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Abstract. An apprnaeb is discussed ta derive strong lidlit theo- 
xems for g~nrm1 renewal processes from the carresponding asymp- 
t o t i ~  of the uaderlging renewal sequence. Neither independence nor 
stationarity oaf incr~ments is required. In a r ta ia  sitnations, just tlvc du- 
alities between the ~enewal praesses and their dcfmhg sequences in 
combination with some rqularity ~oeditions on rhe normali.&g con- 
stants are sufficient for the proofs. Them are other cases, however, in 
which the duality agunsents do not apply, and where other techniques 
have ta be developed. Finally, there are also examples, in wMch an 
invefsictn of tllc h i t  ~ ~ ~ Q Z E K I S  under consideration cannot work at all. 

Consider sr so-called renewal seqwnce, i.e. a sequence af partial sums 
(S,, tz Z Uj, So = 0, af independent identicdy distribvkd (i.i,d,j nsranegati~e: 
random variables {X,, vr $Jl";witb 0 .< E X ,  = tt -c m, Define their correspon- 
ding ~enewal proc~ss ( N  [ t) ,  1: 8 0) as 

A possible iutevyretatian is that X, represents the time bekween the (n-- I)-st 
nt (renewal) of (say) a macl~ine part, SO that N (1)  O O W I ~ ~ S  the 

aumhr oft sp1acemmts (renowds) up to time t. It Is: well known that many limit 
theorems for the counting process { N  t 3 0) are consguences sf their mrre- 
spol~dii~g counte~~;nr.ts fbr the renewal seqt.quea%a via the E ~ U a e g  "&dlityn: 
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For exampb, the stsong law of lage numbers (S%Llr$) 

M(t1 1 lim - .= - almost surely (a.s.1 
s+m t CLI 

is immediate from the SkLN 

whereas other Xhit theorems such as the law of the iterated logadtbm (LIE) 

and the central limit &%leorem (GLT] 

where Z is a sbndard normal random vsr~ab1e and O < a' = Var(X,) K m, 
require mere sophis~cated tools* 

In case of stonnegati:ve md i.i,d. summands {X, ,  n 3 1 )  it has b n  shown 
by Gut et as, f6] that there are certain equivalenes between limit theorem b r  
partial sums and renewd processes, Far a. comprehensive stsP$y of renewd 
processes and raadom sums confer: Gut [g,  in which dsa the '4ge;enerar' case sf 
Sn {possibly having neetiye summands with positive expectation) has been 
treated in further detail. For some recent equivalence statements in this ""gene- 
ral" i.l,d. MSG confer Frolov et al. C33. 

Much lem is known about renewal processes for which either iden8ica9 
distribution or indepr=lrdena5 or nonnega~vity, or all of these assuptil~rss as@ 
dropped. The a h  d this paper is to develop a general approach ta del4ivhg 
limit theo~ms  for "renewal prscesws" from their correspoading counterparts 
for the usaderlying "partial sum sl;jqwen~~". M c d ,  it is nat aaemssary to asiyume 
any sttuctrtre sf tlhe deflning squence {(S,, ra 3 0) ; one: can just start from rn 
appxoprlate limit tbwsem there. 

Nuts hwever,  that certiljfl regularity assumptions are snmdimes crucial 
fur $be ;3.ppEicability of a. duality argument, "Them sre situations in which a l b i t  
tlaeorem for the renewal precess is drnsst imedinte from its partial sum 
counterpart. But them am lather cases where tPle de&rf:d inversion roq&s 
more: soplajrstica&d techaiques. FinaMy, there are also exampIm in which a du- 
ality armrnent docs not work at all because either the partial sum sequence 
satisfies a costah ~t ~crorem, but not ao its copresponding renewal process, 
Qr vke vassa;, VIfe rest5nict our attention to strong limit I ~ O ~ E P I Z S  fur renewal 
processes. A similar approach appEes to weak limit t h e o r ~ m  a d  to FE~BM~UI 
f~~actian3, is. the expwted number of renewab, but will be exploit& elsewhere. 
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order to avoid confusisn with the i.i.d. situatialr, we change ncrtatiun 
from now OFJ and assume thal (Z,, n 3 0 )  is a general sequence of real-valued 
rmdom variables. We then define a geazeral re~imak process {PJ It], t- 2 0) poi&- 

