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Abstract. Modified conjugate families of prior distributions are
investigated and their properties are examined in the context of ap-
plications to admissible and minimax estimation for the general ex-
ponential model for stochastic processes defined by (1). The conjugate
priors are characterized as those which yield a lincar admissible es-
timator under a weighted guadratic Joss in a sequential statistical
model. In Section 3, a new characterization of conjugate priors is presen-
ted which is relevant to the problem of finding minimax estimators in
the statistical model that after a random time transformation cannot
be reduced to a model for processes with stationary independent in-
crements. Applications of the results obtained are presented in some
special models, among others to a zero mean stationary Gaussian
Markov proeess in the problem of estimating the variance parameter.

1. INTRODUCTION AND BACKGROUND

Let X (t), te 7, be a stochastic process with either discrete or continuous
time and with values in (R, #g). Suppose that the distribution of X (t) belongs
to a family of probability measures 2 = {P,, 3@}, where @ is an open set in
R". Let Py, denote the restriction of Py to &, = g {X(s): 5 < t}. Suppose that
the family {P,,, 9@} is dominated by a measure y, which is the restriction of
a probability measure p to %,. Moreover, assume that the density functions
(likelihood functions) have the following exponential form:

(1) L(t, 9) = dPy/dp, = exp [SZ())— D ($) S (1) — ¥ (9)],

where both @ (5) and ¥(3), 3€6, are real and strictly convex functions, and
(Z(1), S@), te T (Z (1) is n-dimensional, S (¢) is one-dimensional), is a stochastic
process adapted to the filtration %, te 7. Clearly, (Z(?), S(2)) is a sufficient
statistic for 9 relative to %, te 7. The process (Z (1), S(t)), te 7, is assumed
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to satisfy the following conditions: Z(¢) is right continuous as a function of
t, Py-a.s., and S(1), te 7, are nonnegative random variables (S () may be non-
-random as well) such that S (¢) is strictly increasing and continuous as a func-
tion of ¢ and S(f)~ oo as t— o0, Pgas.

The family of (1) covers many counting, branching, diffusion-type etc.
processes and the family of exponential-type processes which may start from
a random state and/or time, comprising also some models for stationary Gaus-
sian processes.

Let t be a stopping time relative to &, t€ 7, such that Pg(r < o0) = 1 for
each € @. Assume that the process X (f) is observed during the random time
interval [0, t] and denote by Py, and p, the restrictions of Py and p to &,
Then, as well known, P, is absolutely continuous with respect to p, and the
following fundamental identity of sequential analysis holds:

(2) dPy /Ay, = exp [9Z (z)— 2 (3) S (z) - ¥ (9)].

Consider estimation of the unknown vector-valued parameter AP (8)+BY¥ ()
in the exponential family (2), when the squared error or weighted squared
error is taken as a loss. Amongst all the problems which cne may state
evaluating this parameter the following one seems to be of special interest: do
there exist a vector z,, a number n, and a finite stopping time t for which the
decision rule

do(2), 5(09) = 20170

0

is an admissible or minimax estimator of a linear combination A% ($)+ B¥ (9)?
The standard way to solve both these problems (or at least the first of them) is
to show that do{Z (7), S(1)) is a Bayes estimator of AP (§)+ BY (9) or a limit of
Bayes estimators of this linear combination. For this it is necessary to find
a suitable family I7 of priors on @ from which the desired prior, or a sequence
of priors, may be chosen. A good candidate for such a IT is a family of priors
which are conjugate to 2 = {P,, 3 @}. No matter what is the structure of Z,
the usual definition is that a family IT of priors is conjugate to the family of
distributions £ if it is closed under sampling from Pye 2. This means that, for
each prior distribution eIl of the parameter J, the posterior distribution of
this parameter also belongs to I1. This, obviously, greatly simplifies all the
calculations and helps to solve problems of admissible and minimax estimation
in #. Unfortunately, the conjugate priors may not'exist if Z = {Py, $e ®} is an
arbitrary set of probability distributions, but, as explained below, this is not the
case for the family & defined by (1).

