ON THE APPROXIMATION OF A RANDOM VARIABLE BY A CONDITIONING OF A GIVEN SEQUENCE

BY
KRZYSZTOF KANIOWSKI* (LODž)

Abstract. Let (Ω, \mathcal{F}, P) be a non-atomic probability space. If (X_{n}) is a sequence of r.v.'s satisfying $X_{n} \rightarrow 0$ a.s. (respectively, in probability) as $n \rightarrow \infty$ and $E X_{n}^{+} \rightarrow \infty, E X_{n}^{-} \rightarrow \infty$ as $n \rightarrow \infty$, then for any r.v. Y there exists a sequence $\left(\mathfrak{थ}_{n}\right)$ of σ-fields such that $E\left(X_{n}\left|\mathscr{H}_{n}\right|\right) \rightarrow Y$ a.s. (respectively, in probability) as $n \rightarrow \infty$.

1991 Mathematics Subject Classification: 60A10.
Key words and phrases: Conditional expectation, almost sure convergence, stochastic convergence.

The main result of the paper is the following
Theorem 1. Let $(\Omega, \mathfrak{F}, P)$ be a non-atomic probability space. If $\left(X_{n}\right)$ is a sequence of random variables satisfying the conditions

$$
\begin{equation*}
\lim _{n \rightarrow \infty} X_{n}=0 \text { a.s. }, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E} X_{n}^{+}=\lim _{n \rightarrow \infty} \mathbb{E} X_{n}^{-}=\infty, \tag{2}
\end{equation*}
$$

then for any random variable Y there exists a sequence $\left(\mathfrak{M}_{n}\right)$ of σ-fields such that

$$
\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathfrak{Q}_{n}\right)=Y \text { a.s. }
$$

An analogous theorem for stochastic convergence is also proved.
In [2] and [3] Paszkiewicz describes, in particular, the construction of a σ-field \mathfrak{A} such that $E\left(X_{n} \mid \mathfrak{2 l}\right)$ does not converge to 0 for a sequence of random vectors X_{n} tending to 0 in some sense. We give a more precise description of $\boldsymbol{E}(X \mid \mathfrak{Y})$ when X is close to 0 in measure topology and $\boldsymbol{E} X^{+}, \boldsymbol{E} X^{-}$are large enough.

[^0]The idea of proof of Theorem 1 is based on the following observation. Let X be a random variable and Y be a simple random variable. If $\boldsymbol{E} X^{+}$and $\boldsymbol{E} X^{-}$are large enough, then we can construct a σ-field \mathfrak{H} such that $E(X \mid \mathfrak{H})$ equals Y on the set where X is small enough. For some sequence (Y_{n}) of simple random variables converging to Y we construct a sequence $\left(\mathfrak{A}_{n}\right)$ of σ-fields such that $E\left(X_{n} \mid \mathfrak{O}_{n}\right)$ equals Y_{n} on some large enough set.

All necessary properties of conditional expectation can be found in [1].
Proof of Theorem 1. From (1) we get immediately

$$
\begin{equation*}
\lim _{i \rightarrow \infty} P\left(\sup _{n \geqslant i}\left|X_{n}\right|>\varepsilon\right)=0 \quad \text { for every } \varepsilon>0 \tag{3}
\end{equation*}
$$

Let $\left(\varepsilon_{j}\right)$ be a sequence of real numbers such that $0<\varepsilon_{j}<1$ and $\varepsilon_{j} \searrow 0$ as $j \rightarrow \infty$. The equality (3) implies now the existence of a strictly monotone sequence (n_{j}) of integers such that

$$
P\left(\sup _{n \geqslant n_{j}}\left|X_{n}\right|>\varepsilon_{j}\right) \leqslant 2^{-j} \quad \text { for } j \geqslant 1 .
$$

We put

$$
\begin{equation*}
A_{n_{j}}=\left\{\sup _{n \geqslant n_{j}}\left|X_{n}\right|>\varepsilon_{j}\right\} \quad \text { for } j \geqslant 1 \text {. } \tag{4}
\end{equation*}
$$

