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Abstract. An approach is discussed to derive strong limit theo-
rems for general renewal processes from the corresponding asymp-
totics of the underlying renewal sequence. Neither independence nor
stationarity of increments is required. In certain situations, just the du-
alities between the renewal processes and their defining sequences in
combination with some regularity conditions on the normalizing con-
stants are sufficient for the proofs. There are other cases, however, in
which the duality arguments do not apply, and where other techniques
have to be developed. Finally, there are also examples, in which an
inversion of the limit theorems under consideration cannot work at all.

1. INTRODUCTION

Consider a so-called renewal sequence, ie. a sequence of partial sums
{S,, n = 0}, Sp = 0, of independent identically distributed (i.i.d.) nonnegative
random variables {X,, n = 1} with 0 < EX, = a < co. Define their correspon-
ding renewal process {N(t), t >0} as

(L1) NO=Y I{S.<t}, t>0.
n=1]

A possible interpretation is that X, represents the time between the (n— 1)-st
and n-th replacement (renewal) of (say) a machine part, so that N () counts the
number of replacements (renewals) up to time ¢. It is well known that many limit
theorems for the counting process {N (f), ¢ = 0} are consequences of their corre-
sponding counterparts for the renewal sequence via the following “duality”:

(12) {N®)=n}<{S,<t,8,.1>¢t} for all t=0 and neN,.
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For example, the strong law of large numbers (SLLN)

(1.3) lim NG _1 almost surely (a.s.)

t-+x L a

is immediate from the SLLN

!
lim — =a as,
a=an H

whereas other limit theorems such as the law of the iterated logarithm (LIL)

_ 2
(1.4) lim sup N@ —‘—t—/ 2 d as.,

Ll N /EZfoglogt‘ s

(1.5) NO-Y3p 7 as tos oo,

where Z is a standard normal random variable and 0 < ¢ = Var(X,) < o0,
require more sophisticated tools.

In case of nonnegative and iid. summands {X,, » = 1} it has been shown
by Gut et al. [6] that there are certain equivalences between limit theorems for
partial sums and renewal processes. For a comprehensive study of renewal
processes and random sums confer Gut [5], in which also the “general” case of
S, (possibly having negative summands with positive expectation) has been
treated in further detail. For some recent equivalence statements in this “gene-
ral” iid. case confer Frolov et al. [3].

Much less is known about renewal processes for which either identical
distribution or independence, or nonnegativity, or all of these assumptions are
dropped. The aim of this paper is to develop a general approach to deriving
limit theorems for “renewal processes” from their corresponding counterparts
for the underlying “partial sum sequence”. Indeed, it is not necessary to assume
any structure of the defining sequence {S,, n > 0}; one can just start from an
appropriate limit theorem there.

Note, however, that certain regularity assumptions are sometimes crucial
for the applicability of a duality argument. There are situations in which a limit
theorem for the renewal process is almost immediate from its partial sum
counterpart. But there are other cases where the desired inversion requires
more sophisticated techniques. Finally, there are also examples in which a du-
ality argument does not work at all because either the partial sum sequence
satisfies a certain limit theorem, but not so its corresponding renewal process,
or vice versa. We restrict our attention to strong limit theorems for renewal
processes. A similar approach applies to weak limit theorems and to renewal
Junctions, i.e. the expected number of renewals, but will be exploited elsewhere.
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In order to avoid confusion with the i.id. situation, we change notation
from now on and assume that {Z,, n > 0} is a general sequence of real-valued
random variables. We then define a general renewal process {N(t), t = 0} point-
wise as

o
(1.6) N@wy= Y I{Z,<t}, t=0.
n=1
In case of Z, — o as., as n— o, N (i) is finite a.s. for every t = 0, since only
a finite number of summands in (1.6) are nonzero. Along with {N (t), t = 0} we
introduce two other general renewal processes, that is

(1.7 M(t) =sup{n = 0: max(Z,, Z;,..., Z,) < t}

= Y I{max(Zy, Zy, ..., Z)<t}, =0,
a1
sup@ =0, ie. M(2)+1 is the first-passage time of the sequence {Z,, n > 0}
from the set {(—co, t], and

(18) L)=sup{n=0: Z, <t} = ) Iinf(Z,, Z,4,,..)<t}, 120,
=3

ie. L(t)+1 is the last-exit time of {Z,, n >0} from (—co, £].