The first, general result concerning conjugate priors was obtained by Dia-
conis and Ylvisaker [1] who found the family conjugate to {Py, §€ @}, where,
for each 3€@, Py is the distribution of a random vector Z and

dPyjdy = exp [8Z — @ (9)]
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for a fixed o-finite measure p on the Borel sets of R™. They also characterized
this family through the property of linear posterior expectation of the mean
parameter Eq Z. This excellent result was generalized by Magiera and Wilczyn-
ski [3] who considered the family {P,, 3@} describing distributions of the
k-dimensional process X (t), € 7, whose likelihood function at time ¢ belongs
to the following n-parameter exponential family:

Py fdu, = exp[8 Z () — @ () S ()],

where processes Z (t) and S () are as in the model of (1). The latter result was, in
turn, generalized by Magiera [2] who considered a slightly more general case
where the likelihood function has the form of (1). In the next section we recall
some properties of the conjugate family described in the last reference. Later
on, we will use these properties to obtain the main result of the paper. This
result concerns the structure of a modified conjugate family which is suitable in
statistical inference for the process X (¢), te 7, when the error of estimation is
measured by a weighted quadratic loss. In this model the quadratic loss func-
tion is divided by a quantity, which, roughly speaking, depends linearly on the
elements of the matrix of the Fisher information for (1). The reason for such
a modification will be explained in the next section.

2. PROPERTIES OF THE CONJUGATE FAMILY OF PRIORS

To describe properties of the priors which are conjugate to the family (1)
we use the following notation.

Let % be the interior of the convex hull of the set of all possible values of
the process (Z(t), S()), te 7, defined in the previous section, and let the func-
tion M: & xR, — R be given by

M@ x)=dB)a+¥(H.
The partial derivatives of the first and second order of M (9; &) with respect to
the variables §; and 3; will be denoted throughout by M;(9; o) and M{}(9; a),
respectively, ie, for i, j=1,...,n
Mi(9; o) = M (9; )/29; and  M(9; o) = 8> M (9; 2)/09;09;.
Moreover, by ¥ M (9; @) we denote the gradient of the function M (8; &) with
respect to the variable 4, ie,
VM (%; @) = (M58 o), M5 (%; ), ..., M, (%5 )"

The set @ is assumed to be open in R", and, by Hélder’s inequality, is convex
in R". Therefore, for fixed coordinates 94, ..., %;—1, 41, ..., 3, the coordinate
§; of any point § = (34, 9,, ..., 3,) which lies in & belongs to an open interval
whose ends will be denoted from now on by §; and 9, ie.,

/\ ﬂzﬁ(gi’ . ay g'") < Si << :@; = §;(91, reey '9’8)! 19‘ - {191.,, igg, raay 9‘3)6@.

1€i%n
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The following results concerning characterization of the prior distribu-
tions on @ which are conjugate to the family of (1) may be found in the papers
by Magiera and Wilczynski [3] and Magiera [2].

TueoreM 1. If v> 0 and (r, 0) = ((r1, ¥2, ..., 1), 0)€ ¥, then

(@) [exp[v(r8—M(9; ®))] 49 < oo0;
2]

(b) {IM3(8; ajlexp [v (r8— M (8; a))] d9 < o0;

@

© [ Mi(%; oyexp[v (r9—M(9; )] 49 =r; [exp [v (r$— M ($; w))] 49;
@

[c)

(d A A\ limexp[v(r9—M3; 0))] =0

8={81,.. 9n)e@® L Ki<n §—+87
where 89 = 9; or 99 = 3;;

(e) supexp [v (r9—M (9; 2))] < oo.
50

From the first part of this theorem it follows that, for each v> 0 and
(r, x)e®, the measure n(9; v, r, ) on @ whose density with respect to the
Lebesgue measure has the form

W = C(v, r, d)exp[v (r8—M (3; ],

with the norming constant given by
(3) C (v, r,0) = [exp[v(rd—M(9; a))] 49,
6.
defines the prior distribution of the parameter 3. Moreover, the family of priors

defined in such a way has the following properties (cf. Magiera [2]).

