in the modd of (1). The latter result was, kt 
turn, generdized! by Magiera, 121 who considered a slihtly more getneml case 
where tb likelihood fanctim has the form of (I). l a  the next section we r e d [  
some properties of the ~ c o n j u ~ t e  fam2y described in the last reference. Later 
an, we will use these properties to obtain the main result of the paper, This 
result conwmts the structure of a modifid co~ l j ju~ te  faally which is sultable in 
statistical inferen~e for tlxe process X (f), t E when the error of estimatjon is 
measured by tr weigh&d quadratic loss, In this made1 the quadratic lass funtz- 
tian is &vided by a quantity, which, roughly speaking, depends Iineady on the 
ekmena of the matrix of the Fisher idurnadon. for (1). The reasan for such 
a modification wilil be expldned in the next section. 

X H"R0PERTXB OF THE CONJUGATE FAMLV OF PRIORS 

To describe gropes~es of the priors which are conjugate to the f d y  (I) 
we use the following notation. 

Let f# be the interlor of the convex hull ab' the set of all possible vdues of 
the process fZ(t), S(t)) ,  t E d e k d  in the previous seetion, and let the fmc- 
tion M: 8 x R 1  + R be gtfem by 

T ~ G  partial de~ivatives oif the first and second order d M (9; a) wit11 respect ta 
the vaiables 9, and t13 will be denoted throughout by Mi (9; E) and Mi; (9; a), 
respectively, ie,, for i, j - I ,  .. ., n 

M ;  (8; a) = an/a (a; a]/i38, and Mii(9; a) = a2 M (9; m)/i?9,8&$. 

Moreover, by PM (9; or) we denote the gradient of the Tmction M (8; a) with 
respect to the variable 9, i.e., 

FM (9; E) = (Mi (8; a), Mi(@; (0, . . ., M i ( $ ;  a))'. 

The set @ is assumcd lu be open in K", and, by Hiildefs inequalily, is coaatr~~ 
in Rm. Tlstrefose, far fixed coordiaat~s #,, . . ., 9,,, , 9,, , , . . ., 4 the coordinate 

of any p ~ k t  9 7= (I&$, 1P2* . - ., which lies in 8 belongs to an open internal 
whose ends will l l b e  denat& &om now an by 9i and &, is,, - 

B I y  8i(81s . , = ?  8") < $i < & ~ $ - / s E ~ ~  . * r ,  9d9 B =  i/gl, .,., B R ) ~ l j j F s  - - 
IdiGrr 
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The following results ~ s n c e ~ a i n g  characteriza;tion of the prior di~trjbu- 
tions on O which are conjugate to the family of (1) may be found 3fi the pavrb 
by Magera and Wilczyfislri [33 md Ma@era 521. 

sup exp [11 (r9 - M (8 ; g))] c= m . 
$fB 

From the first part of this aeomrn it b;olJows that, for each v > 0 and 
(r, E@, the: memure ~ ( 8 ;  V ,  T ,  E )  an @ whose deslsity with r e s p t  to :orhe 
kbesgue meatsure has -tlae form 

with the norming colzstmt @yen by 

defines the prior distribution of the parmeter 9, Moreover, the Fdm9y of priors 
defined in such a way has the faBawing propenies (cf. Magiera [2]), 

Trno~m 2. If v > 0 alrd ( r ,  E) = ((rz PZ I - . rn), ~L)E i!?Js lhea 
(a) ~ ( 9 ;  v ,  P, a) i~ w conjugate prior to fltzcfwmily (Pa, 8~ 63) d$md by (1) 

(3; 
(b) the pl~~ferior d i ~ d ~ i h u t i ~ n  of g7 given w rmdom 3ample (Za (z), S ~ T ] ) ~  

. . . , (29' ( T ) ~  slv ft)) from {Psg  8 E 91, is 
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The properties of the canjugate family {n (8; Y, r ,  a);: (r ,  cr-)~b) we will 
use to solve the problem OF adMsible estimation cansidered below, 