Formally speaking, both {M (1)} and {L{(r)} are particular cases of {N (1)}
with Z, replaced by max(Z,, Z,, ..., Z,) and inf (Z,, Z,+, ...), respectively,
but they will play a special role in the proofs below because of the dualities

(1.9) {M(t) =2 n} = {max(Z,, Z,, ..., Z,) < 1},

(1.10) (M () = n} <> {max (Zo, Zy, ..., Zo) < 1, Zny > t};
and

(1.11) (L) > n} = {inf(Z,, Zpsrs.. ) <1},

(1.12) (L) = n} e {Z, < t, inf(Zys 1y Zussy...) >t}

Note that we have no such nice properties for N (f), however it is obvious that,
for any ¢t =0,

I{max(Zy, Z;,.... Z,) <t} < I{Z, <t} < I{inf(Z,, Z,4y,...) < t},
so that
(1.13) ’ M) < N({t) < L(1).

Moreover, the following inequalities hold true for finite M (¢) and L(f), respec-
tively:

(1.14) Zyy St <Zyw+1s

5
(1.15) Zig St<Zpygper-
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Since Z, < + oo as. for all n, it is obvious that
M (t) = min {L(), M (z), N()} - + o0 as.
Remark 1.LI. ¥ 0=2,<2,< Z, < ..., then obviously
M) = N(1) = L(1).
But if (say) Z, > Z,+, for some n, then for Z,,, <t < Z,
I{max(Zo, Zy, ...y Zus ) St} =0, I{Z,s1 <t} =1,
so M(t) < N(1), and also
1{Z, <t} =0, I{inf(Z,, Zysyr,.. )<t} =1,

so N(t) < L(z).

The paper is organized as follows: In Section 2, strong laws of large
numbers are presented for general renewal processes including rates of conver-
gence statements such as Marcinkiewicz—-Zygmund-type results. Usefulness of
this general approach is demonstrated via a series of examples in Section 3,
including renewal sequences of independent, but nonidentically distributed
summands, martingales and mixing sequences, weighted sums and nonlinear
renewal processes, and others.

2. STRONG LIMIT THEOREMS

2.1. Strong laws of large numbers. Assuming a strong law of large numbers
for {Z,, n = 0}, for the general renewal processes we obtain immediately cor-
responding results from inequalities (1.14) and (1.15) if the normalizing se-
quence satisfies certain regularity conditions.

TueoreMm 2.1. Assume

(2.1) Zja,— 1 as.,

where {a,, n > 1} is a nonrandom sequence such that a, - oo as n— o and
(2.2) Qyirfa, — 1.

Then, as t — co,

2.3) apup/t = 1 as,

(2.4 are/t =1 as.

Moreover, if {a,, n = 1} is nondecreasing, then also

(2.5) - anp/t —1 as.
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Proof In view of (1.14) and M(t)— «© as., [ — o0,

Z ) Z Aapen 4
Mo o P fMor1 Mo+l

3

T
Ouey v O+ Taw

where both the left-hand side and the right-hand side of these inequalities tend
to 1 as. because of (2.1) and (2.2). This proves (2.3).

Similarly, (2.4) follows from (1.15), (2.1), and (2.2).

If {a,, n > 1} is nondecreasing, (1.13) implies ay < Ay < arg, S0 that
(2.5) is immediate from (2.3) and (2.4). =

Now, if {a,, n > 0} is strictly increasing, let {a(t): ¢t > 0} be its extension,
ie. am)=a, for all n=0,1, 2, ..., such that

(2.6) (‘) is continuous and strictly increasing with a(f) — co, t = 00.
Define
a”tw) =inf{r: a@®) =u}, u>uy=ao.

Obviously, a~*(-) is also continuous and strictly increasing, with a™* (u) - co
a8 # —» 00.
Assume
a” ! ((1+e)1)
a” 1 (t)
Then the following strong laws hold true:
CoroLLARY 2.1. Assume (2.1) and (2.2), (2.6), (2.7). Then, as t — oo,

2.7 lim lim sup

g0 =

<o

238) M@a () —1 as,
(2.9) L@)fa”*®)—-1 as,
(2.10) N{@Ya '(t)—1 as.

Proof. From (2.3) we obtain
a(M@®)t = ap/t > 1 as, t— 0.
So, for any O <e <1,
tl—g)<a(M@) <t(l+s for t >ty = tole, ).
By the monotonicity of a™*(t), we have
a Mt(l—g) < M) <a t(t(t1+g)

if t>to. In view of (2.7), this gives (2.8).
The proof of (2.9) and (2.10) follows by the same arguments. =

6 — PAMS 212
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Remark 2.1. There are situations in which the strong laws of Corolla-
ry 2.1 cannot be derived from their corresponding counterparts of Theorem 2.1,
since e.g. condition (2.2) is violated. Consider, for example, partial sums
S, =X +...+ X, of an iid. sequence {X,, n > 1} of positive random variables
with EX; = 1. Choose Z, = S;», n = 1. Then, with a, = 2", of course

Z,ja,—+1 a8, n-»o,
but neither a,4,/a, — 1 nor

Z,g.;.l-v«zl, — X2n+1 "i?’-n"‘ﬁ"in*!

p 5 -0 as.,
"

so that the arguments used in the proof of Theorem 2.1 do not apply here.