THEOREM 2. If v> 0 and (r, @) = ((ry, 725 ..., 1), %)€Y, then

(a) m(9; v, r, @) is a conjugate prior to the family {Py, S O} defined by (1)
or (2);

(b) the posterior distribution of 9, given a random sample (Z*(z), $* (1)),
s (ZY(7), S¥ (7)) from {Pg, €O}, is

(95 N+v,(NZ (2)+ )N +), (NS (0)+va)/(N +7)),

where

—_ N — N
Z(t)=(1/N) .Z:I Z'(x) and S(z)=(1/N)} S'(x).

i=1
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The properties of the conjugate family {n(%; v, r, 0): (r, 2)e®¥} we will
use to solve the problem of admissible estimation comsidered below.
Let us consider, for a fixed number s> 0, the stopping time

@ T, =inf{t: S{)=s}, s>0.

By the assumptions concerning the process §(t) this stopping time is finite for
each 3¢ @. Moreover, it follows from the exponential families theory that the
regularity conditions are fulfilled. This allows to differentiate twice under the
integral sign with respect to & the identity

[exp[9Z (1) D(9) S (z)— P (9] dp,, =1,

and thus the following Wald identities hold for 1 <i,j< n:

&) EyZ () = Mi(9; 3),
(6) Eg([Z:(z)— Mi(8; 91[Z;(z)— M)(9; 8)]) = M5(9; 5).
Let {r, ) be a point from % and let

_vo+-8

o

for some o >0 and v> 0.

v+1
Moreover, let (Z(z), $*(v)), ..., (2" (z), S¥(x)) be a random sample from (2),
with 7 = 7,. Consider an admissible estimation of the vector VM (3; &) with
respect to the loss function
Q) L(d, 8) = (d—VM$; &) Cd—vM(9; &),
where C is an n x n nonnegative definite matrix. As a straightforward implica-
tion of Theorem 2 we obtain the following theorem:

TueoREM 3. If v> 0 and (r, &) = ((ry, 73, ..., 1), @) €%, then

ZMt) 4.+ ZN () v

(8) do(Z(z), S(z)) = Nty

is an admissible estimator of VM (3; & when the loss is given by (7).

Proof From the previous theorem it follows that the decision rule de-
fined by (8) is Bayes with respect to the prior n{#; v, r, o). Since the risk for
do(Z (z5), 8(1,)) can be seen to be finite, admissibility of this decision rule holds
true. m

Now suppose, as before, that one observes the process X () during the ran-'
dom time interval [0, z,] and one wants to find a minimax estimator of FM (3; &)
with respect to the loss function (7). In most cases this problem becomes trivial
since, for each estimator d, the resulting expected loss is infinite, ie.,

sup Ey L{d(Z (z,), 8(z)), 9) = oo,
96
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and thus any decision rule may be considered as minimax., To avoid this
triviality one should modify the loss, e.g. by taking the weighted squared error

) L(d, 9) = (1/w(@)(d— VM (8; &))" C(d—VM(3; &),

so that the corresponding risk of estimation was bounded. The simplest choice
of the function w(9) is w(9) = R(d;, 9), where R(d,, 9) is the risk function for
do(Z(z), S (rs)) and N =1, This risk equals, by (5) and (6),

n

R(dg, 8) = — '1')2 [, ?:1 cy Mi(9; 5)+v? Ei cij(re— Mi(8; o)) (r;— M3 (9; )]

A slightly more general choice of the function w(9) is

f

(10)  w(®= Y c; M8 )+ Eldu( — Mi(8; o)) (r;—M;(9; o)),

Li=1 i,j=
where D = [d;;] is an nx n nonnegative definite matrix. Unfortunately, either
choice of these weight functions leads to another difficulty, We are going to
prove, using the Bayes methodology, that an admissible or minimax estimator
of VM (8; &), under weighted loss, is linear in Z(z;). However, the Bayes es-
timator of this parameter for the conjugate prior n(9; v, r, «} is of the form

J(1/w(® VM (9; Byexp [9Z (r)— B (9 S (r)— ¥ ()] exp [v (r9— M (9; o))] d9
(2]

5

[ (17w (9) exp [3Z (2 — @ (8) S ()~ ¥ (B)] exp [ (9~ M (5 )] 45

which, except for the trivial case w(9) = const, is not a linear function of Z (7).
This assertion may be deduced from the following theorem being a modifica-
tion of Theorem 3 of Diaconis and Ylvisaker [1].