Ia case of 2, -+ bm as., as n -+ oo, P\I I t )  is fixLitl: a.s, for every t 3 6, since only 
a finite number uf s urnman& in (1 are nonzero, Along with ( N  It), 2 O )  we 
i~~troduce two other general renewal proctzsse.7, that is 

41-71 M ( t )  = sup {n a 0: max (Z,, Z, , . . ., X,,) < I )  

m 

= Ijmax(Z,,Z1,. . , ,Z,)~t),  130,  
n = l  

sup @ = 0, i.e. M (t)  + 1 is the $rst-passage time of the sequence {Z,, n 3 01 
From the set (- GO, t ] )  and 

ca 

(1.8) L(t)=splp(n20: Z,<t).-- CI(id{;I;,,Z ,,,,... j G t ) ,  t L O ,  
fl= l 

i.e, Lit) + I is the [@st-exit time of {Z,, n 3 0) from (- a, 81. 
Farnlaify spaking? both ((M (e)) and {L(E))  are pareicular cases irE f N ( t ) ]  

with En replaced by maxfZ,, XI, .. ., 2,) and inE (Z, ,  Z ,,,, ., .), tespeaively, 
but they will play a spedrtl role i.rr the proofs below because of the dudities 

and 

(1.11) (LIt)3a)-{izlf(Z,,Z,,+l, ...I $ t ) ,  

(1.12) (LCt) == n]*(Zn 6 1, inf(ZRi.l., 2a+2P --.) > E ) .  

Note that we Ilave no such nice properties for NNtt), however it is obvious that, 
for m y  r 2 0, 

Moreamr, the fallowing incquali.ties 'hdd true for finite M (t) and L(t), respec- 
tively: 



Shce Z, < + M) ass, far all n, it i s  obvious that 

Remark 1.1. If 0 = Zo C Z, t$ Z2 G .,,, then abrviausly 

But i f  (say) 2, > Z ,.,, for some E ,  then far Z,, ,  G t < Z ,  

so A4 (t) c; nF (t), and also 

I @ , ,  g t j  = 0, l{inf[Za, .&+it "..) 6 t ]  = I $  

sw N ( t ]  'FE L(f l .  

The paper is organized as fdJows: In Section 2, strong laws of large 
numbers are presented for general renewd processes induding rates of conver- 
gence statemmts such as Mar~nkiewicz-Zy~und-type results, Usefulness of 
this general approach, is demonstrated via a series af examples in Sectim 3, 
including renewal sequences of independent, but nonldentically distributed 
smmauds, marticingales and mixing sequences, weighted sumf and nonliita.~:ar 
renewal processes, and others. 

21, Strong hws of large mteuaarhm Llssuming a strong law of hrge numbers 
far (Zn, PI L a), far the general renewax pprQGWSe8 we obtain Wediately car- 
responding results from inequalities (1-14) and fl .15)  if the normaii~ng se- 
quence satisfies certain regularity wnditionrz, 

~J .EOREM 2.1. Asserrne 

where n 2 I f  is a nanrandsm sequcnce such that n, -+ m as a -+ ocl a d  
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Proof. In vjlew of (1,14) and M ( t )  -+ a.~., E --J. m, 

where: both the left-had side wand the rigllt-hand side of these inequalities tend 
t~ X a,s, kcause of (2.1) and (2.2). This proves (2.3). 

Similarly, (2.4) fdlows from f l,l5), @1), and (22). 
If fa,,, n 3 1 r) is nondecreasing, (1 -13) implies ~ N I ~ ~  6 at(il, SO that 

(2.5) is immediate from (2.3) and (2,4). aa 

Now, if (a,, E 2 0) is strictly increasing, jet (a(t): t 2 0) be i t s  extension, 
i,e, = a, for all n = 0, 1 ,  2, ..,, s l l ch  that 

(2.6) n ( - ) i s  ~antiauaus and strictly incredsing with a@) -3 o ~ ,  t + c ~ .  

CPbviausly, a - q C . )  is also continuous and strictly increming, dtfi a" qfu) 4 m 
8s: u - m .  