Let us consider, for a fixed nusnlsler s > 0, the: stopping time 

(41 .t, =inf{t: S ( t )  2 a), s 2 0 ,  

By the assumptions concerning the pracess S ( t )  this stopping time b finite for 
each 9 E @, Mareover, it fouows from the exponential f d l i e s  theory that khe 
regularity conditions are: fu'ulfilled. This allours to Mesentiate twice under the 
integral sign with respect to Q the identity 

j' exp eJ= (23 - "P ($1 3 (%I - "r (914 dlu, = 1, 
IB 

and thus the faflowing Wald identities hold fur 1 < i ,  j d n: 
(5) EB Zi (T,J = MM; (9; ST,  
(6) Eg( [Z i  (rJ -Mi (9; $1 [Zj(z,]-- Mi(8;  811) - MC(9; s). 

Let (I-, E) be a point from 4Y and let 
va+s 

gzz- far some a > 0 and v > 0, 
v-4-1 

Moreover, let (Z3 (.C), S' (z)), . . . , (ZN (z)~ SN (T)) be a random sample from (21, 
with .1: = .t,. Consider an admissible estimatitm of the veictoaolr 17M (8; 8) with 
respect to the loss function 

where C is an n x rz nomegalive defiaire maesix. As a strai&tforward implica- 
tinn of T h e ~ m  2 we obtain the fcll'lawing theorma: 

Proof From the prwious theorem it fdows that tdze dccisian rule de- 
fined by (8) is Bayes with respect to the prim n(9; v ,  r ,  w), Shce the risk for 
do ( Z  S (-I-,)) can 23e seen ts bt: f i ~ t e ,  admissibility of this decision ruIe holds 
true. ~ s :  

NOW S U ~ ~ C F = ~  BS before;, thslt one obmrva the proms X(s)  Quhg  the rm . . 
doxn t h e  intend [8,2sJ and one wmts $0 find a estimator of FM(8; dp 
with respec3 to the lass function (3)- In most casm this prablm k o m s  r r i d  
sirn~e? far each e ~ t h t a r  4 the resulling e x p e t d  lorn is inft9it.q i . ~ ,  

~ p ~ g . ~ ( ~ ( ~ ( ~ s j ~  S ( T S j r  9)= at 
BE@ 
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rnnd thus zany decision rule may be sollsidered as minimax, To avoid this 
triviality one should modify the loss, e,g. by taking the weighted squared errar 

so that the corresponding risk of estimation was bounded. The simplest cho~ice! 
of the fundion w (9) is w (9) = =(do, 81, where R (do, ia) is the risk fuzxctian for 
do(Z(;"cs], S(.c_3) and M = 1. This risk equals, by ( 5 )  and (61, 

8, slightly more general choice of the function w (9) i s  

where kS = [did is an m x n nornegative ddehie matrix. Unfo&tunatelp, either 
choice of tktse tvBght functions leads to another dficdty* We are going ta 
prove, using the Bayes methodology, that an admimible or mininax estimator 
of VM(9;  &), under weight4 Iws, is gnear in Z(rJ. II3awever, the 13aye8 es- 
tintator of this parameter far the eos?jugate psior n(R v,  P, 4 is of the farm 

which, except far Che trivial case w (9) = eonst, is no1 a Ellear function of ZIT&. 
This assertion may be dedaced frnm the follawing theorem being a mdifica- 
tion of neorem 3 of Diaconis and Ulvisaker [I). 