So, the growth condition (2.2) on the normalizing sequence {a,, n > 1} is
crucial for deriving the strong laws of Corollary 2.1 from their counterparts
in Theorem 2.1. However, this condition can be avoided, and thus the regu-
larity assumptions can be weakened by applying a totally different technique
of proof. Such a method was introduced in Klesov and Steinebach [9] for the
case of renewal processes constructed from random walks with multidimen-
siopal time.

THEOREM 2.2. Assume (2.1), (2.6), and (2.7). Then, as t— oo, assertions
(2.8)}2.10) retain.

Proof Let us first consider
k=1
Now, for any 0 <¢ < 1, with n=[a"*()] and m* =[a™* (t(1 £8))],

(2.11) N{t)—n= — i I{Z,>t}+ i I{Z, <1t}
k=1

k=n+1

;«—EI{ZRI}- X 1iZ>1

k=m~+1

+ ) Hzvstj+ 3 HZy<y

k=n+1 k=m*+1
= —N1(®)—N2(0+N3(0)+ Na(1).
On observing that, for k <m™ < a™'((1—2)1),

ts ! 1 >1,

a a(a*((1—e)t) T1-e
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but, in view of (2.1), Z,/a, > 1/(1—¢) for almost finitely many k (a.s.), it is
obvious that

(2.12) Ni(@®fa ()0 as, t— 0.
A similar argument shows that also

(2.13) Ny@)a () >0 as, t— 0.
Next, in view of (2.7) we have

No(@®) _a™'(t)—a *{(1-e)t)+1
el o< Fa< =0

and similarly

N3() _a '((1+e))—a~t()+1 |
Gsaf‘;(&)}:«:” ( 2)1(; O+1 0 as im0 and e 0.

A combination of (2.11)+(2.15) proves (2.10), since

N@-[a~*(] _ N
a”'(t) a *(1)
For the proof of (2.8) and (2.9) we note that, from Z.Ja, -1 and a,1 o,
n—+co, it also follows that
inf(Z,, Z,,4,...)

max{Zo, Z4,..., 2
(Zo, Zy, ..., n) -1 and — 211 — 1 as n - 00,
a, ay

~+0 as t-»o0 and 20,

(2.15)

l4+o0(l) as t- o0,

This renders the same arguments possible for M () and L(t) as applied to
N(). =

Remark 2.2. Unfortunately, there are also situations in which the inver-
sion techniques applied in Theorems 2.1, 2.2 and Corollary 2.1 cannot work at
all. Consider, for instance, a max-scheme of i.i.d. random variables {Xp,n =1}
with distribution function F(t) = P(X, < 1), teR. For Z, = max (Xyy.o X,
nz1l, Z,=0, the corresponding renewal processes {M (1), t = 0},
{N(®), t >0}, and {L(1), ¢t > 0} coincide. Moreover, for any ¢ > 0, N(tf) has
a geometric distribution, ie.

PINO)=n)=P(max(X,,..., X,) <t, Xppq > t) = F*(t)(1—F (1)),
PIN®)znm=F'@®, n=0,1,...
Therefore, if F(t) <1 for all ¢ >0, then for all fixed x > 0
P(N® > x/(1—F () = P(N () > [x/(1—F (9)] +1)
=exp {x(log F ())/(1—F (1)) + 0 (1) log F (z)}.



336 O. Klesov et al.

Since log(1—x)/x — —1 as x — 0, the right-hand side tends to exp{—x} as
t -+ oo. Hence ’
N@O(1-F@)3E ast- o,
* where E has an exponential Exp (1)-distribution. In view of this fact it is impos-
sible that
N{@/b(t)—1 as, t— oo,

for any (nonrandom) normalizing family {b(f), ¢ > 0}. Because otherwise, for
each &> 0,

PN(t)>(1+&b(®)—0 ast—w
requires b(t)(1—F(t)) - o as t - oo, by the consideration above. This, how-
ever, in turn implies

PINO<(—eb(@®)~>1 as t— o,
so that not even a weak law of large numbers applies to {N(t), t = 0}.

Nevertheless, the underlying “renewal sequence” {Z,, n = 1} may satisfy

a strong law of large numbers. For example, in the case of an Exp(1)-dis-

tribution, ie. F(t) = 1—e™“for t > 0, and F(¢) = 0, otherwise, it is well known
(cf. Galambos [4]) that

Z, =maw:{X,,...,X,,)ﬁ1 o "o 0
logn logn o ’

Note that, in the latter case, all assumptions of Theorems 2.1, 2.2 and Corol-
lary 2.1 are fulfilled with @, = logn, a(t) = logt, a™* (f) = ¢, with the exception
of (2.7). So, the latter condition cannot be dropped in general.