Assume 

Iim Iirn sup 
610 t - r m  

Then the IoUowing stroag laws hold trm: 

COIRQLURY 2.1, Assume (2.1) olld (2.21, (2.6), (2.7). Than, srs t -* m,  

Proaf. From (2.3) we obtain 

tl(M jtwt = aMitrtJt -, 1 a.s., E -, oa. 

So, far any 0 c s . c ;  1, 

t ( 1 - 4 - $ a ( ~ ( r j ) < t ( l + c )  far t 2 ; s s , = t o { ~ p ~ ) .  

By the mrrtoantoniicity of a-"t), we have 

if t 2 2,. In view 'Clf (2.71, this gives (2.8). 
The proof of (2.9) and (2.10) follows by the same arguments. ~1 



Remark 2.1. mere are situations in which the strong Iaws of Corolla- 
ry % 1 cannot be derived from their correspondiag ealanterpaslGs of Theorem 2.1, 
since e.g- candition (2.2) i a  violated, Consider, for mample;, putial sums 
S, =: XI -1- . . . $- X, of an i.i.d, sequence {x,, n 2 I] of pogitive random variables 
with EX1 -- 1, Choose Z,  - S,,, rt 3 1, Then, 6 t h  arn, - 2", of ceurss: 

but neither a, + ,/a, 4 l nor 

so that the arguments used in &e proof of Theorem 2.1 do not apply here, 

So, the paPrth mn&tian (2,2) on the aarmaGng squmm (c~,, rt I$ is 
crucial for deriving the stmng laws of CoroUzlry %,I from their counterparts 
in Theiowrn 2.1. However, this mndition ean lar: avaide4 and thus the regu- 
larity assumptions a n  k walieoed by applying a ttltalfy digerent technique 
ef proof. Such a methad wns intrcrduwd in Klesov and Steineba~h 191 far the: 
case af renewal process= constructed from random walks with nnlmltidimen- 
sionnf, time. 

Proof. Let us Erst consider 

Wow, for any Q c c c  1, with n =  [ ~ - ~ ( t ) 3  and m' -; ~'71( t (1&8)} ] I  

lOra observing that, for k 6 pg l -  G ;:a'.' ((1 -8 )  t ) ,  





Shcx iogCl- x j x  -+ - 1 as x -* 0, the dgiht-hand side tends to exp (-XI 
E -+ m . Hence 

where E has an exponential Exp (1)-distribution, In view of this f ~ t  it is impos- 
sible that 

for any (nanriEndom) n-omizlizing family (b(e), t =. 0). Because otherwise, far 
t2Zk~h E > 0, 

requkes b (t) (1 -F  (c]) 4 P as t 1-3 m2 by the consideratian above. This, bow- 
ever, in turn implies 

so that not even a weak law of large :enumbers applies to (N(d) ,  t 2 01, 
Nevertheless, the undledying '"renewal sequence:" {Z,,, rr 2 I )  may satisfy 

a strong lm of large nunabers. For example, in the cast: of an Exp(1)-$is- 
tri-ibution, i s .  P(t)  - l --e-Vfsr r 3 5), and F(t )  = 0, otherwise, it is we11 k n o ~ a  
(crf. C;alambos [4]) that 

&, m a x ( x l s . . . >  -- - X J - + ~  as., n t m .  
log n lag n 

Note t b t ,  in the latter case, all assumptions sf meorems 2.1, 2.2 and Coral- 
lary 2.1 are: fulfilled w~tb a, = logrz, a(t) = Isg t, a l f  (I-) = er, wit11 the exmption 
of (2,7), So, lPle latter wndjtion caanak be drop@ in general. 

hother ermplle would tre; F (t] == @(t),  t E R, a spaadard norms1 distribu- 
tion function, in wbicb case 

(cE. Oalmbss [$I). Here a- "tj = exp (t"l/2 also violates as$.mption (2.7). 

Consequ~ndy~ &em are [renewal) sequences {Z#,  n 3 0) satisodng w.a 
SLLN for which their carrespon&ag renewd paomsses (NCt), 6 2 O ) ,  
(M (r), t k Co), and ( L  @), t 3 0) da not ham any (aonrde~nerafe) strong lim- 
iGng ;bePlaviour. 