THEOREM 1. Suppose @ is open in R" and suppose that the support of
Y., contains an open interval in R". If § has the prior distribution n which does not
concentrate at a single point, and if

[/ w @) VM (9; Qexp [$Z (z)— P (9) S (z)— ¥ (9)] = (d9)
@

""" = aZ(t)+b
f(1/w(9)exp [8Z (z)— @ (9) S (z,) — ¥ (D] = (d9)
)

for some constant a and a constant vector b, then a # 0 and = is absolutely
continuous (d9) with

9

(1/w() dr;‘g = Cexple ' b%—a (1 —a) M(9; o)].
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Thus, this theorem implies that if there is a prior n* with respect to which
a Bayes estimator of VM (9; @) (under the weighted loss (9)) is a linear function
of Z (z,), then dn(8)/d9 is proportional to w(3) n(8; v, r, a) for some v > 0 and
(r, ®)e¥. Unfortunately, priors z* of this form may be improper, since the
inequality

fw@H (v, 1, 0) <0
&

is not guaranteed. In the next section we give conditions under which these
priors are proper and describe their properties, which can be used to obtain
some minimax results.

3. PROPERTIES OF THE MODIFIED CONJUGATE FAMILY OF PRIORS

Let IT* be the family of priors (possible improper) on @ defined by
Ir* = {a*(%; v, r, o) o*(8; v, r, ) ~ w(@n (¥ v, 7, 0)
with v> 0 and (r, 2)e @},

where the weight function w(8) is given by (10). From the form of this weight
function it follows that n*(9; v, r, ®) is proper if for each 1 <i,j<n

§ ME(9; s)yexp [v (r8—M (8; 2))] 43 < co,
&

iM}(@; o) M5(9; eyexp [v (r9— M (9; 0))] 48 < 0.

To formulate conditions which guarantee finiteness of the integrals above we
denote by A4 the following set:

A={{v,r,0)eR, x¥: A sup||FM(9; pllexp[v(*8—M($; w))] < oo}
=0 3e8

and assume that it is nonempty.

LeMMA 1. Suppose that {vy, rq, tg)eA and that (v, r, a)e R, x%. Then
(v, r, w)e A provided that at least one of the following four conditions is satisfied:

(a) A\ supliVM (8; Bl < oo;
f>0 8cB
(b

Voto+ViTy Yoo+ vy oy
{V, ¥, CC) = (1’0 +‘vla

1"0'[-‘1)1 ) Vg +1'1

) and  (vy, 1y, %)ER . X ¥;
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M(%; 1)

(c) V> Vo, V> Vortg  and  Hminf ——" = co:
nel—a |19l
(d) =3, 9c(—w, o and v>vy, va>vyo.

Proof. Let (v, r, a) be a point from R, x#. If the condition (a) is satis-
fied, then (v, r, a)e A because (cf. Theorem 1)
supexp[v (r3—M (% 0)}] < 0.
Je@ )
The same inequality implies that (v, r, ®) A when the condition (b) is fulfilled,
because (vq, 7o, %p)€ A, (v, ry, #;)eR L X%, and
sup |7 M (3; Bl exp [v (9 — M (9; 2))]

=8

= %“aeg VM (3; Pllexp [vo(rod—M(3; ap))] exp [vy(ri $— M (8; ay))]
< sup I7M (8; B)ll exp [vo (rod — M (9; ap))|
8=

x sup exp [vy (ry §—M (9; «y))] < co.