TIIE:OW&% 1. Swppase @ iis open in, Rn attd supprcrse &at the S U P ~ O ~ ~  of 
conlrains larz open iaervaE in RR, I f 4  has tht. priw dbtrtbtlrion K which does not 

coilcentralre at a single point, and #' 

for same colastant a lend a cowcant vector 6,  she^ a sr: 0 arzd ;rt is abs~lt~tgay 
cnntina~us Id$) with 
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Thus, this theorem implies fiat if there is a pior n* with respect to w ~ c h  
a Bayer~ estimator of BM(9; 4 (under the weighted loss (8)) is a. linear funzetion 
of Z(TJ, then dn($)/d8 is proportional to w (9) .n: (9; v ,  r, 1 3 ~ )  for some v O and 
( r ,  a) E 4Y. Unfortunatel~r, priors K* of t h  form may be- imgrowr, since the 
inequality 

is  not guaranteed, In the next section we give conditions under which these 
priors are pmper and describe their pperties,  which cstn be used to obtain 
some minimax results, 

Let D* be the family of priors (_possible &props) on @ dehed by 

R* = ( ~ ~ 1 9 ;  v ,  r ,  4: K*($; v, r,  ol) - w(9)n(9; Y, r ,  E) 

with v > O and ( r ,  a) E @) , 

where the wei@t function w(8) is given by (10). From the- fom of this weight 
function it foJlows that K* (9; v, r ,  a) is proper if far each I G i, j G n 

f M$(B; or)M;(9; a ] e x p [ v ( r 8 - M ( $ ;  a))] dr9 .=: co. 
43 

To formulate ~onditians which guarmtee finikness rrf the irrtemals above we 
denote by A the faflowing set; 

and assume that it is nonemp.ty, 

LEMMA 1, Suppose tkat (vo, ro, a,) E A and that ( v ,  r ,  ae)sR, x @.  the^ 
Qy., F ,  @ E A proviltld t b t  at least one rDf tlaefollowingfotlr solsdirians #s satisfiszd: 

v O f a + v l r l  ~ o ~ o + ~ ~ ~ I  
and (vl, ri. czl)~R.+ x 3; 

v*+v* v0Cv1  



v > 9 r 0 , ~ ~ > ~ O ~ o  and limiaf ll.S(S3 1) 
= 00; 

itoil-* ti911 

@I @ =(??,$I C(---LXJ, 00) and v > yo, W E >  v ~ E ~ ~  

Proof. Let (v, r ,  cx) be a poi~f from R4. x @, If the condition td'j i s  sntria- 
k d ,  then (v,  r ,  a) E A because (d, Theorem 1) 

sup exp (rQ - M (8; a))] < (x3, 

*e 
The same inequaEty implies that (v8 rr, oi) E A when the condition (b) is fuImd,  
bie~ause (Y,, T O ,  ao)tzA, ( v l ,  T I ,  O I ~ ) E R +  x g ,  and 

x supexp [ v l  ( r ,  $-M[g;  E,))] < m, 
SE@ 

Assume nsw that the candition (c) :)is satisfied. Then 

where 

ThexIarc, to prove that (v, r,  E ) E A  i t  sufices IQ show that 

FOP the purpose observe first that r i a - M  (9; a,) is bounded from above when 
11911 is bollrrdcd, because M (9; al )  is a mnvex !unction crf the variable B md i s  
bounded from helow by an & b e  fu"urmctisil, e.g., 

P\ M ( 9 ;  mi) k M(&, ol,)+BM(80, ai)(8-8,] for a fixed 9 0 ~ 8 .  

By the same argument, the convex functions @(a) and P(8) are borrnded from 
below by two m e  fundions, aad the assumption 



implies immediately that 

merefare, if [I$[[ -t m , we obtain 

limsup [r,9-M (9; aI ] l  = lim sup 11911 -- 
1&911 -*m IISI~ -+= 13311 

which implies the desjred ~ s u l t ,  
NOW assume that the eon$itkon (d) holds. For each f?xed /3 > 0 the function 

My$;  B)I is incremhg with resped $0 the variable 9 E @ - @, 9 c. (- m, m). 
Therefore, for (v ,  r ,  a) E R , x GY, the funchon jM' (9; @)I ew;p [v (r9 - M (9; a)$] 
may become unbout~ded oaXg when 