Re rn a r k 2.3. Just for the sake of completenew we should like to mm&on 
that there are: also cases in tvhich the renewd process satisfies an SLLN. but 
mt so its sequena sf mnewad tinesv Consider, for exmple, a no&omogemr~os 
Poissan proass fM(t), t: 3 0) with cumulative intensity function (Aft), I: 3 01, 
i-e. A (0 = EN (0, r 3 0. Pf e.g. R (6) ia continusus and strist1y h ~ r e a s h g  ta in- 
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finity, it is we14 h o r n  that 

{Mt), 2 3 0) {fi(l(tj), t 3 8 ) ,  

where {#(t), r + Ora) is a homogeneous P'oisson proms8 witla renewal times 
$0 =a, gn = XI +...+ X,, pa 3 1, based on an i.i.d. sequeace (X,, a 3 1) of 
Bxp (1)-random va~alsles, 

CIbooa 

Then, from the SLEN for (fl {t), t 3 02, as r -, a, 

Butl since Zn = exp [fa) are the renewal tjma of ( N  (t), .E 2 04, in view of the 
LIL for the partial sums isn, n 2 1) it fallows that 

z,/em = exp (& - n) 

osdUates between O md + .rx, a.s., n -+ ao . 
2-2. Cop1ve:rgsa~:~ rate mUak It may alsa be bterating to ca~ect  general 

wadititions under w h i ~ b  convergen~e rate atatemenf s apply to the laws BE large 
raumbrs in Theorems 2-1, 2.2 and Corolkry 2.1. 

~ B A I  2.3. A s m e 5  as n -+ cu, 

(2.161 (Z ,  - aJ/b, -+ 0 a s , ,  

whre  

(2,17) a&-+ m, but Iz,-a,. , = o(b,), 

(2,18) O<b,-+m, but b ,=a(f l , ) ,  

(2,193 br#+l/b& = O m .  

TIZER, La t -t. aa, 

(2.20) ("~~gt )  - tlgbltr(r) + 0 

(2.21) faLIt) -$fit) 4 8 as. 

Morr;.over, iJ" {a,) is nondecreasing; iPtc~a 

(2,221 Ia~lsl- f)Jmax ( ~ M C ~ J ,  but,) 0 as- 

Proof Mrst note that, with X, = Z,-&-,, n > 1, asswnptiang (Za16]B 
(2,171, zmd (2,19) yield 



Now, by inequality (t .f4) 

Because of M ( t )  -+ cx, as., t -+ oa, a;mi 12-26), the right-hand side of (2.24) tends 
lo O: a.s, On the other hand, in view of (2.23) and (2.191, 

~ M ( ~ - Z M @ )  - QM(Z)-Z;W(~~ + 1 X~tr)+ I b ~ ( f ) +  1 --- -J O as., 
b~sacr) ~ M W  b~naft, + n bu(t) 

so that also the I&-hand side of (2.24) tends to O as.  This completes the proof 
of (2-20). 

For the proof of (2-21) we use the same arguments, 
Findly, (2.22) follows from 12-20] and (2.221, since 

because csf (a,, a 1)  being msuotone.  IF^ 

Navv assme that a ( . )  has s continuous derivative a ' ( - )  an (to, $a) 
satisfyiug: 

i.e- (nP(tl)/a'(s)J is bounded away from O rtnd w, if Jt/$J is bounded away f a m  
0 arad m, as t ,  s -+ a. More~ver, let (h (l), t 3 O j  be an extension of f b,J such 
that 

C o r n a , ~ ~ ~  2.2. Assume (2.16) together with (2.6), (2.7), (2.14), (2.18), (2.25), 
and (2.25), Then, us t -, oo , 

Pro o t  We ody prove (2.27)). l'he pr~oSs of: (2.28) and (2.29) are similar. 
Observe that, in view of (L 16) and (2,1R), as 12 -+ cm , 

Since conditions (2.17) a d  (2,18) dso yield (2.21, asimrtictn (2.30) hplies (2.3) and, 
mmover, (28) under thc given assumpticms, i.e. M (t) -- a-vt)  E.s., t rx,, 



Now, by the rneaB value thearern, 

[2,Jl) Ldfifftl-t - ~ ( ~ ( ~ ] ) - @ ( a " ' ( t . r )  = a1(t(t))(M .ft)-a-'{t)), 

vvlhere t ( Q  - a-I (0 a.s,, s 4 ca, On the other haad, by (2.20) and [2.26f, 

so that: a clombkinatioxr af (2.251, (2.311 and (2.32) campletes the proof of 
(2.27). a 

CORQLL~RK 23 .  ASSUM that, f i r  some ct > 0 and r > I, as ?-a -+ a, 

PTO of. The functions a@) =. ta and A @ )  = tx" satis& the assumptiow of 
Ccrrollary 2.2 with an"() - t /a  and a'(t) sz a, ra 

Re m a r k  2.4. Ry the same technique as used ts prove Corollary 2.2, ane  
can dso derive generd LIL type results for renewal pproces.s@s. Derails will be 
omitted. 