Another example would be F(t) = @(t), te R, a standard normal distribu-
tion function, in which case

Z,  max(X,,..., X,
J2logn J2logn
(cf. Galambos [4]). Here a™*(t) = exp {t?/2} also violates assumption (2.7).

Consequently, there are (renewal) sequences {Z,, n > 0} satisfying an
- SLLN for which their corresponding renewal processes {N(t), t = 0},
{M(1), t =2 0}, and {L(z), t > 0} do not have any (nondegenerate) strong lim-
iting behaviour. '

—=1as, n—wx

Remark 2.3. Just for the sake of completeness we should like to mention
that there are also cases in which the renewal process satisfies an SLLN, but
not so its sequence of renewal times. Consider, for example, a nonhomogeneous
Poisson process {N (t), t = 0} with cumulative intensity function {4(f), ¢ > 0},
ie. A(t)=EN(t),t 2 0. If eg. A(?) is continuous and strictly increasing to in-
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finity, it is well known that
{N@),t=0} 2 {N(i(@), t =0},

where {N(1),t =0} is a hum@geneons Poisson process with renewal times
§,=0,8,=X,+...4+X,,n>1, based on an iid. sequence {X,, n> 1} of
Exp(1)-random variables.

Choose

logt, t=e,
40 = {t/e, 0<t<e.

Then, from the SLLN for {N(¢),t = 0}, as t — oo,
N(t)/logt = N (logt)/logt — 1 as.

But, since Z, = exp(S)) are the renewal times of {N (¢), ¢ > 0}, in view of the
LIL for the partial sums {S,, n> 1} it follows that

Z,je" = exp {§n-n}
oscillates between 0 and +o0 as., n-» 0.

2.2. Convergence rate results. It may also be interesting to collect general
conditions under which convergence rate statements apply to the laws of large
numbers in Theorems 2.1, 2.2 and Corollary 2.1.

THEOREM 2.3. Assume, as n — <0,

(2.16) (Z,—a)/ba 0 as.,

where

(2.17) a,— o0, but a,—a,_, = olb,),
(2.18) O0<b,—oc, butb,=o0(a,),
(2.19) by 1/ba = O(1).

Then, as t— co,

(2.20) (amw—1)buwy —~0 as,
(2.21) (@ —t)/bry — 0 as.
Moreover, if {a,} is nondecreasing, then

(2.22) (ang —t)/max (bygyy, brg) — 0 as.

Proof. First note that, with X, = Z,~Z,,, n > 1, assumptions (2.16),
(2.17), and (2.19) yield
E__ — z an_zn~1"’anH1 bn—-l Qp— g~y

(223) b bn bn—‘i bn bn

-0, n- 0.
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Now, by inequality (1.14)

A —Zmm+1 _ Oan—t _ G~ Ly
< = .

(2.24)

=z 5
bM(t} bM(z) bu ()

Because of M (t) — oo a.s., t — oo, and (2.16), the right-hand side of (2.24) tends
to 0 as. On the other hand, in view of (223} and (2.19),

o —Zun o~ Zuo+:  XMo+i bty +1

= : -0 as,
bM(l) bM(z) bM{:)+1 me
so that also the left-hand side of (2.24) tends to 0 a.s. This completes the proof
of (2.20).
For the proof of (2.21) we use the same arguments.
Finally, (2.22) follows from (2.20) and (2.21), since

[ang—tl < max (japg —tl, larm—1t)

because of {4, n=> 1} being monotone. m

Now assume that a(-) has a continuous derivative a'(*) on (o, +0)
satisfying
(2.25) afy=d(s) if t=s,
ie. @ (t)/a (s)] is bounded away from 0 and co, if |t/s| is bounded away from
0 and o, as t, s —» o0. Moreover, let {b (1), t > 0} be an extension of {b,} such
that
(2.26) b{t)y=b(s) if t=s.

COROLLARY 2.2. Assume (2.16) together with (2.6), (2.7), (2.17), (2.18), (2.25),
and (2.26). Then, as t — w,

Ffa=1f
(2.27) , H (M@)—a ' (®)—0 as,

=1 (1)
(2.28) H(N ®—a" () -0 as.,

: a ﬂ'“l (I} -1 ‘
(2.29) —l«——ib @ 0) (LEe)—a ' (1) =0 as.
Proof. We only prove (2.27). The proofs of (2.28) and (2.29) are similar.
Observe that, in view of (2.16) and (2.18), as n— o0,
Za Z,,-a,,yb

(2.30) —a—;—~1 = — =o(1) as.