Let $p(n)=\max \left\{n_{j}: n_{j} \leqslant n\right\}$. From (2) it follows that

$$
\int_{A_{P(n)}} X_{n}^{+} \rightarrow \infty \quad \text { and } \quad \int_{A_{p(n)}} X_{n}^{-} \rightarrow \infty \quad \text { as } n \rightarrow \infty .
$$

We put

$$
M_{n}=\frac{1}{4} \int_{A_{p(n)}} X_{n}^{+} \quad \text { and } \quad N_{n}=\frac{1}{4} \int_{A_{p(n)}} X_{n}^{-} \quad \text { for } n \geqslant 1
$$

(we can assume that $M_{n} \geqslant 1$ and $N_{n} \geqslant 1$ for $n \geqslant 1$).
Let $\left(Y_{n}\right)$ be a sequence of simple random variables of the form

$$
Y_{n}=\sum_{i=1}^{k(n)} \alpha_{i}(n) \mathbf{1}_{G_{i}(n)}+\sum_{i=1}^{l(n)} \beta_{i}(n) \mathbf{1}_{H_{i}(n)}
$$

and such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} Y_{n}=Y \text { a.s., } \\
& \alpha_{i}(n)>0 \quad \text { for } n \geqslant 1, i=1,2, \ldots, k(n), \tag{5}\\
& \beta_{i}(n)<0 \quad \text { for } n \geqslant 1, i=1,2, \ldots, l(n), \\
& G_{1}(n), \ldots, G_{k(n)}(n), H_{1}(n), \ldots, H_{l(n)}(n) \text { are mutually disjoint for } n \geqslant 1 \text {. }
\end{align*}
$$

We can also assume that for $n_{j} \leqslant n<n_{j+1}$ we have

$$
\begin{equation*}
-N_{n} \leqslant Y_{n}(\omega) \leqslant-\varepsilon_{j} \quad \text { or } \quad \varepsilon_{j} \leqslant Y_{n}(\omega) \leqslant M_{n} \quad \text { for } \omega \in \Omega . \tag{6}
\end{equation*}
$$

Since $(\Omega, \mathfrak{F}, P)$ is a non-atomic one, we can consider a random variable Z uniformly distributed on $[0,1]$.

Before we construct the σ-fields $\mathfrak{\mathscr { }}_{n}$ we shall prove that for every $n \geqslant 1$ there exist real numbers $t_{1}, \ldots, t_{k(n)}$ and $s_{1}, \ldots, s_{l(n)}$ satisfying

$$
\begin{align*}
& 0 \leqslant t_{1} \leqslant \ldots \leqslant t_{k(n)} \leqslant 1, \tag{7}\\
& 0 \leqslant s_{1} \leqslant \ldots \leqslant s_{l(n)} \leqslant 1, \tag{8}
\end{align*}
$$

$$
\begin{array}{ll}
\alpha_{i}(n) P\left(C_{i}(n)\right)=\int_{c_{i}(n)} X_{n} & \text { for } i=1, \ldots, k(n), \\
\beta_{i}(n) P\left(D_{i}(n)\right)=\int_{D_{i}(n)} X_{n} & \text { for } i=1, \ldots, l(n), \tag{10}
\end{array}
$$

where

$$
\begin{align*}
& C_{i}(n)=\left(G_{i}(n) \backslash A_{p(n)}\right) \cup\left(Z^{-1}\left(\left[t_{i-1}, t_{i}\right)\right) \cap A_{p(n)} \cap\left\{X_{n}^{+}>0\right\}\right), \tag{11}\\
& D_{i}(n)=\left(H_{i}(n) \backslash A_{p(n)}\right) \cup\left(Z^{-1}\left(\left[s_{i-1}, s_{i}\right)\right) \cap A_{p(n)} \cap\left\{X_{n}^{-}>0\right\}\right) . \tag{12}
\end{align*}
$$