As in Theorem 2-2 the regularity aq~ssumpdons af CoraUary 2.2 can be 
considerably weakewd if a digerent technique sf proof is applied. 

"P~mmu 2.4. Assume (2.d6) together with 

(2.37) B.ft)4co as t + m ,  

(2.38) a(t)Jb[s)rO as t 4 w ,  

(2.39) ) )  i f t x s ,  

(240) i f t x s ,  
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Proof. We prove only (2.281. The arguments far (2.27) and (2.29) are 
similar. 

First, for m y  E > 0, set n = [a-2{r) ]  and m k  .= [o-ytkeft))], where 
G (t) = EE) (a-"t)). Note that 

Then, as iin (2.1 I), 

N @ ) - n  = - N 1 , ( l - ) - N 2 ( t $ + N 3 ( t ) + N 4 ( t ) ,  

and we have tcr show that the four summan& am d order .o .fb (am' .(f))/at(a- "t))) 
as r + m "  

FOF e~anrp1e~ if k 6 pn- q aCd- ; l ( t -E(@,  then 

so that, in view of (2,43), we have 

since only f i ~ t e l y  many summands in .?$At) can be nonzero. 
Similarly, far k 3 vlz* + 1 a-"t+s(t)b we get 

t -ak t -a fa -" t+~(~~t ) ) )  
z - ~ ( t l  - - ----- C e, t - - ,w,  

b k  b(a- ' (rse( t ) ) )  b(a - ' ( f+~( t ) ) ) -  

which, by the same reasasling, implies 

Zt reraajns to pxcrve that 

which, analopusly tn (2.14)-;t2.15), fouows %ram the ~xgansion 

Since:@, in view of /2.40), 

the proof of (2,281 is camQrlete. m 
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Ernnrrp~~ 2,f. There are still situations in which the assumptions of Theo- 
rems 2-2 and 2.4 do net hold truq but yet a strong Iaw of large numbers may be 
available, Consider, for instance, a sequence {Z, ,  n 2 1 )  satisfying 

ZnJ'logn-+l as. r z 4 u 3 ,  

and asunie a rate of canvergence therein, c.g. 

lim sup 
TI+ 4) 

with some nonrandom constat B > 0. Let the function (b(tr), e > 0) be. such 
that, far any A > B ,  

a ,  (t)  = lag t k R b  ( t )  

have inverse func-tions (say) cayL ($3; satisfying 

m;i(t)=etTo(e'EC) as; f + m ,  

Thm the SELM for ( N  (t), t 2 0) retai~s, i s ,  

The proof is similar to that of Theorem 2.4 by dividing N(t) = z:=, I (Z, g t )  
into four subserjes according to the sandisions n < a$"(t.), 0;' ($1 4 rz G E', 

eZ < tz 6 caZ1 (t) ,  a; "(1 -E E. Debi l~  are omitted. 
Note that the func~an a (t)  - Bog e with a- "t) = t3f violates conditions 

(2,7] and (2.39), so that neither Theowrn 2.2 nor Theorem 2.4 i s  applicable in 
this situation. Ne~erxheless, an SLLN for the renewal pramss holds true. 

Txl this section, we demonstrate the apglicaibiliQ of our general results; 
from previous sections by a, sedes of exmples. Various sitrzaeisns sf renewat 
psomascs are discussed rejated fa i.i.d. schemes, to independent, but noniden- 
tically distributed renewall times, and dsa  to mrf& dependent sequences. 

3.1. Weeeval pra:fb~es~m re%abd t5 i,i.d, scllqlu~oms, For the Rrst four exam- 
ples assume that {X,, n g I$  are i.i.d- rmdionr variables, and let &, = 0, 
8, = X1+...+X,, n 2 I. 