Jel
Assume now that the condition (c) is satisfied. Then
VM (3; Pliexp [v (rS— M (S5 o))]
= [[FM (3; Blllexp [Vﬂ ("Dig‘””M(BE Ula)}] exp [VJ (?’1 $—M (I; Oﬂims
where

YV —Vo T Vi — Vg O
=20 gy =205,

11 vy =v—vy >0 r
( ) 1 0 ! 1 V—1g s 1 V—vg

Therefore, to prove that (v, r, #)e 4 it suffices to show that

supexp [vy (ri9—M(8; uy))] < 0.
8e0

For the purpose observe first that r{3— M (3; «,) is bounded from above when
|19]] is bounded, because M ($; «,) is a convex function of the variable & and is
bounded from below by an affine function, e.g.,

A M(S; ay) = M (3, a)+FM (3, 2,)(9—8¢) for a fixed §,€80.

Se@
By the same argument, the convex functions @ (9) and ¥ (8) are bounded from
below by two affine functions, and the assumption

M@ 1) _

liminf
jaj-e |19
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implies immediately that
M(9; o) D:)
JANTTES ETI

Therefore, if ||| — oo, we obtain

?

limsup [r13— M (9; a,)] = limsup|| ”[ﬂ

[~ o~

rnd_ M9 o) ai)] _
TR

which implies the desired result.

Now assume that the condition (d) holds. For each fixed § > 0 the function
M’ (9; P) is increasing with respect to the variable 8¢ @ = (9, § < (— o0, ).
Therefore, for (v, r, ®)e Ry x %, the function |M'(3; )| exp[v (r8—M (9; w))]
may become unbounded only when

-8 and imM'(9; )= -0 or §-9 and imM'(3; f) =
3-8 9-+3

We prove the boundedness of this function only in the first case, because the
other one can be treated by analogy. So assume now that 3 — 3 and that
limg..g M'(9; f) = —co. Since both functions @'(3) and ¥'(9) are increasing,

and thus are bounded from above as 9— §, this assumption implies that

(12) N\ im M'(9; o) = — 0.

a=0 38

Using the same arguments as in the proof of (c) we deduce that to obtain the
boundedness of the function |M’ (3; ) exp [ (r%—M (9; @))] when 8 — 9 it suf-
fices to show that

(13) lim [ry3—M(9; 2;)] < o0,
8-+3

where the point (vq, ry, a;) is of the same form as in (11). So, suppose that
Liﬁ; [rid—M(8; 0,)] = ©

By the same arguments as in the proof of (c) we deduce that it is impossible
when 8 > —co. Assume that § = — co. Then, by the de 'Hdspital rule and (12),

— M(9: 2
0> tim "MITMBEN iy a(g;007 = oo,

8-+ 9 8= —m

which is a contradiction. Therefore (13) holds, which completes the proof of the
lemma. =
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Let A, denote the interior of the set 4. Then the following lemma holds:
Lemma 2. If (v, r, a)e Ay, then, for each >0 and each 1<i,j<n,

(@) {IM;(8; Blexp[v (r9—M (9; 0))] d9 < oo;

&
(b) §IM3(9; B) M5(9; o)l exp [v (r8—M (9; @))] 48 < c0;
(© | M5(8; Byexp [ (r9~ M (3; e))] d9] < co;

2]

@ (M5 Bexp[y (9 (3: )] a5
= —r; [ Mi($%; Byexp[v(r9— M (3; o))] 49

+ [ M5(9; o) Mi(9; Pexp [v (r8— M (9; w))] d9;

- (e) %‘f 558 wyexp[v (r9—M(9; w))] d9
o
= [ (ri— Mi(9; o)) (r;— M (9; o)) exp [v (r&— M (3; o))] d9.
&
Proof If (v, r, ®)€ Aq, then, for a sufficiently small ¢ > 0, (v—e, r, )e 4
and, obviously, (g, r, @)e R, x %, Therefore

