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ON THE APPROXIMATION OF A RANDOM VARIABLE
BY A CONDITIONING OF A GIVEN SEQUENCE

BY
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Abstract. Let (2, §, P) be a non-atomic probability space. If (X}
is a sequence of r.v.’s satisfying X, — 0 a.s. (respectively, in probability)
as n— oo and EX;] — o, EX; — o0 as n— oo, then for any r.v. ¥
there exists a sequence () of g-fields such that E(X, |9} —~ Y as.
(respectively, in probability) as n— co.
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The main result of the paper is the following

Tueorem 1. Let (2, &, P) be a non-atomic probability space. If (X,) is
a sequence of random variables satisfying the conditions

) lim X, =0 as.,
@ lim EX,; = lim EX; = oo,

then for any random variable Y there exists a sequence (W,) of o-fields such that

lim E(X,|¥,)=Y as.
An analogous theorem for stochastic convergence is also proved.
In [2] and [3] Paszkiewicz describes, in particular, the construction of
a o-field U such that E (X, | ) does not converge to 0 for a sequence of random
vectors X, tending to 0 in some sense. We give a more precise description of
E(X|¥) when X is close to 0 in measure topology and EX*, EX™ are large
enough,
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The idea of proof of Theorem 1 is based on the following observation.
Let X be a random variable and Y be a simple random variable. If EX* and
EX "~ are large enough, then we can construct a o-field ¥ such that E(X | )
equals Y on the set where X is small enough. For some sequence (Y,) of simple
random variables converging to ¥ we construct a sequence (%) of o-fields such
that E(X,|%,) equals ¥, on some large enough set.

All necessary properties of conditional expectation can be found in [1].

Proof of Theorem 1. From (1) we get immediately

(3) lim P(sup|X,| >¢)=0 for every ¢> 0.

1= nzi
Let (g;) be a sequence of real numbers such that 0 < g; < 1 and ;O asj— co.
The equality (3) implies now the existence of a strictly monotone sequence (n;)
of integers such that
P(sup (X, >¢e)<277 forj=1.
LESS]

We put

(4) A, ={sup|X,|>¢} forj=1

wZny
Let p(n) = max {n;: n; < n}. From (2) it follows that

[ Xf—o0 and | X;j—-o asn-—o.
AP(H; Apini

We put

1
M,,ﬁl f Xy and N,=- [ X; forn>1
4, 4

(we can assume that M, >1 and N,=1 for n 2 1).
Let (Y,) be a sequence of simple random variables of the form

pind Ap

k{n) ‘ l{n}
Y, = Z ﬁ,{?’!) lGi‘(u)‘{" Z B; ("} lﬂi(ﬁ)‘
j=1 i=1

1

and such that

lim¥,=Y as,

) >0 fornzl,i=1,2,..,k(n),
Biiny<0 formz=1,i=1,2,..,In),

Gi(m), ..., Gyy(n), Hy(n), ..., Hyy(n) are mutually disjoint for n > 1.
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We can also assume that for n; < n<n;,; we have
(6) ~N, s hiw< -5 o gEYosM, forwel.

Since (@, §, P) is a non-atomic one, we can consider a random variable
Z uniformly distributed on [0, 1].

Before we construct the o-fields ¥, we shall prove that for every n > 1
there exist real numbers fy, ..., fyy and sy, ..., Sy, satisfying

%) 0t <. Sty < 1,

{8} D“~<..31 é,.‘.SSNn}S;l,

©) umP(C:m)= [ X, fori=1,..., k),
Cilw)

(10) BmPD;m)= [ X, fori=1,..,I@),
Diln)

where

(11 Ci(n) = (Gi(M\ A ) U (Z 7 ([ti-1, 1)) 0 Apiy 0 {XT > 0}),
(12) D;(n) = (H i(n)\iip(n))‘ o (Z -t ([Siw 1 Si)) N Ay N { Xy > 0})
From (4) and (6) we deduce that

{13) g<amsM, formy<n<ny,andi=1,.., k)
and
(14) |Xa <& for m;<n<ny,, and w¢Ad,,.