From (4) and (6) we deduce that

$$
\begin{equation*}
\varepsilon_{j} \leqslant \alpha_{i}(n) \leqslant M_{n} \quad \text { for } n_{j} \leqslant n<n_{j+1} \text { and } i=1, \ldots, k(n) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|X_{n}\right| \leqslant \varepsilon_{j} \quad \text { for } n_{j} \leqslant n<n_{j+1} \text { and } \omega \notin A_{n_{j}} \tag{14}
\end{equation*}
$$

For $t_{1} \in[0,1]$ we put

$$
\begin{aligned}
T_{1}\left(t_{1}\right)= & \alpha_{1}(n) P\left(\left(G_{1}(n) \backslash A_{p(n)}\right) \cup\left(Z^{-1}\left(\left[0, t_{1}\right)\right) \cap A_{p(n)} \cap\left\{X_{n}^{+}>0\right\}\right)\right) \\
& -\int_{\left(G_{1}(n) \backslash A_{p(n)}\right) \cup\left(Z^{-1}\left(\left[0, t_{1}\right)\right) \cap A_{p(n) \cap} \cap\left(X_{n}^{+}>0\right\}\right)} X_{n} .
\end{aligned}
$$

It can easily be seen that T_{1} is continuous.
From (13) and (14) we get

$$
T_{1}(0)=\alpha_{1}(n) P\left(G_{1}(n) \backslash A_{p(n)}\right)-\int_{G_{1}(n) \backslash A_{p(n)}} X_{n} \geqslant 0 .
$$

On the other hand, from (13), (14) and the definition of M_{n} we have

$$
\begin{aligned}
T_{1}(1)= & \alpha_{1}(n) P\left(\left(G_{1}(n) \backslash A_{p(n)}\right) \cup\left(A_{p(n)} \cap\left\{X_{n}^{+}>0\right\}\right)\right) \\
& \quad-\int_{G_{1}(n) \backslash A_{p(n)}} X_{n}-\int_{A_{p(n)} \cap\left(X_{n}^{+}>0\right)} X_{n} \\
\leqslant & M_{n}+1-4 M_{n} \leqslant 0 .
\end{aligned}
$$

Thus there exists $t_{1} \in[0,1]$ satisfying (9) for $i=1$.
Let us assume that we have found t_{1}, \ldots, t_{r-1} satisfying (7) and (9). Then from (9) we get

$$
\begin{align*}
M_{n} & {\left[P\left(\left(G_{i}(n) \backslash A_{p(n)}\right) \cup\left(Z^{-1}\left(\left[t_{i}, t_{i-1}\right)\right) \cap A_{p(n)} \cap\left\{X_{n}^{+}>0\right\}\right)\right)\right] } \tag{15}\\
& \geqslant \int_{Z^{-1}\left(\left[t_{i-1}, t_{i}\right)\right) \cap A_{p(n)} \cap\left(X_{n}^{+}>0\right\}} X_{n}-\varepsilon_{1} P\left(G_{i}(n) \backslash A_{p(n)}\right), \quad i=1, \ldots, r-1 .
\end{align*}
$$

By summing (15) over i we obtain

$$
\begin{aligned}
M_{n} & \geqslant \int_{z^{-1}\left(\left[0, t_{r-1}\right)\right) \cap A_{p(n) \cap\left(X_{n}^{+}>0\right\}}} X_{n}-\varepsilon_{1} \\
& =\int_{A_{p(n)}\left(X_{n}^{+}>0\right\}} X_{n}-\int_{z^{-1}\left(\left[t_{r-1}, 1\right]\right) \cap A_{p(n)} \cap\left\{X_{n}^{+}>0\right\}} X_{n}-\varepsilon_{1} \\
& \geqslant 3 M_{n}-\int_{z^{-1}\left(\left[t_{r-1}, 1\right]\right) \cap A_{p(n) \cap\{ }\left\{X_{n}^{+}>0\right\}} X_{n} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\int_{z^{-1}\left(\left[t_{r-1}, 1\right]\right) \cap A_{p(n)} \cap\left\{X_{n}^{+}>0\right\}} X_{n} \geqslant 2 M_{n} . \tag{16}
\end{equation*}
$$