Since conditions (2.17) and (2.18) also yield (2.2), assertion (2.30) implies (2.3) and,
moreover, (2.8) under the given assumptions, ie. M () ~a '(t) as, t— oo.




Strong limit theorems for general renewal processes

Now, by the mean value theorem,
(2.31) g —t = a(M@®)—ala™' @) =a E@)M ()—a" ' (1)),
where £(t) ~ a 1(t) as, t — 0. On the other hand, by (2.20) and (2.26),
Aug—t _ Gy —t (M (1))
b ')  buw bla ')

so that a combination of (2.25), (2.31), and (2.32) completes the proof of
227). = '

COROLLARY 2.3. Assume that, for some a>0 and r > 1, as n— w0,

(2.32) =g(1) as, t— o0,

Zy—na
Then, as t — oo,
(234) E%}fff -0 as,
(2.35) L‘?{,Z;i@ -0 as,
2.36) ;":‘i%;f@ -0 as

Proof. The functions a(f) = ta and b(t) = t*” satisfy the assumptions of
Corollary 2.2 with a™'(f) =t/a and @' () =a. =

Remark 2.4. By the same technique as used to prove Corollary 2.2, one
can also derive general LIL type results for renewal processes. Details will be
omitted.

As in Theorem 2.2 the regularity assumptions of Corollary 2.2 can be
considerably weakened if a different technique of proof is applied.

THEOREM 24. Assume (2.16) together with

2.37) b{tyoo  as t— oo,

(2.39) a(yb(H)10 as t— oo,
(2.39) adla”t@)=d(a () if t=s,
(2.40) bla *())=bla"'(s)) if t=s,
where a(t) is continuously differentiable on (ty, c0) with
(2.41) a(t)=o(b() ast- 0.

Then, as t — co, assertions (2.27)(2.29) retain.
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Proof We prove only (2.28). The arguments for (2.27) and (2.29) are
similar.

First, for any >0, set n=[a"'(t)] and m* =[a™" (t+&(t))], where
e(t) = eb(a™'(1)). Note that

e(tyt=<eb(a *(D)/ala ' (1))=e ast— 0.
Then, as in (2.11),
N{t)=n= =N ()= N, (&) + N3(6)+ N, (1),

and we have to show that the four summands are of order o(b(a™* (t))/a' (a~* ()
as { -+ oo,

For example, if k <m™ < a~'(t—&(t)), then
t—ay - ala” t«—s(:))) G
b~ blat@) bla'(@)
so that, in view of (241), we have
d(a (1)

Ni{()—»0 as, t— o0,

b(a™' ()

-since only finitely many summands in N, (f} can be nonzero.
Similarly, for k> m*+1> a7 (t+e()) we get
£—~uk<tﬁa(a“1(t+e(t)))z 3 e(t) e tow
be ~ bla7i(t+e) bla™*(t+e®)

which, by the same reasoning, implies

dlaWy o, -
‘(Wl(t)) N,(t)—0 as, t—c0.

It remains to prove that
a(a"*(t)

b{a 1 (1)

which, analogously to (2.14)+2.15), follows from the expansion
&(t) — igb(a""(t))_
da~* (=) a(a™* ()

(N2 () +N;3(@) -0 as, t— o,

“Hete(®))—a @)= £
Since, in view of (2.40),

d@ @) o oo __;a'(amigr))
ba 1) (N(®)—L[a~ ()]) b (m(

the proof of (2.28) is complete. =

N(t)—a™*(®)+o(1),
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ExaMpLE 2.1. There are still situations in which the assumptions of Theo-
rems 2.2 and 2.4 do not hold true, but yet a strong law of large numbers may be
available. Consider, for instance, a sequence {Z,, n > 1} satisfying

Zflogn-1 as. n—oo,
and assume a rate of convergence therein, e.g.
IZ,,—ml.og: n <
b(n)

|

¥

 limsup

with some nonrandom constant B > 0. Let the function {b(z), t > 0} be such
that, for any 4 > B,
a; (t) =logt+Ab(t)
have inverse functions (say) a3z’ (t) satisfying
az'(t) =e¢Fole) ast—ow.
Then the SLLN for {N(f), z > 0} retains, ie.

. N@
}gﬁ? =1 as.

The proof is similar to that of Theorem 2.4 by dividing N() =Y I{Z, <t}
into four subseries according to the conditions n < al'(®), a;l () <n <
e <n<a-'(y), ai'(t) < n Details are omitted.