3.1 (Lke;ur renewal process). T.et EX, = a > 0, and n ( l )  = iu 
with a - y t )  .= t/a, Then by Kalmogorcsvk SSLLN, fcrr Za .= S,, as n -+ cn, 



Consequently, with d,(t-), M(t:JI Nit) as in (1.61-(1.X), Corollary 2.1 implies, m 
t - J O O ,  

For a coavergena rate statement we refer to an extension of a dassicd 
result of Feller C2-j obtained by Martikainen and Petrov [IOJ : If h (c) is a posi- 
rive, increasing, unbounded function such that 

then the following assertions are equivdent: 

where F ( *  ) is the distribution function of X, -a. 
Combining the Martikainen-Petrov ClO] resuEt with Theorem 2,4 we 

have, under (3,4), 

L (t)  - t /a  M (t) - t/a 
l i a  

N (0 - r/a 
-0, lim -0, lim - 0  

t b(t)  r--*m b ( t ]  g+m b(E) 

almost sure1 y. 
One of the possible choices far k ( t )  is the so-called Masdnkiewicz-Zyg- 

muad noromafization b 0) = d'/rF ", s < 2 : 2: E ]XI f < ss fos some 1 < r a 2, 
then 

ahos  t susdy, 

Exnw~ai; 3 2  modinear sencwal psomss; GI. Gut f53$ pp, 133-138). Con- 
sider, as before, an i,i.d. sequeaGe .IX,, n > 1) with E X ,  = a > 0, but set now 
Z ,  = SJa(a), where ( ~ ( t ) ,  1 > 0) is a  positive continuous function such that 

For example, t be first -passape time 

kf@ .= -t- a, is of some staiisticill importance in sequentid analysis and plays 
a key role in what i~ ealltd n o h e a r  renewal theory (cf, e.g. Wosdrcbcafe 
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[ 5  59 and Siegmund [14]). Now, by Tkcorem 2.2, if a&) = t a / ~  (t) wit b i m r s e  
function a i Z  ( t )  satit;fying (2.71, then, as t -t m ,  

whm@ LQtX M ($1, N ( t )  are as in [3.63-.f1,8). 
If, ad&~e-ionally, E /X,r < m for some 1 < r K 2, then with b (a) = nlfr/o! 

as Ki"tw, 

sa that by Theorem 2.4 we have, sls t -+ m, 

( ~ f .  Gut [Sly Theorem 5.5 in Chapter IV). 

EXMLE 3.3 (Renewal process based on subsequences), Strong laws d 
large numhrs and other convergence proprties have also been extensively 
studied far subsequences: of gartid sums sf an i.i.4. sequence. Corl-esponding 
properties of their renewal processes, which may be viewed as being related la 
ctJtain nonlineap inspestion schemes, can also be desjved from the general 
results of Section 2. Consider e.g. a subsequence {sr,, n 3 1) of integers with an 
extension {a&), t 2 0) and inverse (amL  i t ) ,  t- 2 0). Let 2, = tl3 1) and Pet 
the renewal processes N [t), M (t), and L (t) be defined as in (1.6f-Cl.8). 

Assume a,/n is iacreasing, so that a (t)/t it; also imreasing. This assumption 
is suffacient for (2,7). Indeed, for my E r 0, 

a ( (3  -1- E) a-I lt")) a (a- (t)) t - - 3 - -- 
( + a 3  a l l ( ~ )  a^"~)'  

whence a ((1 -E- e) a-  ' I&)) 2 (1 -t e] t t a s  (1 + 9) ( I )  2 5:-' ((1 + E )  t), A sifnilar ap- 
proach allows one to get corresponding estimates with 1 - 8  instead of f +E. 

Thisl in turnl implies (2.7), so that also (2.8)-(2.10) are satisfied, 
In order ta get a rate of convegence result, one has to assunle eondi lions. 