We put for $t_{r} \in\left[t_{r-1}, 1\right]$

$$
T_{r}\left(t_{r}\right)=\alpha_{r}(n) P\left(C_{r}(n)\right)-\int_{G_{r}(n) \backslash A_{p(n)}} X_{n}-\int_{Z^{-1}\left(\left[I_{r-1}, t_{r}\right)\right) \cap A_{p(n) \cap}\left\{X_{n}^{+}>0\right\}} X_{n} .
$$

We have

$$
T_{r}\left(t_{r-1}\right) \geqslant 0
$$

and from (16) we obtain

$$
T_{r}(1) \leqslant M_{n}+1-2 M_{n} \leqslant 0 .
$$

In consequence, there exists $t_{r} \in\left[t_{r-1}, 1\right]$ satisfying (9) for $i=r$.
By the above arguments we conclude that there exist $t_{1}, \ldots, t_{k(n)}$ such that (7) and (9) hold. In the same manner we can find $s_{1}, \ldots, s_{l(n)}$ satisfying (8) and (10).

Let us define now the sequence $\left(\mathscr{\mu}_{n}\right)$. For $n \geqslant 1$ we put

$$
\mathfrak{Q}_{n}=\sigma\left(C_{1}(n), \ldots, C_{k(n)}(n), D_{1}(n), \ldots, D_{l(n)}(n)\right)
$$

From (11) and (12) it can easily be seen that the sets $C_{1}(n), \ldots, C_{k(n)}(n)$ and $D_{1}(n), \ldots, D_{l(n)}(n)$ are mutually disjoint. From (9) and (10) it follows immediately that

$$
E\left(X_{n} \mid \mathfrak{Q}_{n}\right)(\omega)=Y_{n}(\omega) \quad \text { for } \omega \notin A_{p(n)}
$$

As $\sum_{j=1}^{\infty} P\left(A_{n_{j}}\right)<\infty$, we conclude by the Borel-Cantelli lemma that

$$
\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathfrak{Q}_{n}\right)=\lim _{n \rightarrow \infty} Y_{n}=Y \text { a.s. }
$$

This completes the proof.
One can easily see that if Y is nonnegative, then the assumption that $E X_{n}^{-} \rightarrow \infty$ as $n \rightarrow \infty$ is not used in the proof. Thus the following version of the previous theorem holds:

Theorem 2. Let $(\Omega, \mathfrak{F}, P)$ be a non-atomic probability space. If $\left(X_{n}\right)$ is a sequence of random variables satisfying the conditions

$$
\lim _{n \rightarrow \infty} X_{n}=0 \text { a.s. and } \quad \lim _{n \rightarrow \infty} E X_{n}^{+}=\infty
$$

then for any nonnegative random variable Y there exists a sequence $\left(\mathfrak{N}_{n}\right)$ of σ-fields such that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n} \mid \mathfrak{Q}_{n}\right)=Y \text { a.s. }
$$

The next example shows that we cannot omit the assumption that the probability space is non-atomic.

Counterexample 1. Let $\Omega=[0,1], \mathfrak{F}=\sigma\left(\left(2^{-n}, 2^{-n+1}\right], n \geqslant 1\right)$ and P be the Lebesgue measure on $[0,1]$. Let us consider random variables X_{n} given by

$$
X_{n}=4^{n} 1_{\left(2^{-n, 2-n+1}\right]} \quad \text { for } n \geqslant 1
$$

Then

$$
\lim _{n \rightarrow \infty} X_{n}=0 \text { a.s. and } \quad \lim _{n \rightarrow \infty} E X_{n}=\infty
$$

It can be also easily checked that for any σ-field $\mathfrak{A} \subset \mathfrak{F}$ we have

$$
\boldsymbol{E}\left(X_{n} \mid \mathfrak{H}\right)=0 \quad \text { or } \quad 2^{n} \leqslant \mathbb{E}\left(X_{n} \mid \mathfrak{A}\right) \leqslant 4^{n} \text { a.s. }
$$

Thus there exists no sequence $\left(\mathscr{A}_{n}\right)$ of σ-fields such that

$$
\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathfrak{U}_{n}\right)=1 \text { a.s. }
$$

One can ask whether the assumption that the sequence $\left(X_{n}\right)$ converges to zero almost surely can be replaced by the stochastic convergence. The answer is negative.