Note that the function a(f) = logt with a™ ' () = & violates conditions
(2.7) and (2.39), so that neither Theorem 2.2 nor Theorem 2.4 is applicable in
this situation. Nevertheless, an SLLN for the renewal process holds true.

e,

3. EXAMPLES

In this section, we demonstrate the applicability of our general results
from previous sections by a series of examples. Various situations of renewal
processes are discussed related to iid. schemes, to independent, but noniden-
tically distributed renewal times, and also to certain dependent sequences.

3.1. Renewal processes related to iid. sequences. For the first four exam-
ples assume that {X,, n> 1} are iid. random variables, and let S, =0,
S, =X+...+X,,n2 L

ExampLE 3.1 (Linear renewal process). Let EX, = a> 0, and a(f) = ta
with @™ *(#) = t/a. Then by Kolmogorov's SLLN, for Z, = S,, as n— oo,

Z,/na—1 as.
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Consequently, with L(t), M (¢), N(t) as in (1.6)}-(1.8), Corollary 2.1 implies, as
t— 0o,
LO,, MO NO_,

3D t/a Y tla t/a '

a.8.

For a convergence rate statement we refer to an extension of a classical
result of Feller [2] obtained by Martikainen and Petrov [10]: If b(¢t) is a posi-
tive, increasing, unbounded function such that

S | n
3.2 — = O
> Lrw= ()

then the following assertions are equivalent:

Sp—na
(3.3) ) -0 as, n—ow,
(3.4) P(X,—a>bm)<o, lm—— [ xdF(x)=0,
m=1 B0 b(n) {1 < B(n)}

where F(-) is the distribution function of X;—a.
Combining the Martikainen—Petrov [10] result with Theorem 24 we
have, under (34),

L{t)—t/a _

-0, | N(f)—t/a

tim M2 _ oy NO—Ha_,,

lin S
. e b b

t-0  b(f)
almost surely.

One of the possible choices for b(¢) is the so-called Marcinkiewicz—Zyg-
mund normalization b(t) = t'", | <r < 2: if E|X,|' < oo for some 1 < < 2,
then
L(t)—t/a M(Q)—tfa _

lim =2 "= =0, lm-——i, =0, lim-
t

i 1 )
£+ o0 1 e { t+ e

N(O)—t/a
=0

almost surely.

ExameLe 3.2 (Nonlinear renewal process; cf. Gut [5], pp. 133-138). Con-
sider, as before, an iid. sequence {X,, n = 1} with EX, = a > 0, but set now
Z, = 8,/a(n), where {a(t), t >0} is a positive continuous function such that

tla(t)Too  as £foo.
For example, the first-passage time
M@)+1 =inf{n: Z, >t} =inf{n: S, > ta(n)},

inf@ = + oo, is of some statistical importance in sequential analysis and plays
a key role in what is called nonlinear renewal theory (cf. e.g. Woodroofe



Strong lmit theorems for general renewal processes 343

[15] and Siegmund [147). Now, by Theorem 2.2, if a(f) = ta/a(t) with inverse
function a~!(¢) satisfying (2.7), then, as ¢ — o0,
. M) . N@ . L)
zliﬂi a () 1 113{?:1 a () L }L@ a” ()
where L(f), M(t), N(t) are as in (1.6)-(1.8).
If, additionally, E |X,|" < co for some 1 < r < 2, then with b(n) = n'/a(n),
a5 n—> 00,

=1 as,

Z,—a{n) 8,—na
b a0 A

so that by Theorem 24 we have, as t — oo,
—_a=1{ [P | =1
i MO=a 0 NO-a” ) _ o LO-a"') _
FIV (ﬂﬂi{t»l"’r PRI, (a-l (t))llr P, (avi(t»lﬂr
(cf. Gut [5], Theorem 5.5 in Chapter IV).

ExampPLE 3.3 (Renewal process based on subsequences). Strong laws of
large numbers and other convergence properties have also been extensively
studied for subsequences of partial sums of an iid. sequence. Corresponding
properties of their renewal processes, which may be viewed as being related to
certain nonlinear inspection schemes, can also be derived from the general
results of Section 2. Consider e.g. a subsequence {a,, n > 1} of integers with an
extension {a(t), t > 0} and inverse {a~*(¢), t 2 0}. Let Z, = §,,, n > 1, and let
the renewal processes N (t), M(t), and L(f) be defined as in (1.6)}-{1.8).

Assume a,/n is increasing, so that a(t)/ is also increasing. This assumption
is sufficient for (2.7). Indeed, for any ¢ > 0,

a((l1+e)a™1(t) - afa™'@) ¢

(I+ga () = a @) a ‘@

whence a{(1+&)a™* (1)) > (1+&)t or (L+&)a”1 (1) = a~*((1+¢)t). A similar ap-
proach allows one to get corresponding estimates with 1 —¢ instead of 1+&.
This, in turn, implies (2.7), so that also (2.8)42.10) are satisfied.