J 1M (8; BYM(8; alexp [v (rS— M (3; a))] 49
6
= l!;BM§ (8; Blexp [(v—e) (r8— M (9; )] IM(8; o)

xexp e (rd—M (9; 0))] 49 < w0,

because the first factor under the second integral is bounded while the other
one is integrable by Theorem 1. Thus the second part of the lemma and, by the
same arguments, the first one are proved. We prove the third part of the
lemma only for i =1 because other cases can be treated by analogy. The
boundedness of the factor |M;(3; f)lexp [(v—e) (r— M (9; ))] implies that, for
fixed values of 9,, ..., 9, and for 8§ =9, or 9 =9,

Jirgﬂ IM3(9; Plexp[v(rd—M(%; 2))] =0

(cf. Theorem 1 (d)). Integrating by parts we obtain, by integrability of the factors

M (8; Blexp[v(r8—M (9 )] and |M;(8; ) M; (5; Plexp[v(rd—M (3; )],
| M55 Bexp [v (r9— M (8; )] 49
8
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= .. J[My (% Bexp[v (r9—M (9; )] ]5=5: d9,... 43,
~s£ M (3; B)v(r;— Mj(9; o)) exp[v (r9— M (3; w))] 49
= wvrj(j; M1 (9; Bexp[v(r8—M(8; o)) 49
+ viM}(Q; @) My (9; Byexp [v (r8— M (3; )] d5.
This proves (c) and (d) of the lemma. The last part of the lemma can be deduced

from the previous one and from the assertion (c) of Theorem 1. =

As a straightforward implication of Lemmas 1 and 2 we have the following
theorem:

THBOREM 5. Let the weight function w(9) be of the form (10). If
(v, ¥, @) € Ag, then the measure n*(9;v, r, @) on © whose density with respect to
the Lebesgue measure takes the form

dn*(3; v, r, @)
a3

with the norming constant given by

(C*(, r, )" = [w(S)exp[v (r8—M (9; 0))] d3,

= C*(v, 7, ) w(Pexp [v(r—M(3; a)],

defines the prior distribution of the parameter §.

In the case when the parameter § is positive we present the following
proposition useful to determine the set of parameters (v, r, «) for which
the modified priors are the proper ones. As it is well known, to derive the Bayes
estimator of & and the posterior expected loss, one has to consider the fol-
lowing conditions:

(14) J = {exp [y (r9— M (3; )} 9 = O,
) &8
(15) i&% {lr—M'(3; W)]exp [v(r9—M(S; w)]} d9 = 0.

1t follows from Theorem 1 that the condition (14) is satisfied for all v > 0 and
(r, 2)e®. The following proposition determines conditions under which the
equality (15) holds.

ProrositioN 1. Let 8¢(0, «). Suppose that 3 and @' () can be expres-
sed as

(16) 9 =exp[volro3—M(J; ao))]
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and
1n &' (9) = exp[vy(ri 9—M(3; a)].

respectively, for some choice of (v, 1o, &) and (vy, 1y, 04) such that vy > 0. Then
the equality (15) holds for (v, r, o) satisfying the following conditions:

v>0, (r+ry, atog)ed,

v

¥V
v—1vq >0, e P o= Py s

o -+ g ‘E@,
V¥ V—V¥g

vy v(atag) v, o
vy >0, (v(r+rg)+ 1 v{et+ag)+vy I)E@"

vy, V4 vy
If ¥(9)=0, and if 3 can be written as
(18) 8 = expleod—oo 2(9)]

for some choice of go, 0o > 0, then the condition (15) holds for (¢ + 0o, 6+60)€¥,
where (g, 6)e¥ are the prior parameters.