Counterexample 2. Let $\Omega=[0,1], \mathfrak{F}=\operatorname{Borel}([0,1])$, and P be the Lebesgue measure on $[0,1]$. Let $\left(X_{n}\right)$ be a sequence of random variables given by

$$
X_{2^{n}+k}=4^{n} \mathbb{1}_{\left[k 2^{-n},(k+1) 2^{-n}\right]} \quad \text { for } n \geqslant 0, k=0,1, \ldots, 2^{n}-1
$$

It can easily be seen that the sequence $\left(X_{n}\right)$ converges to zero in probability but does not converge with probability one. Let us assume now that there exists a sequence (\mathfrak{N}_{n}) of σ-fields such that

$$
\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathfrak{U}_{n}\right)=0 \text { a.s. }
$$

Then we can find $m_{0} \geqslant 1$ such that

$$
P\left(\sup _{m \geqslant m_{0}} E\left(X_{m} \mid \mathfrak{M}_{m}\right)>\frac{1}{2}\right) \leqslant \frac{1}{2} .
$$

Let us put

$$
A=\left\{\omega: \sup _{m \geqslant m_{0}} E\left(X_{m} \mid \mathfrak{N}_{m}\right)(\omega)>\frac{1}{2}\right\} .
$$

Then for $\omega \in A^{c}$ and $m \geqslant m_{0}$ we have

$$
\boldsymbol{E}\left(X_{m} \mid \mathfrak{M}_{m}\right)(\omega) \leqslant \frac{1}{2}
$$

Since $P\left(A^{c}\right) \geqslant \frac{1}{2}$, we can choose $n \geqslant 1$ and $k=0,1, \ldots, 2^{n}-1$ such that $2^{n}+k \geqslant m_{0}$ and

$$
\begin{equation*}
P\left(A^{c} \cap\left[k 2^{-n},(k+1) 2^{-n}\right]\right) \geqslant 2^{-n-1} . \tag{17}
\end{equation*}
$$

From (17) we get

$$
\begin{aligned}
& \frac{1}{2} \geqslant \int_{\left\{E\left(X_{2^{n}+k \mid} \mid \mathscr{I}^{n}+k\right) \leqslant 1 / 2\right\}} E\left(X_{2^{n+k}} \mid \mathfrak{M}_{2^{n+k}}\right)=\int_{\left\{E \left(X_{2^{n+k}} \mid\left\{\left(2^{n+k}\right) \leqslant 1 / 2\right\}\right.\right.} X_{2^{n+k}} \\
& \geqslant \int_{A^{c} \cap\left[k 2^{-n},(k+1) 2^{-n}\right]} X_{2^{n+k}} \geqslant 4^{n} 2^{-n-1} \geqslant 1,
\end{aligned}
$$

which gives a contradiction and proves that there exists no sequence $\left(\mathfrak{N}_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathfrak{N}_{n}\right)=0 \text { a.s. }
$$

We have shown that under the assumptions of Theorem 1 the almost sure convergence cannot be replaced by the stochastic one. Nevertheless, weaker assumptions give a weaker conclusion. We shall prove the following