{2.38W2,41) in Tlxeorem 2.4. Let us consider the w e  of Ma~inkiettcrim--ZyB- 
mund normalizatiorxs. Assunzing EX, > 0 and B IX,f" < ca for some 1 < r .= 2, 
we obtain, as 1% -* rxl, 

Choose b j?d) = c 6 f i r r  One would now expect a conesponding result far renewal 
processer;, but this is not dways true. For the sake of simpEcity, callsider 
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txn = [av] with Y > 1. Then a (t)x it", ayt) x 5"- 5 a- (t) = c l fv ,  am3 b ft] x i"", 
Conditions (2.383-12,"10) are obvious iu this case, but condition (2.46) requira 
a restriction on r, i.e, P < (v-I)/v, 

EXAMPLE 3.4 (Renewal pro~esses when extremes me exduded). It i s  well 
known that, under certain assumptions, partid sums of i.i.d. ratsldorn vafiaMes 
with infinite expectation can still satisfy a strong law of large numbers if the 
extremal terms are removed from the sums. Consider, for example, S,  as a b s v ~  
and put 

Zn = SS,- max IX,I, 
L G k G n  

1.e. 2, is the n-th partid ilsum with the maximal term being excluded. Mori [I 1 J 
proved &at 

almost surely for some nonrandom sequence (c,~, n 3 1) if and sdy if 
a 

(351 ~ x F 2 [ x ) ; d h : <  W, where F [ x ) = P ( I X , I > x ) .  
0 

Witfaout toss of generaiitty the mnstants c, can be chomn a . ~  = EX, I {EX,] ..F. mi 
with same positive constant s, eg. T = 1, Put c (t) = EXr f {/XI] < E] and 
af t )  = te( t] ,  Then, under the conditions of Tbearem 2.2, as r -+ m, 

L (4 
--* 1, - a.s. 

a- (t)  a- l  (i) 

Moreover, under the assumptions of meoreta 2.4, with b ( t )  = t we havq as: 
t -+  w, 

dmod surely, provided (35)  holds. 
Far example, choose F ( x )  = P (X, 6 ac) as follows: 

The lexpctation does not exist for this distPibmtion, and therefore tbc renewla1 
process based on sums has no lit~eat asymptotic. Oa the ather hand, the re- 
newal process based on sums with excluded maximal term has a (nsnliaar) 
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uyt) = log 106 t -a- Q (I), a- (r) --- t/log log s -c O (t/(lee leg tI2) 

in this ease, so that, as t -t co, 

Similar results e m  be obtained for sums with r maximal terms excluded, if 
condition (3.5) is replaced by 

E ~ M P E E  3 5  (Extended renewal processes). Morvhth developed 
a strang approwlmation approach far extended renewal processes based on 
a seqnenee of d-dimensional i.i.d. random vafiables (X,, n I] with E X ,  = a. 
Put So = 0, Sn = XI +. . . SX,, n $ 2 ,  slad Ict h: Rd RWf be hamogeneous af 
degree 1, continuously cliRerentislble, and u s m e  k(a) d) 0, For fixed 0 G p < 1, 
set 2, = R ($,)/npp and e-g. 

infa = -b m. Under E IXY < go far some u 2, Hawhth [TI was able ta derive 
a strong approximnation sf  

(3.7) - q = l - p ,  
by a suitable Wiener process which, in turn, results in a number of strong (and 
weak) b i t  theorems for ( M  (t), G 3 0). 

Under wcak~r aasumpl-iatls, we are still able to retain s o w  SLLN or 
coovergence rate type results by our m t h ~ d s  of Section 2, Far a m p l e ,  if only 
E IX,! < oo , thcn similarly to Example 3.2, as t -+ GO, 

If BIX, r>  m far same 1 =cr .<2 ,  then, a t t  cm3 

32 Md~a-iJ,d, P ~ C  djepe~llaent E ~ B ~ W ; I I  thm. 

E ~ U P L E  3.6 (Weighted i.i.d. sur~lmands). Consider an i.i.d. sequence 
{XP, ,  n & f ) with EX,  == 1 m d  a positive function {w (t). I r 0). Lei 



2, = ,w ( l c ) ~ ,  and define renewdl processes {L(tj, t 2 01, ( M  ( t ) ,  t 2 Oj, 
and { N  ( t ) ,  r 3 0) amording to (I .8)* (l,7), and (1 ,b), respectively. 