For t,€[0, 1] we put
Ti (1) = oy (1) P ((G1 (0\Ap) w (272 ([0, 1)) 1 Ay 0 {X,F > 0})

- i X,

(G mN\Aprp)lZ - HIO )N A piyn X, >0
It can easily be seen that T is continuous.
From (13) and (14) we get
TI (O) = g (n}P(Gl (n)‘\APm])"‘” j‘ .XR ,}— 0
Gl(”)\*’g‘p(rﬂ

On the other hand, from (13), (14) and the definition of M, we have
T3 (1) = o3 (2) P((G1 9\ A i) U (Apiy O {X;F > 0})
- 5 Xnm g Xn

G1{im\Apin) Apmn{X} >0}

< M,+1-4M, < 0.
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Thus there exists t, [0, 1] satisfying (9) for i = 1.
Let us assume that we have found ¢4, ..., t, satisfying (7) and (9). Then
from (9) we get

(15) M, [P ((Gii\Ap) U (Z ™ {[tis ti- 1)) 0 Agny 0 (X7 > O}))]
= f X~ P(Gi(M\Apw), i=1,...,r—1

Z- Y- atiin Apemyrd X} > 0}

By summing (15) over i we obtain

M-,, = I -Xn &g
Z= 1[0, - i;))ﬂ-n‘ip{n}n(x; =0
= j X,, — j X“ — &4
Apin) I"(X.T =0} z- "(["r- ;_1.1]4){‘\«'.141;(;‘)!1{}1‘,"" =0}
> 3M,— ] X
Z7W{Jte~ 1,1 Ap(m)ﬂgxg =0}
Thus
(16) | X,=2M,.

Z- 4t - 1A Apem (X > 0)

We put for t,e[t,—;, 1]
T;(tr} = 0, (n) P(Cr(n))*— j X,— I X,
G\ Apimy Z7 it~ 3.0 Ao X} > 0)
We have
L{t-020
and from (16) we obtain
T(1) € M,+1-2M, <0.

In consequence, there exists t,e[t,-y, 1] satisfying (9) for i =7r.

By the above arguments we conclude that there exist ¢y, ..., fyy such
that (7) and (9) hold. In the same manner we can find sy, ..., 8, satisfying
(8) and (10).

Let us define now the sequence (2,). For n > 1 we put

ﬂn = ﬂ'(C1 (ﬂ)s ] C!‘c(n) (ﬂ), Di (H}s Ty D‘I‘{ni {H})

From (11) and (12) it can easily be seen that the sets C,(n), ..., Cy,(n) and
Dy (n), ..., Dyy(n) are mutually disjoint. From (9) and (10) it follows immediate-
ly that

E(X,| W) () = Y (w) for wé¢Ayy.
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As 37 P(A,)< oo, we conclude by the Borel-Cantelli lemma that
j=1 4

lim E(X,|%,) = lim ¥, = Y as.

i el €1 M

This completes the proof. m

One can easily see that if Y is nonnegative, then the assumption that
EX, — oo as n — oo is not used in the proof. Thus the following version of the
previous theorem holds:

Tueorem 2. Let (2, %, P) be a non-atomic probability space. If (X,) is
a sequence of random variables satisfying the conditions

lim X,=0 as. and limEX;) = o0,

[ had- ] n= o0

then for any nonnegative random variable Y there exists a sequence (W,) of o-fields
such that

lim E(X,|%,) =Y as.

R0

The next example shows that we cannot omit the assumption that the
probability space is non-atomic.

COUNTEREXAMPLE 1. Let @ =[0, 1], F=0o(27" 27"**],n > 1) and P be
the Lebesgue measure on [0, 1]. Let us consider random variables X, given by
X";’:4" ]d2-—n,z—ﬁ%1] for n; 1.