9-+9 - md timM"(9;P)- -co or 8-9 and h M " ( 9 ;  B ) =  m. 
8-9. 3 -4 

We prove the: boundedness af this hactjon only in the first case, because tke 
other one c m  be tmated by mdogy, So assume now that .t -+g and that 
limo,, - lM" (3; C3) - - a. Sin~e bath functions @ ($1 and F' (9) are increasing 
and thus are: bounded from above as 8 -+g, this assumption implies that 

Using the same asgmenb a in the proof of (6) we deduce that ta obtain the 
boundednms of the h c t i o n  1M' (8; exp [v ( r s  - M  (8; ac))] when 9 --t 3 if suf- 
ficm to show that 

tvhere the paint (v,, rl ,  a,) is d the same I u m  as in ($11, So, supwse that 

liln [r18-M (Q; al)] = a,. 
e+_s 

By the same iirgumeats as in the proof af (c) we deduse that it is impossible 
when F 2 - rn , Assume &at 2 = - m. Then, by the de 1WHaspitd rule and (123, 

which is zr, contrsrdickion, Therefare (13) holds, which completes the prod af the 
~B~MEIZ%. E# 
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Let A, denote the intefior sf the set A. Tbea the faflowing lemma holcls: 

LEMU 2, I f  (v, r ,  ~ ) E A ~ ,  then, $"or each ji'>0 and e ~ c h  1 g i,J d n, 

I 
(el - 1 (sl; 0t) exp [v  (r8 - M (9; a))] d9 

v ,  - j ( r i - ~ i ( 9 ;  OC))bl-~uil;(ijl; 4 e x p  [v ( r 9 -~ (9 . ;  u))] d9. 
8 

Proof. If (v, r, OL)EA~, then, for a sufi&ently small E r 0, {v-F, r ,  #)sA 
and, obviously, ( E ,  r ,  a) E R + x %. "PZlerefore 

because the first factor under the second integral is lmunded while the other 
one is ietegrabk by Theorem 1, Thus the second part of the Lemma and, by LEle 
same argummts, the first one are proved. We psave the third p r t  of the 
lemma only for i = X because other cases cam be treat& by analogy. The 
boundedness af the fsl~tor IMi(r9; fi)j exg [Qv --E) (YS - M ( 3 ;  -- a))] inmphes that, for 
Rxcd values of a2, . . ., lYll and far 9': = $I or 9; = 8,, - 

((cf. Thear~m 1 {d)]. h t e ~ a t i n g  by parts we obtain, by i~~tegra'blljty of the f&fasfiears 
\Mi (8; exp [Y (1.9 - M (8; E))] and [Mi (9; a) M: (9; $)I exp [ v  (rk9 - (@; a))], 

f Mi1 (9; $) axp [u (7-9 - Rrf (9; a))] 69. 
ci) 



This proves (c] and (d) of the bmxna. The last part d the lemma cm be dedu~ed 
from the previous oar: and from the assertion (c) of Theorem 1, I 

A5 sr, straighilbrwasd irnplia~oa of Lemmas 1 and 2 we have the following 
theorem: 

T ~ U R E M  5. Let the weight function w(9) be of the form (I@, If 
(v ,  r ,  a) E A,, then the measure E" (51; V ,  r ,  aE) on @ whose density with respect to 
the Lsbesyue measwe takes the form 

witk the aory~ziag constant given by 

d@nes the prior dktribution of the par~rsreter -9.. 