Then, with a(n)  = w ( l ) + .  ..+ w(a), n 3 1, it is clear that EX, ==: a($, By 
the Kolmoglorov SLLN for nonidentimuy &stm&buted random variables, 

provided BX: < r 3 ~  and the function b(c) is positive, nandwreasijritlg, unbaun- 
ded, and such. that 

Note that the abcvve moment restric~sn may be weakened by applMg a t m ~ -  
cation procedure, but for the sake of simplicity, we keep the above assumption. 
Moreover+ we c-hoose w (z) - te-(t- 1)" -Bta-' far some 8 0. Then 
a(n] - wa@, We set a(t)  = t8 and note that n"'(t) = t'", a'@) = Bt@-'. T o  sari& 
the ccrnditioas of Theorem 2.4 we assum 

Then, if 

we obtain 

Om of the p ~ ~ i b l e  choices of b (t) is: b ( t ]  - r" with 0- 1 < d < O, far 
which 

In a recent paper, Fazekas and Klesclv fl] develop& a general approach 
to the strong law of large numbem. Tfaeir key idea was to show that Hajiek-Eknyi 
type inequalities WI be obtained from appropriate ttlaximal inequalities for 
curnudative ssuans, and that the latter, in turn, ImpIy the SLLM. Wy this method, 
no assumptians on the dependency structure of the s u m a ~ ~ d s  are rirequi~d, 
and a number uf examples can Be covered kduding sums of independent, hut 



aanidenticdHy distrihutd summands, marljngale digereace schemes, &jug 
sequences, mixingales, orthogaaal sequences% sequences with superdditive mo- 
ment structure and may others. 

811 d these examples may, under appropriate conditions, be ~onvertcd 
into strong laws for their cor~espoading renewal procmsa. Just for the sake of 
demoflstrati~n, tve consider three find examples. 

E ~ ~ A M P U  3.7 [@-mixing renewal times). Let (X,, rz 3 I) be a sequence of 
identically distribwkd random variables, @-mixing, with EXI -=- a r 6 and 
E ] X J  .r cle for some I d r .= 2. Then, with a( t )  = ta and b ( t )  = tul: as t -+ ua, 

pro.ct.ided g (23 < m,  where e denotes the Kolmogorov-Rozanov mixing ea- 
efFicient of {X,, n 3 f ). 

The above mixing condition can even by weakend (cf. Shao [I31 and 
F a ~ k a s  and Klesav [I], Theorem 5.1). Extensions to mixing sequenem 
d monidentically distributed randam variables are &so available (see Fltzkw 
rm$ Klesov [I], Theorem 5.2). Naturdly, the case of m-dependent renew~l 
times Is ineluded (coder also Jaman [&I for further asyraptotics in the latter 
case). 

EXAMPLE 3.15 [Martingale diEerence schemes), Let (X,,, n 3 9) be a, mar- 
thgale diEerenm sequence vvi th respect to the filtxati~n {&, , n 2 2 ], where 5, is 
generated by X,, ..., X,, Assume EX, = a > O, q 1/2, md let (b,, n 3 1) be 
nonde~reasing unbounded and such that 

Then, with a@) - ta md b(t) satisfyir~g the ilssumpticlns of Thcar~m 2-4, wc 
~;IY:, BS 8 -+ 00, 

{r;f. F~~elras a d  KEesov [I], Theorem 5.1). 
As a coraseqamce, we obtain a Brunk-Prokhorov type strong law for 

ren~wal pruceases based on marthgaie dBerenee schemes: Let: (X,, n 2 1) ~tnd 
(b,, 11 3-, 1 )  be as above, but assum either iq L=. I, or g r 1 and pa-'h, he tlon- 
decrea8ing for same S s (q-- 1)/2q. If 

then (3.8) retains (ct F m k m  and Rlesov El], Corollary 3.1). 



E ~ W L B  3.9 (Banaeh space schemes), Let {X,, nz 3 1) be a sequence of 
independent, identically distributed random vm-ables assuming values in a Ba- 
nach space with norm 11 ,If, azd put Z, .= IlSJ. If E flXll/ < m2 then (2.1) holds 
with a,, - np, provided g = ]lEXI1l 0 (cf. e,g. Mourier [IZ]). Since (2.6) and 
(2.7) are obviously satisfied for such a sequence (a,, n 2 19, Thmrm 2-2 gives 
the asymptotic of the renewal process constructed from a random wak Erin 

a Banrneh spxe, i.e., as t -+ m , 

Further apglicatiam of the above results to schemes af Banach space vdued 
random variables wiU be published dsewhere. 
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