In order to get a rate of convergence result, one has to assume conditions
(2.38}2.41) in Theorem 2.4. Let us consider the case of Marcinkiewicz—Zyg-
mund normalizations. Assuming EX; > Oand E|X,' < coforsome | <r < 2,
we obtain, as n — o0,

ms"“mci';rﬁxl -0 as.
a5
Choose b(n) = al". One would now expect a corresponding result for renewal
processes, but this is not always true. For the sake of simplicity, consider
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= [n*] with v> 1. Then a(f)=<¢’, d {H)=t""1, a” 1 ()=, and b(t)=p".
Conditions (2.38}-(2.40) are obvious in this case, but condition (2.41) requires
a restriction on r, ie. r <(v—1)/v.

ExaMpLE 3.4 (Renewal processes when extremes are excluded). It is well
known that, under certain assumptions, partial sums of i.i.d. random variables
with infinite expectation can still satisfy a strong law of large numbers if the
extremal terms are removed from the sums. Consider, for example, S, as above,
and put

zn = Sn'_' max !XHL:
1=k€n
i.e. Z, is the n-th partial sum with the maximal term being excluded. Mori [11]
proved that
lim Z,—ne,

n=+w n

=0

almost surely for some nonrandom sequence {c,, n > 1} if and only if

o3
(3.5 | xF*(x)dx < oo, where F(x)= P(X,| > x).

0
Without loss of generality the constants ¢, can be chosen as ¢, = EX, I {|X,| < nz}
with some positive constant 7, eg. 7= 1. Put ¢(t) = EX;I{|X;| <t} and
a(t) = tc(t). Then, under the conditions of Theorem 2.2, as t — oo,

L2 M N(@)
- —5 ] e
a”ty 7 a7 a ()
Moreover, under the assumptions of Theorem 2.4, with b(t) = t we have, as
t— oo,

—1

S| 1
i Sy L0-at0)=0, i) (wic%’m oo
lim é 1((;)) (N®)—a (1) =

almost surely, provided (3.5) holds.
For example, choose F(x) = P{X, < x) as follows:

1—1/ixlogx), =x=ze,
F(x)={0 felog), x>

The expectation does not exist fm' this distributimn, and thert.,fme the renewa]

uewal process based on sums ‘mth exc]iudad max:ma]l term has a (mn]mear)
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asymptotic. Indeed,
c(t) =loglogt+0(1), a(t)=tloglogt+0O(t),
d'(t) =loglogt+o(l), a*(t) = tfloglogt+O(t/loglog)?)
in this case, so that, as ¢t — o0,
(loglog?)?®
t NGO~ logl«:)gt ~0as.

Similar results can be obtained for sums with r maximal terms excluded, if
condition (3.5) is replaced by

(3.6) fx Fr*i(x)dx < oo,
0

ExampLE 3.5 (Extended remewal processes). Horvath [7] developed
a strong approximation approach for extended renewal processes based on
a sequence of d-dimensional iid. random variables {X,, n > 1} with EX; = a.
Put Sq=0, 8,=X,+...+X,,n= 1, and let h: R* —» R' be homogeneous of
degree 1, continuously differentiable, and assume h(a) > 0. Forfixed 0 < p < 1,
set Z, = h(S,)/n*, and e.g.
M)+ 1 =inf{n: Z, >t} = inf{n: h(S,) > mF},

inf@ = + co. Under E|X|" < w0 for some r > 2, Horvath [7] was able to derive
a strong approximation of

37 M@O—(/h@)"™, q=1-p,

by a suitable Wiener process which, in turn, results in a number of strong (and
weak) limit theorems for {M (), t > 0}.

Under weaker assumptions, we are still able to retain some SLLN or
convergence rate type results by our methods of Section 2. For example, if only
E|X,| < oo, then similarly to Example 3.2, as t — oo,

L{t) M) N{)
TRt L T Tt rind
(t/h(a))™” (t/h(a)) (t/h(a))

If E|IX,| > oo for some 1 <r <2, then, as t — o0,
L®)—(t/h(@)"" M (8)—(t/h(a))""

t!irq """" 0’ tl/rg - 0"
y iy
all t(ltéf @) -0 as

3.2. Non-iid. or dependent renewal times.
ExampLE 3.6 (Weighted iid. summands). Consider an iid. sequence
{X,,n=>1} with EX,=1 and a positive function {w(t),t>0}. Let
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Z,=y,_ ,w(k)X, and define renewal processes {L(t), ¢ > 0}, {M(z), t > O},
and {N(t), t > 0} according to (1.8), (1.7), and (1.6), respectively.