Proof. It follows from (16), after differentiation, that
4 " — 1
19 M'(S; 0p) =70 308
Consider the expression
I(9) = [r+7ro—M'(9; a-+og)]exp {vi(r+7o) §— M (9; o+ ap)]}

appearing in the integrand of (15) for v > 0 and (r+ry, a+0p) ¥, Taking into
account (19) yields

(20) M'(9; a+ap) = rg;;%-i-a@‘ .
(IR
Thus, in view of (16), (17) and (20),
I(9) = [r +;—1—3—~md§' (Q)] exp {(v[(r+ro) 8— M (3; a+ap)]}
4]

= rexp {vI({r+ro) 3 —M(8; o+ ao)]}

-;-%exp {(V“vm)[<vjvﬂf+?g) SWM(Q; K_%ﬁ%w 050)]}

—oexp {(V+v1) [(W) 9—M (9; viat j%?gjﬁ)]}
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Then, applying the condition (14) for each term of I(9), we obtain

lim 1(9) = lim I(9),
8-+0

B+ ot

which is equivalent to (15).

Remark that if ¥(0) =0, then the dimension of the prior parameters
(v, r, &) is reduced to two parameters, say (g, o), where g = vr and ¢ = va.. In
this case, the relation between 9 and &' () can be derived explicitly from (18).

Namely,
o L1
7= (gu— 9).
Thus

[(e+go)—(o+060) ' (] exp [{o +00) 3 —(o+00) D(I)]
= (g +0o)exp[(g+¢o) 9 —(0+0a) P(I)]

2090 eep [0 +00) (o -+00) @ @)1+ T 2 exp [05— o@)

0 Oop

and the result follows by applying the condition (14). m

4. APPLICATIONS

In this section we will apply Proposition 1 and Theorem 5 to find the
modified conjugate prior n*(8; v, r, o) for a one-parameter stationary Gaus-
sian Markov process and for a two-parameter Markov chain. Next we solve
one problem of an admissible and minimax estimation for the real process X (t)
whose likelihood function is of the form (1).

4.1. ExampLe 1. Let X (f), t = 0, be a stochastic process satisfying the
following stochastic differential equation:

AX () = —8X (t)dt +dW (1),

where W (t), t 2 0, denotes the standard Wiener process and X (0) =5 A" (0, 1/29),
3e@ = (0, cv). The process X (t), ¢t = 0, is a stationary Gaussian Markov process
with Eg X (t) = 0 and the covariance function B(s, 1) = (29)" ' exp(—3|t—sl). The
likelihood function for this process is of the form (1) because

L{t,3) =exp[8Z(H)—2(HS)—P(H],
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whem“
ZO)=3-X*O-X*0)], S@O= ixz(ﬂds,
Y

&%) =92 and P =—Llogd.

Theorem 1 implies that, for each v > 0 and (r, ®)e ¥ = (— 0, ) x(0, ), the
measure n(3; v, r, &) on ©, whose density takes the form

dn(S;v,ro0) o g
75 =C(v, r, )" exp| v| rd “5 )

defines a proper conjugate prior. The norming constant C (v, r, a), given by (3),
can be shown to satisfy the equation

‘ - — v+2) ) v\i2
[C,r, )] " = (o) *2r ("‘f )eﬁp(ﬁ>ﬂwcv+zuz(“(§) 7’):

where D,(x) denotes the parabolic cylinder function

2 2
oxp(—x /1) K/4}‘[3"'F‘”1exp(~x3*%—)d»9, p<0

Dol ==Fp )

(see Magiera [2]).
In this model,
2

M{8; a) = aiﬁiiag&

2 2
2
92 exp [v (r@ - a%)].

A= {(v, 7, )€(0, o0) x (— 0, 0)x(0, 0): v 2}

and, by Lemma 2, the priors n*(8; v, r, @) are proper for any

and

M’ (3; B)lexp [v(r§—M (8; w)] = iﬁsmi%

Therefore

(v, r, W)e Ay = {(v, r, ®)€(0, 0) x (~ 00, 00)x(0, cv): v > 2}.

The same result can be deduced from Proposition 1 because for the numbers
Vo=V, =2, rg=ry =0 and oy = 2; =0 the parameter § and the function
@'(9) can be expressed as

¥ 1
9 =exp| v roﬂ-mgwg—&-ilog@

= exp[v; (ry 3—M(9; ap))] = &' (9.