Iu the case when the parameter 9 is positive we present the foldovvjng 
propor+9tinra useful to det~rmine the sct of  parameter^ ((v, r ,  ~r) far which 
the modfied priars arc the p~oper oms. As it is well known, to deriw tbt Bayefr&~ 
es-stlmiator of 9 and the posterior expeetad Isss, one has ts mnsider the fal- 
lowing conditions: 

d j - ( [ r  -M'((S; or;)] exp [ v  (PY - M ( 3 ;  m]]] )  C19 = 0. 
@ dg 

%r followr; Erorn Theorem 1 that the condition (14) is satjsfrci-l for dl v > O and 
(r3 a) E VV The  fall^ wing pr~po~ition detern3.i ltefi condisiarrs under wGch the 
equality (25) holds, 

Pnrcamsm~uN 1. &ek 8 ~ ( 0 ~  m). Suppose? that 9 and can be expres- 
s& a8 
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respe~tizleEy,~f~"orow efroice d ( v o l  r,, a,) and (v,, rl,  a,) such rhat u, r 0. Then 
tfae equality (15) holds for ( v ,  r ,  ol) satisfying the JotEowiag co~disions: 

ff "V (9) = 00, aad if 9 can be witten im 

fir some choke  of^,, cr, r 0, then the coadirioa (15) haldsfw (g 3. go, cr 4- ~ , ) E Y $  
where (Q, Q) E % are the prior pmrlaeters. 

Proaf, It fallows from (161, after differentiation, that 
1 

.(191 M'(9.; R,) = To-- v, S" 
Consider the expression 

I(8) = [ r+r , -M'(8;  m+ao)]exp{v[(r+ro)9-M(9; a+ma)l) 

appeadng in the integmd of (3  5 )  for v t) and (r 4- 3.0, ac + go) E @, Taking into 
amoutat (19) yields 
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Then, szpplging the candition 114) for each term of ](a), we obt~in  

which is eqnivaleat ta (15). 
Remark that if Y(O) E O, then the dimension of the prior parameters 

( w ,  r ,  ac) is reduced to twa parameters, say (Q, cr), where g = w and o = VE. fn 
this case, the retation betwen 9 and G"(9.S can be desived expfi.citly from (18). 
Nmdy,  

Thus 

and the resalt follows by applying the mndi~on  (14)- lpl 

In this section we will apply Prop~sitlon 1 and Ti-reorem 5 la find the 
rnodged ca~iugatc prior ~'(9; v, r ,  E) for a one-parameter stn~onary Grtus- 
sian Mrtrkav proczss &nd for a two-paramekr Markov chain. Next we solve 
one problem of an ~rfdssible and minimax estimation for the real process X (t) 
whose likelil~ood func~on is; d the form (I). 

4.1. EXhmr,~;: I. Let X(t) ,  t 2 0, be a stoclnastir; prsce8s satisfyhg the 
following stochastic &ftarenfid equation : 

where W(t), t 3 4 rile~rotes the sandard Wiener process: a d  X (0) =,, N (0, 1/29], 
8 E @ = (0, m). "The process X(t), t k 0, nis a s t a h o w  Gaussism. Mdrkov process 
with E g X @  = a and the ~ovariaum f~~nction B fs, t )  = (28)- "exp (-- 9 It -8(), The 
likelilaaod functiorr for this process is of the form ( I )  became 

t ( t ,  61) = axp [9Z [ E )  - @ ((9) S ( t )  - !F (911, 
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@(Y',=9"2 and "iv(8)=-)10,%9. 

Theomm 1 implies tbat,foseach v r 0 and ( r ,  a)€@ = I-m, mjx(C), m), 6he 
measure ~ ( 9 ;  v, r ,  E) oa 8, whose density takes the form 

defnlles a proper conjugate prior. The noming constant C: [v, r ,  4, $yen by (31, 
can be: shown to satisfy the equation 

where D,(lc) denotes the parabolic cylinder function 

[see Magera L2-J). 
En tMs model, 

EM' (8; exp [v  (1-3 - M (9; E))] =. 

A = { (v ,  r ,  E ) E ( @ ,  c O ) X ( - ~ O ,  a~)x(O, a): v >, 2) 

and, by Lc~nma 2, -fhc priors E*@; V ,  r ,  a) are proper far ally 

(Y, Y, c ~ ) E A ~  ={{v, Yl bt3~(0, ~>x( -c r l l ,  W ) X @ ,  GO): V >  2). 