Then

limX,=0 as. and lim EX,= 0.

| il ] [ gl 4]
It can be also easily checked that for any o-field A = § we have
EX,M=0 or 2L<EX,|UW<4 as.
Thus there exists no sequence (U,) of o-fields such that

lim E(X,|%,) =1 as.

One can ask whether the assumption that the sequence (X,) converges to
zero almost surely can be replaced by the stochastic convergence. The answer is
negative.

COUNTEREXAMPLE 2. Let @ =[0, 1], & = Borel([0, 1]), and P be the
Lebesgue measure on [0, 1]. Let (X,) be a sequence of random variables
given by

X2n+;, = 4”1£k2”".(k+1)2'"] for nz 0‘, k= 0, 1, cany 2"—1.
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It can easily be seen that the sequence (X,) converges to zero in probabili-
ty but does not converge with probability one. Let us assume now that there
exists a sequence (¥,) of o-fields such that

lim E(X,|¥,) =0 as.

e
Then we can find my = 1 such that

P(sup E(X,|¥,) > 1)<

mEmy

Let us put

A= {o: sup E(X,|¥U,) (o) >3}

m2mn

Then for weA® and m = my we have
E(X,| %) (@) < 3.

Since P(4°) >3, we can choose n>1 and k=0,1,...,2"—1 such that
+k =z m, and

(17) P(d A [k2™", (k+1)27"]) 227" 1,
From (17) we get
% ; _F E('X2"+k|m2"+,&)m j Xgn+k

{E(Xon4 xl@l2n 4 1) S 1/2) {E(Xan & | Uzn o 1) € 1j2)

W

Acafk2 gk +1)277]
which gives a contradiction and proves that there exists no sequence (2,) such
that

lim E(X,|%,) =0 as.

We have shown that under the assumptions of Theorem 1 the almost sure
convergence cannot be replaced by the stochastic one. Nevertheless, weaker
assumptions give a weaker conclusion. We shall prove the following

TuroreMm 3. Let (2, &, P) be a non-atomic probability space. If (X,) is
a sequence of random variables satisfying the conditions

(18) lim X, = 0 in probability,
ne ol
(19) lim EX,;} = lim EX, = oo,

et a0 - oo
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then for any random variable Y there exists a sequence (U,) of o-fields such that

lim E(X,|%,) =Y in probability.

R oy

Proof From (18) we get immediately

(20) Im P(X, > =0 for every e > 0.

n—rn

Let (¢;) be a sequence of real numbers such that 0 < g; < 1 and g\ O asj— co.
The equality (20) implies now the existence of an increasing sequence (i) of
integers such that

P(X,|>g)<27) for nzn;
We put
A, ={w: | X, () >¢} for ny<n<nq.

It is obvious that P(4,)—0 as n— co. From (19) we deduce that

[XF—oc and [X;7—-o0 asn-w.
An An

Now in the same manner as in the proof of Theorem 1 we can find
a sequence (¥,) of simple random variables and a sequence (%,) of o-fields such
that

lim¥,=Y as. and E(X,|%)(@) = Y,(0) for o¢A,.

n o
Fix £ > 0. For any # >0 we can find m > 1 such that
P(|Y,—Y|>e <n/2 fornzm
and
P(E(X,|%,) # Y)<P@A)<n2 fornzm.
Therefore, we obtain
P(E(X,I%)—Y|>e <n2+n2=n for nzm,
which means that E (X, |2,) — Y in probability as n — co. This completes the
proof of the theorem m
In a similar way we obtain

TueoreM 4. Let (Q, &, P) be a non-atomic probability space. If (X,) is
a sequence of random variables satisfying the conditions

lim X, =0 in probability and lim EX; = oo,

o R
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then for any nonnegative random variable Y there exists a sequence (U,) of o-fields
such that

lim E(X,|¥,) =Y in probability.

L hndies]
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