Then, with a(n) = w(l)+...+w(n), n = 1, it is clear that EZ, = a(n). By
the Kolmogorov SLLN for nonidentir:aﬂy distributed random variables,
. —af{n)

,;lf’i by 0@

provided EX} < co and the function b(f) is positive, nondecreasing, unboun-
ded, and such that

i‘i‘ w (n)
n=1 b 2( )

Note that the above moment restriction may be weakened by applying a trun-
cation procedure, but for the sake of simplicity, we keep the above assumption.
Moreover we choose w(t)="—(t—1~0:° ' for some >0. Then
a(n) = n’. We set a(f) = * and note that a™* () = ¢, a' (1) = 0~ . To satisfy
the conditions of Theorem 2.4 we assume

bO)_ o i D) _
n-*oo ﬂ PR
Then, if
o "210-—1)‘
2 5m <
we obtain ‘
e e 16 § 1 10— 1)0
lim (L)~ )b( iw =0 lim (M ()t )b(t”*’) =0,
$0~ 18
(N H—t* f’) pam =0 s
One of the possible choices of b(z) is b(t) = t%, with -1 <6 < 0, for
which
(t}——t”‘" ‘ M(t)mtlm ) N(t}mt;ﬁjg
Im s =0 Im ey =0, lim Gy =0 as,

In a recent paper, Fazekas and Klesov [1] developed a general approach
to the strong law of large numbers. Their key idea was to show that Hajek-Rényi
type inequalities can be obtained from appropriate maximal inequalities for
cumulative sums, and that the latter, in turn, imply the SLLN. By this method,
no assumptions on the dependency structure of the summands are required,
and a number of examples can be covered including sums of independent, but
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nonidentically distributed summands, martingale difference schemes, mixing
sequences, mixingales, orthogonal sequences, sequences with superadditive mo-
ment structure and many others.

All of these examples may, under appropriate conditions, be converted
into strong laws for their corresponding renewal processes. Just for the sake of
demonstration, we consider three final examples.

ExampLE 3.7 (g-mixing renewal times). Let {X,, n > 1} be a sequence of
identically distributed random variables, g-mixing, with EX; =a >0 and
E|X ' < oo for some 1 < r < 2. Then, with a(f) = ta and b(t) = '/, as t — o0,

L(t)—t/a M(t)—t/a N(t)—t/a

s -0, (A {1

-5 (), -0  as.,
provided Y ¢(2%) < oo, where ¢ denotes the Kolmogorov-Rozanov mixing co-
efficient of {X,, n> 1}.

The above mixing condition can even by weakened (cf. Shao [13] and
Fazekas and Klesov [1], Theorem 5.1). Extensions to mixing sequences
of nonidentically distributed random variables are also available (see Fazekas
and Klesov [1], Theorem 5.2). Naturally, the case of m-dependent renewal
times is included (confer also Janson [8] for further asymptotics in the latter
case).

ExampLE 3.8 (Martingale difference schemes). Let {X,, n > 1} be a mar-
tingale difference sequence with respect to the filtration {§,, n > 1}, where §, is
generated by X, ..., X,,. Assume EX; =a>0,¢g> 1/2,and let {b,,n > 1} be
nondecreasing, unbounded and such that

o EIZJ*—E|Zy-i* _

n;l, b'? g

Then, with a(t) = ta and b(t) satisfying the assumptions of Theorem 2.4, we
have, as t - w0,
L(t)—t/a . M(t)—t/a a_ N (t)—tfa
b(t/a) ] (t,fa) ’ b(t/a)
(cf. Fazekas and Klesov [1], Theorem 3.1).
As a consequence, we obtain a Brunk-Prokhorov type strong law for
renewal processes based on martingale difference schemes: Let {X,, n > 1} and

{b,, n = 1} be as above, but assume either g = 1, or ¢ > 1 and n~’b, be non-
decreasing for some & > (g—1)/2q. If

E|X,
Z Ibl‘f n ! < oo,

then (3.8) retains (cf. Fazekas and Klesov [1], Corollary 3.1).

(3.8) -0 as
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ExampLE 3.9 (Banach space schemes). Let {X,, n > 1} be a sequence of
independent, identically distributed random variables assuming values in a Ba-
nach space with norm |||, and put Z, = ||S,||. If E||X || < oo, then (2.1) holds
with a, = np, provided u = ||[EX || > 0 (cf. e.g. Mourier [12]). Since (2.6) and
(2.7) are obviously satisfied for such a sequence {a,, n > 1}, Theorem 2.2 gives
the asymptotic of the renewal process constructed from a random walk in
a Banach space, ie., as t— oo,

1& 1
— TS <t} —»— as.
L L sl < -2

Further applications of the above results to schemes of Banach space valued
random variables will be published elsewhere.
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