= exp [vo (ro 3—-M(9; D‘Om
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Now, assume that the weight function w(9) takes the form
(21) w(9) = M"(9; B+ A(M'(3; 0))*+B|M ($; )+ C

for some numbers 4, B, C, f, y and é for which this Weight is a nonnegative

(0, co), the measure #*(3; v, r, ) on &, whose density is of the form

dn* (3, v, r, o) * o _i N__ﬂ_
mec (v, ¥, m)[(ﬁflmmz)-i-fi(g&w) —E—B(é@ 23)4»(5]

2
x §2 exp [v (rsv—ﬁa %—)],

ExampLE 2. Consider a two-state Markov chain with the matrix (py)?;-,
of the one-step transition probabilities and starting from state 1 with probabili-
ty 1. Let Ny;(2), i, j = 1, 2, denote the number of the one-step transitions from
state i to state j in the time interval [0, t]. The likelihood function based on the
observation of the process up to time ¢ is

L(z, p) = exp {Ny; (7)log(1—p;2)+ Ny (1) log p;,
+ Ny (Hogpyy + Ny (1) log (1 —p2y )},

where p = (py2, p21)€(0, 1)% Suppose that the observation of the process is
terminated at the following random time:

(22) 2 =inf{t: Np,(t) =5}, s=1,2,...

Remark that N,,(t2) = s and that Ny, (t2) = N, (t?)+ 1. Thus the likelihood
function at 12 is

(23) L9
1
= EXP{H;:L N1 (23 +9; N3y (1) —slog — =

defines a proper prior on ©.

9-1

+log 1—¢&° )}

where 8; =log(l—p;,) and §; =logp;spay.
In this case, % = {(ry, 75, @) ry >0,r; >0, 2 >0} and
1 —e®
M(8; ) = alog ——z—s.~log (1—e*) = —alog (1 —p,)—logps,

oM (9;0) et 1-eMt(a—1)e™  1—p .
38, - I pl-pyt Te DRl
MG _ e P
89,  l—eh—e® 1-—p,

where py = py, and p; = pyy.

5 - PAMS 212
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Thus, for each § and (ry, 1y, 2)e@,
M (3; B)lexp [v (8 — M (9; a))]
= [1+p (1] pi=* V7 (L —p) " Py (1 —po) !

and

|M5(9; Bllexp [v (r9—M(8; o))] = Bpi™* (1 —py)™ p3=* " (L—pa) ™™,
which implies that

A={v,r,0)e0, 0)x¥: vaz1,v(r,+1)=1}.
Therefore, by Lemma 2, the priors n*(8; v, r, &) are proper for any
(v, r, )e Ao = {(v, r, @) €(0, c0) x ¥: va > 1, v(r,+1) > 1}.

4.2, Now, suppose that X (t) is a real process whose likelihood function is
of the form of (1), e.g,, a process considered in Example 1, and assume, for
simplicity, that @ is an open and convex subset of the real ling, ie. put n = 1.
Let (r, ) be a point from % and let :

. vots

for some o> 0 and v> 0.
v+1

Given an observation (Z (z;), S(z) from (2), with © = t,, we consider estimation
of M'(9; &) = M (9; &) with respect to the loss function :

1
w(9)

where the weight function is of the form (21).

(24) L(d, 8) = ——(d—M'(3; &),

THEOREM 6. If (v, r, a)e Ay, then
Z(x)+vr
(2, S)) = 2T

is an admissible estimator of M'(9; &) = M’ (8; (va+s)/(v+ 1)) when the loss is
given by (24). Moreover, if the weight function is of the form

(25) w(®) = M”(9; 8)+v* (r—M'(9; o),

then this estimator is minimax.

Proof. From the result of the last section it follows that dy(Z (z,), S(t,) is
Bayes with respect to the proper prior n* (9; v, r, a). It is easy to calculate that
the risk for this decision rule is

M" (95 8)+v2 (r—M' (8; 0))’

R(dg, 9) =

(v+1)2w(9)




Exponential families of stochastic processes 319

and it is finite for all $e®. This implies admissibility of do(Z(zy), S(z,).
For the weight function (25) this admissible decision rule has a constant risk
and thus is minimax. =
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