Theorem 3. Let $(\Omega, \mathfrak{F}, P)$ be a non-atomic probability space. If $\left(X_{n}\right)$ is a sequence of random variables satisfying the conditions

$$
\begin{align*}
& \lim _{n \rightarrow \infty} X_{n}=0 \text { in probability } \tag{18}\\
& \lim _{n \rightarrow \infty} E X_{n}^{+}=\lim _{n \rightarrow \infty} E X_{n}^{-}=\infty \tag{19}
\end{align*}
$$

then for any random variable Y there exists a sequence $\left(\mathfrak{N}_{n}\right)$ of σ-fields such that

$$
\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathfrak{N}_{n}\right)=Y \text { in probability }
$$

Proof. From (18) we get immediately

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left|X_{n}\right|>\varepsilon\right)=0 \quad \text { for every } \varepsilon>0 \tag{20}
\end{equation*}
$$

Let $\left(\varepsilon_{j}\right)$ be a sequence of real numbers such that $0<\varepsilon_{j}<1$ and $\varepsilon_{j} \searrow 0$ as $j \rightarrow \infty$. The equality (20) implies now the existence of an increasing sequence (n_{j}) of integers such that

$$
P\left(\left|X_{n}\right|>\varepsilon_{j}\right) \leqslant 2^{-j} \text { for } n \geqslant n_{j} .
$$

We put

$$
A_{n}=\left\{\omega:\left|X_{n}(\omega)\right|>\varepsilon_{j}\right\} \quad \text { for } n_{j} \leqslant n<n_{j+1}
$$

It is obvious that $P\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. From (19) we deduce that

$$
\int_{A_{n}} X_{n}^{+} \rightarrow \infty \quad \text { and } \quad \int_{A_{n}} X_{n}^{-} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

Now in the same manner as in the proof of Theorem 1 we can find a sequence $\left(Y_{n}\right)$ of simple random variables and a sequence $\left(\mathfrak{N}_{n}\right)$ of σ-fields such that

$$
\lim _{n \rightarrow \infty} Y_{n}=Y \text { a.s. } \quad \text { and } \quad E\left(X_{n} \mid \mathscr{M}_{n}\right)(\omega)=Y_{n}(\omega) \text { for } \omega \notin A_{n}
$$

Fix $\varepsilon>0$. For any $\eta>0$ we can find $m \geqslant 1$ such that

$$
P\left(\left|Y_{n}-Y\right|>\varepsilon\right)<\eta / 2 \quad \text { for } n \geqslant m
$$

and

$$
P\left(E\left(X_{n} \mid \mathfrak{U}_{n}\right) \neq Y_{n}\right) \leqslant P\left(A_{n}\right)<\eta / 2 \quad \text { for } n \geqslant m
$$

Therefore, we obtain

$$
P\left(\left|\boldsymbol{E}\left(X_{n} \mid \mathfrak{A}_{n}\right)-Y\right|>\varepsilon\right) \leqslant \eta / 2+\eta / 2=\eta \quad \text { for } n \geqslant m
$$

which means that $E\left(X_{n} \mid \mathfrak{H}_{n}\right) \rightarrow Y$ in probability as $n \rightarrow \infty$. This completes the proof of the theorem

In a similar way we obtain
Theorem 4. Let (Ω, \mathcal{F}, P) be a non-atomic probability space. If $\left(X_{n}\right)$ is a sequence of random variables satisfying the conditions

$$
\lim _{n \rightarrow \infty} X_{n}=0 \text { in probability and } \quad \lim _{n \rightarrow \infty} E X_{n}^{+}=\infty,
$$

then for any nonnegative random variable Y there exists a sequence $\left(\mathfrak{U r}_{n}\right)$ of σ-fields such that

$$
\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathfrak{A}_{n}\right)=Y \text { in probability }
$$

REFERENCES

[1] P. Billingsley, Probability and Measure, Wiley, New York 1979.
[2] A. Paszkiewicz, On the almost sure convergence of all conditionings of positive random variables, to appear.
[3] A. Paszkiewicz, The characterization of a.s. convergence of all conditionings for sequences of random vectors, to appear.

Faculty of Mathematics
University of Lódź
Banacha 22
90-238 Lódź, Poland

[^0]: * Faculty of Mathematics, University of Łódź.