The same ~ s d t  can be dedumd from Propasifion 1 &caw@ for the n u d e r s  
vn =. v1 = 2, T~ = rl  = 0 and an .= ar, = 0 the parameter 8 and the fiam~tirsrn 
Br"61) can be expmssed as 
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Naw, assme that the weigkt function wlP) takes the form 

for some numbers A, B, C, 8, y and 6 far h i e b  this weight is a aoar~egrttive 
function of 9. Themem 5 implim that, for each v > 2 aad (r,  B()E 9' -- (- m, CO) x 
(0, m), the measure ~"(9; v ,  r ,  a) on Q, whase dendtg is of the form 

defines a proper prior on 8. 

EXAMPLE 2. Consider a two-state Markev chain with the matrix (pij)zi=, 
of the one-step transitio~ psababilities and starting from state 1 with probabili- 
ty 1. Let Ni j  ('t), i, j = 1 ,  2, denot~ the n u m k r  af tbe one-step transitions from 
state i to state j in the time interval [Q, tl. me: likelihood function bdsed on the 
observation of the; process up to time t is 

where p = fp,,, pzl) E (0, 112. Suppose that the ob3ervatiaa of the process is 
terminat& at the following random time: 

(22) ~ ? = i n f ( t :  N z 2 ( t ] = = ~ j ,  S =  2,2, ... 
Remark that N,, (.c:) = s and that N , ,  (T!) -. N Z 1  (2) -t- 1, Thus the likelihood 
function at 2; i s  

423) -W,Z, 9) 

1-81 
M (9; cs) = a lag I -dl -lag($ -eh") -allog(l -p,)-lsgp,, 
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Thus, for each j3 and (r,, t2 ,  ~E)E@, 

(A% (9; Fll exxp [p (r8 - hf (a; a))] 

u(r2.c II- t 
= CI+PZ{P--  1 1 1 ~ 1  (1. -pl$"'+"$r"l -ppa)va-$ 

and 

[M",8; @Iexp[~(r.s-M(9; @)I] --- fipVfPZC1l(l -pl)VP1pVZfZ*i(S-p2)'uVa-', 

which implies that 

nerefare, by Lemma 2, the priors R* (9; v ,  r ,  ae) are proper for any 

( v ,  r ,  a e ) ~ &  - ( ( v ,  r ,  a c ) ~ ( O ,  oo) x% vat. 1, v ( r 2 +  1) > 1). 

4.2, Now, suppose that X (t) is a real places8 whose likelihood function is 
of the farm of (I), e,g., a process considered in Example 1, md assumq for 
simp1icity, that 6 is an open an$ convex subzt of the red line, ie. put a = 1, 
k t  ( r ,  ~ d )  be a poht from @ and let 

va+s a =: ----.- falor some a > 0 and 0 3 0. 
v + l  

Given an observation (2 (r,), S (2,)) from (21, with z = 2,, we consider estimation 
of M' (8; @ = Mi (9; $1 with respect to the loss f~c t ; ion  

where ttbe weight Eunctiorz is of the Xi3m (21). 

T ~ O R E M  6- if ( v ,  r ,  M ) E A ~ ,  then 

is aFa admbsiblc estmtor of W (8; - M' (9; (pa S- sIJIV -4- 1 )) wherr the ID.~.Y iv 
y iuen by (24). Moreot~er, ij the weight function is of the form 

then this esfimato~ is minimn, 

P r a o d: From the result of the last section it follows that do (2 (z,], S (T,)) is 
Bayes with re~pmt to the proper prior ~ " ( 9 ;  v ,  s, 4. It ia easy to calculate that 
the risk for this dccision rule is 



srnd it Is finite for: alI 9~ Q'. 'This implies adrnissib2ity d d,(Z(.e,), S(T,)), 
For the weight fu~tction (25) this; ad~ss ib le  deEisioa rule has a constant risk 
and thus is  minimax, r 
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